
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 30

Deterministic context-free languages

Shift-reduce parsers are useful for deterministic languages

LR(k) Shift-reduce parsers are most useful for recognising the strings of
deterministic languages (languages where no string has more than one
analysis) which have been described by an unambiguous grammar.

Quick reminder:

The parsing algorithm has two actions: shift and reduce

Initially the input string is held in the buffer and the stack is empty.

Symbols are shifted from the buffer to the stack

When the top items of the stack match the RHS of a rule in the
grammar then they are reduced, that is, they are replaced with the
LHS of that rule.

k refers to the look-ahead.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 30

Deterministic context-free languages

Reminder: shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}

s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) Formal Models of Language 3 / 30

Deterministic context-free languages

Reminder: properties of Deterministic CFLs

Deterministic context-free languages:

are a proper subset of the context-free languages

are accepted by deterministic push-down automata

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

Paula Buttery (Computer Lab) Formal Models of Language 4 / 30

Non-deterministic context-free languages

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to shift-reduce parsers which operate deterministically
recognising a single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this next time).

All CFGs (including those exhibiting ambiguity) can be recognised in
polynomial time using chart parsing algorithms.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 30

Non-deterministic context-free languages

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length n =
n−1∏
k=2

(n − 1) + k

k

sentence length number of trees

3 2
4 5
5 14
6 42
7 132

sentence length number of trees

8 429
9 1430
10 4862
11 16796
12 58786

We need parsing algorithms that can efficiently store the parse forest and
not derive shared parts of tree more than once—chart parsers

Paula Buttery (Computer Lab) Formal Models of Language 6 / 30

Chart parsing

The Earley parser is a chart parsing algorithm

The Earley parser is a dynamic programming algorithm that records
partial derivations in a chart (a table).

Uses a top-down approach to explore the whole search space,
recovering multiple derivations where they exist.

The progress of the algorithm is encoded in something called a
dotted rule or progress rule:

A→ lαβ | αlβ | αβl where A→ αβ ∈ P.

Rules of the form A→ lαβ have all symbols still to be explored;

Rules of the form A→ αβl have been completely used up deriving a
portion of the string.

Paula Buttery (Computer Lab) Formal Models of Language 7 / 30

Chart parsing

Partial derivations are recorded in a chart

By convention, each row of the chart is referred to as an edge.

An edge in the chart records a dotted rule, and its span.

The span refers to the portion of the input string which is consistent
with the partial tree.

If we wish to discover the structure of a parse, an edge must also
record the derivation history of the immediately previous partial
tree(s) that made the current partial tree possible.

Paula Buttery (Computer Lab) Formal Models of Language 8 / 30

Chart parsing

Partial derivations are recorded in a chart

For an illustration, consider the partial tree below which has been derived
when attempting to parse the sentence they can fish:

0

S

NP

N

they

VP

1 can 2 fish 3

id rule [start, end] hist
...
ei S → NPlVP [0, 1] hk

Paula Buttery (Computer Lab) Formal Models of Language 9 / 30

Chart parsing

Partial derivations are recorded in a chart

For input string u = a1...an and grammar Gcfg = (N ,Σ, S ,P):

An edge A→ αlβ [i , j] is added if

S =⇒
G∗

a1...aiAγ where γ are symbols in u yet to be parsed

and α =⇒
G∗

ai+1...aj

The chart is initialised with the edge S → lαβ [0, 0];

The input string u = a1...an is recognised when we add the edge
S → αβl [0, n].

Paula Buttery (Computer Lab) Formal Models of Language 10 / 30

Chart parsing

Today’s toy grammar

We will parse the sentence they can fish using Gcfg = (N ,Σ, S ,P) where:

N = {S ,NP,VP,PP,N,V ,P}
Σ = {can, fish, in, rivers, they ...}
S = S
P = {S → NP VP

NP → N PP | N
PP → P NP
VP → VP PP | V VP | V NP | V
N → can | fish | rivers | ...
P → in | ...
V → can | fish | ... }

0 they 1 can 2 fish 3

Paula Buttery (Computer Lab) Formal Models of Language 11 / 30

Chart parsing

Initialise the chart

The chart is initialised with S → lαβ [0, 0].

id rule [start, end] hist

e0 S → l NP VP [0, 0]

In rule induction notation:

(induction step)
S → lαβ [0, 0]

Paula Buttery (Computer Lab) Formal Models of Language 12 / 30

Chart parsing

Three steps of the Earley parser: predict step

This step adds new edges to the chart and can be thought of as expanding
tree nodes in the top-down derivation.

id rule [start, end] hist

e0 S → l NP VP [0, 0]

e1 NP → l N [0, 0]
e2 NP → l N PP [0, 0]

In rule induction notation:

A→ αlBβ [i , j]
(predict step) where B → γ ∈ P

B → lγ [j , j]

Paula Buttery (Computer Lab) Formal Models of Language 13 / 30

Chart parsing

Three steps of the Earley parser: scan step

This step allows us to check if we have a node that is consistent with the
input sentence. If the input sentence is u = a1...an we can add a new edge
if A→ la [i , j − 1] and a = aj .

id rule [start, end] hist

e0 S → l NP VP [0, 0]

e1 NP → l N [0, 0]
e2 NP → l N PP [0, 0]
e3 N → they l [0, 1]

In rule induction notation:

A→ la [i , j − 1]
(scan step) when a = aj

A→ al [i , j]

Paula Buttery (Computer Lab) Formal Models of Language 14 / 30

Chart parsing

Three steps of the Earley parser: scan step

For natural language sentence parsing tasks, Σ can be the finite set of
words in the language (a very large set).

when carrying out the predict step from a rule like NP → l N we
would end up adding a new edge for every noun in the language.

To save us from creating all these edges we can privilege a set of the
non-terminals and perform a forward look-up of the next aj to see
whether it will be consistent.

In our example this set would be NPofS = {N,V ,P}, that is, all the
non-terminal symbols that represent the parts-of-speech of the
language (such as nouns, verbs, adjectives...).

During the scanning step, we find edges containing non-terminals in
NPofS with a dot on their LHS and check if the upcoming word is
consistent with the part-of-speech. Iff it is consistent then we add an
edge to the chart.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 30

Chart parsing

Three steps of the Earley parser: complete step

This step propagates fully explored tree nodes in the chart.

id rule [start, end] hist

e0 S → l NP VP [0, 0]

e1 NP → l N [0, 0]
e2 NP → l N PP [0, 0]
e3 N → they l [0, 1]
e4 NP → N l [0, 1] e3
e5 NP → N l PP [0, 1] e3
e6 S → NP l VP [0, 1] e4

In rule induction notation:

A→ αlBβ [i , k] B → γl [k, j]
(complete step)

A→ αBlβ [i , j]

Paula Buttery (Computer Lab) Formal Models of Language 16 / 30

Chart parsing

id rule [start, end] hist word n
e0 S → l NP VP [0, 0] word 0
e1 NP → l N [0, 0] word 1
e2 NP → l N PP [0, 0]
e3 N → they l [0, 1]
e4 NP → N l [0, 1] (e3)
e5 NP → N l PP [0, 1] (e3)
e6 S → NP l VP [0, 1] (e4)

e7 PP → l P NP [1, 1] word 2
e8 VP → l V [1, 1]
e9 VP → l V NP [1, 1]
e10 VP → l V VP [1, 1]
e11 VP → l VP PP [1, 1]
e12 V → can l [1, 2]
e13 VP → V l [1, 2] (e12)
e14 VP → V l NP [1, 2] (e12)
e15 VP → V l VP [1, 2] (e12)
e16 S → NP VP l [0, 2] (e4,e13)
e17 VP → VP l PP [1, 2] (e13)

e18 NP → l N [2, 2] word 3
e19 NP → l N PP [2, 2]
e20 VP → l V [2, 2]
e21 VP → l V NP [2, 2]
e22 VP → l V VP [2, 2]
e23 VP → l VP PP [2, 2]
e24 PP → l P NP [2, 2]
e25 N → fish l [2, 3]
e26 V → fish l [2, 3]
e27 NP → N l [2, 3] (e25)
e28 NP → N l PP [2, 3] (e25)
e29 VP → V l [2, 3] (e26)
e30 VP → V l NP [2, 3] (e26)
e31 VP → V l VP [2, 3] (e26)
e32 VP → V NP l [1, 3] (e26,e27)
e33 VP → V VP l [1, 3] (e26,e29)
e34 S → NP VP l [0, 3] (e4,e32) or (e4,e33)
e35 VP → VP l PP [1, 3] (e32) or (e29)

Paula Buttery (Computer Lab) Formal Models of Language 17 / 30

Chart parsing

The run time of the Earley parser is polynominal

- The complete step dominates run time O(n2)

- Running time of the Earley parser is O(n3)

- Run time is reduced in various scenarios, e.g. when the grammar is
unambiguous or left-recursive .1

So what makes a sentence complex for a human to process?

1See https://homepages.cwi.nl/~jve/lm2005/earley.pdf for a full discussion
Paula Buttery (Computer Lab) Formal Models of Language 18 / 30

https://homepages.cwi.nl/~jve/lm2005/earley.pdf

Human parsing complexity

The term complexity can be used to describe human
processing difficulty

The term complexity is also used to describe the perceived human
processing difficulty of a sentence: work in this area is generally referred to
as computational psycholinguistics.

Complexity within this domain can refer to:

the time and space requirements of the algorithm that your brain is
posited to require while processing a sentence.

the information theoretic content of the sentence itself in isolation
from the human processor (more in later lectures on this)

Paula Buttery (Computer Lab) Formal Models of Language 19 / 30

Human parsing complexity

The term complexity can be used to describe human
processing difficulty

Traditional work in this area has looked mainly at parsing algorithms to
discover whether they exhibit properties that correlate with measurable
predictors of complexity in human linguistic behaviour.

Two general assumptions are made in this work:

1) Sentences will take longer to process if they are more complicated
for the human parser.

Processing time is usually measured as the time it takes to read a
sentence.
This can be done with eye-tracking machines which also identify
whether the subject reread any parts of a sentence.
Researchers also use neuro-imaging techniques (MEG, fMRI)

Paula Buttery (Computer Lab) Formal Models of Language 20 / 30

Human parsing complexity

The term complexity can be used to describe human
processing difficulty

2) Sentences will not occur frequently in the spoken language if
they are complicated to produce or comprehend.

Frequencies are calculated by counting constructions of interest in
spoken language corpora.

The assumption then is that one (or both) of the two measurements of
perceived complexity above will correlate with time and space
requirements of the parsing algorithm.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 30

Human parsing complexity

What makes a sentence expensive to process?

Example: long distance syntactic dependencies (e.g. garden-paths)

The horse raced past the barn

The horse raced past the barn fell—comparatively slow reading time

S

NP

the horse

VP

V

raced

PP

P

past

NP

DET

the

N

barn

S

NP

NP

the horse

VP

V

raced

PP

P

past

NP

DET

the

N

barn

VP

V

fell

Paula Buttery (Computer Lab) Formal Models of Language 22 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

Using predictability as a measure of difficulty

The cognitive effort associated with a word in a sentence can be
measured by the word’s surprisal (negative log conditional
probability): log 1

P(wi |w1...i−1)
(more on this in later lectures)

The suggestion is that probabilistic context-free grammars (PCFGs)
can be used to model human language processing.

Gpcfg = (Σ,N , S ,P, q) where q is a mapping from rules in P to a
probability and

∑
A→α ∈ P

q(A→ α) = 1

A probabilistic Earley parser is used as a model of online eager
sentence processing.

Paula Buttery (Computer Lab) Formal Models of Language 23 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

The probabilistic Earley parser computes all parses of its input.

As a psycholinguistic theory it is one of total parallelism (as opposed
to a reanalysis theory)

Calculate prefix probabilities i.e. probabilities of partially derived
trees.

Hypothesis is that the cognitive effort expended to parse a given
prefix is proportional to the total probability of all the structural
analyses which are not compatible with the prefix.

Generates predictions about word-by-word reading times by comparing
the total effort expended before some word to the total effort after.

The explanation for garden-pathing is then the reduction in the
probability of the new tree set compared with the previous tree set.

The model accounts successfully for reading times.

Paula Buttery (Computer Lab) Formal Models of Language 24 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

Toy grammar with probabilities

S → NP VP 1
NP → N PP 0.2
NP → N 0.8
PP → P NP 1
VP → VP PP 0.1
VP → V VP 0.2
VP → V NP 0.4
VP → V 0.3
N → {it, fish, rivers, December, they} 0.2
P → {in} 1
V → {can, fish} 0.5

Paula Buttery (Computer Lab) Formal Models of Language 25 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing
edgen dotted rule [S, W] hist Prob MaxProb
e0 S→ l NP VP [0,0] P(S→ NP VP)=1
e1 NP→ l N [0,0] P(e0)P(NP→ N)=1*0.8=0.8
e2 NP→ l N PP [0,0] P(e0)P(NP→ N PP)=1*0.2=0.2
e3 N→ they l [0,1] P(N→ they)=0.2
e4 NP→ N l [0,1] (e3) P(e3)P(NP→ N)

=0.2*0.8
=0.16

e5 NP→ N l PP [0,1] (e3)
e6 S→ NP l VP [0,1] (e4)
e7 PP→ l P NP [1,1] P(N→ they)P(e2)P(PP→ P NP)

=0.2*1*0.2*1=0.04
e8 VP→ l V [1,1] P(N→ they)P(e1)P(VP→ V)

=0.2*1*0.8*0.3=0.048
e9 VP→ l V NP [1,1] P(N→ they)P(e1)P(VP→ V NP)

=0.2*1*0.8*0.4=0.064
e10 VP→ l V VP [1,1] P(N→ they)P(e1)P(VP→ V VP)

=0.2*1*0.8*0.2=0.032
e11 VP→ l VP PP [1,1] P(N→ they)P(e1)P(VP→ VP PP)

=0.2*1*0.8*0.1=0.0016
e12 V→ can l [1,2] P(V→ can)=0.5
e13 VP→ V l [1,2] (e12) P(e12)P(VP→ V)

=0.5*0.3
=0.15

e14 VP→ V l NP [1,2] (e12)
e15 VP→ V l VP [1,2] (e12)
e16 S→ NP VP l [0,2] (e4,e13) P(e4)P(e13)P(S→ NP VP)

=0.2*0.8*0.5*0.3*1
=0.024

e17 VP→ VP l PP [1,2] (e13)

Paula Buttery (Computer Lab) Formal Models of Language 26 / 30

Human parsing complexity

Yngve—PDA as a model of sentence processing

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ε : ε/VP ε : ε/NP ε : NP/N

ε : NP/Pron

ε : ε/Det a, the : Det/ε

maw, noggin : N/ε

he, she : Pron/ε

ε : z0/z0

ε : VP/NP

ε : VP/V

ε : ε/V

eats, sings : V/ε

ε : NP/NP

ε : z0/z0

Hypothesis: the size of the stack correlates with working memory
load.

Prediction: sentences which require many items to be placed on the
stack will be difficult to process and also less frequent in the language.

Prediction: when multiple parses are possible we should prefer the
one with the minimised stack.

Paula Buttery (Computer Lab) Formal Models of Language 27 / 30

Human parsing complexity

Yngve—PDA as a model of sentence processing

Yngve formulated the problem as interaction between:

- a register (which holds the current node) and
- the stack (which contains all the nodes left to explore)

Sentences are constructed top-down and left-to-right.

Under these circumstances the size of the stack is hypothesised to
correlate with working memory load.

Paula Buttery (Computer Lab) Formal Models of Language 28 / 30

Human parsing complexity

Hypothesis: stack correlates with working memory load

S→NP VP
NP→Det N
VP→V NP
Det→the
N→girl
N→rabbit
V→chased

S

NP

Det

the

N

girl

VP

V

chased

NP

Det

the

N

rabbit

Register Stack
S
NP VP
Det N VP
the N VP
N VP
girl VP
VP
V NP
chased NP
NP
Det N
the N
N
rabbit

Paula Buttery (Computer Lab) Formal Models of Language 29 / 30

Human parsing complexity

Hypothesis: stack correlates with working memory load

Yngve’s model makes predictions about centre embedding:

Consider:

This is the malt that the rat that the cat that the dog worried killed
ate.

STACK: N VP VP VP

as opposed to:

This is the malt that was eaten by the rat that was killed by the cat
that was worried by the dog.

Yngve evaluated his predictions by looking at frequencies of
constructions in corpus data.

Paula Buttery (Computer Lab) Formal Models of Language 30 / 30

	Deterministic context-free languages
	Non-deterministic context-free languages
	Chart parsing
	Human parsing complexity

