
Workbook 0
The hard drive in a computer is capable of storing several orders of magnitude more data than RAM.
In this workbook you will write a program to sort a large list of integers stored in a file which may not fit
in the memory available to the Java Virtual Machine (JVM). Algorithms which sort data in this way are
sometimes called external sorting algorithms.

Important

The deadline for this exercise is 5pm on Monday 8th October 2018.

An on-line version of this guide is available at: https://www.cl.cam.ac.uk/teaching/1819/FJava and you
should check this page regularly for announcements and errata. You might find it useful to refer to the
on-line version of this guide in order to follow any provided web links or to cut 'n' paste example code.

In order to complete the task described in this workbook, you will need to use Chime and Git as a
development environment for Java programs. You can create a new git repository on Chime via https://
www.cl.cam.ac.uk/teaching/1819/FJava/ticklet0. There is an introductory guide to these tools on the
course website if you need help.

In the Programming in Java course, you used input and output streams to read and write data to the
file system. Some programs, such as external sort, benefit from the ability to read and write data at
an arbitrary position in the file. The offset at which a read or write occurs is often recorded in a file
pointer or file descriptor. The class java.io.RandomAccessFile supports this feature in Java and
an instance of this class keeps track of a specific byte offset from the start of the file which will be read
or written to. When a new instance of RandomAccessFile is created, the file pointer will typically be
located before the first byte of the file, and a successful call to a read (or write) method will move the
location of the file pointer by the number of bytes read (or written). In addition to read and write methods,
RandomAccessFile objects support a seek method, which the programmer can use to move the file
pointer to an arbitrary location in the file, and a length method which returns the length of the file in
bytes. Here is a simple example:

RandomAccessFile f = new RandomAccessFile("/home/arb33/example","rw");
f.writeInt(1); //write a "1" into the first four bytes of the file
f.writeInt(2); //write the value "2" after the value "1"
f.writeInt(3); //write the value "3" after the value "2"
f.seek(4); //file pointer now between fourth and fifth byte
System.out.println("Read four bytes as an int value "+f.readInt());
System.out.println("The file is "+f.length()+" bytes long");

1. Compile and execute the code snippet above. What does it print?

Writing integer values using a RandomAccessFile object is not efficient as each call to writeInt
results in a system call to the operating system to write the data to the hard disk. One way of making
writes more efficient is to cache a number of writes in memory and then coalesce these write operations
together into a single, larger, write operation. A convenient way to coalesce the writeInt method calls
in the sample code above is to create an output stream from the file descriptor held by an instance
of RandomAccessFile. This output stream can then be wrapped in a BufferedOutputStream
object to create a small in-memory buffer. Finally, the buffered output stream can be wrapped in a
DataOutputStream object to add support for writing primitive integers. In other words:

1

https://www.cl.cam.ac.uk/teaching/1819/FJava
https://www.cl.cam.ac.uk/teaching/1819/FJava/ticklet0
https://www.cl.cam.ac.uk/teaching/1819/FJava/ticklet0

Workbook 0

RandomAccessFile f = new RandomAccessFile("/home/arb33/example","rw");
DataOutputStream d = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream(f.getFD())));
d.writeInt(1); //write calls now only store primitive ints in memory
d.writeInt(2);
d.writeInt(3);
d.flush(); //force the contents to be written to the disk. Important!
f.seek(4);
System.out.println("Read four bytes as an int value "+f.readInt());
System.out.println("The file is "+f.length()+" bytes long");

In the previous example, only the calls to writeInt are buffered through the stream; the call to
readInt on the penultimate line is still made directly on the RandomAccessFile object. There is an
additional method call d.flush() which is used to write any data which might be held in the memory
cache to the hard disk; this is crucial since otherwise the subsequent method call f.readInt() may
not produce the correct answer as the data may not have been written to the hard disk yet. As you
might expect, the classes FileInputStream, BufferedInputStream and DataInputStream can
be used in an analogous way to create an input stream to a file if you need to read multiple data items
from a file in an efficient manner.

Input streams support a skipBytes method to move the file pointer forwards through the stream. They
do not support a seek method, so you can only progress forwards through a file. (Why do you think
this is?) If you need to make multiple passes through a file in an efficient manner, you can create a
new input for each pass.

External Sort
To gain Ticklet 0 you will need to implement an external sorting algorithm. Your sorting algorithm will
be provided with two file names:

1. file A, containing a list of Java primitive integers written in binary format which can read and written
using the readInt and writeInt methods as shown above; and

2. file B, which is the same length as file A, and whose initial contents are not defined, but the space
can be used as an additional place to store data whilst your program executes.

After your program has finished executing, file A should contain the same set of integers it initially
contained, except that they should be sorted into numerical order, from smallest to largest. The contents
of file B can be anything you like. You must not create any additional temporary files on the hard
disk whilst sorting data, and you must not increase the size of file A or file B. You can use any
stack and heap space available to the JVM for storing copies of (portions of) the data stored in the
files, but remember that the amount of data held in the files may exceed the memory available to
the JVM! You cannot make use of any machine RAM except via the JVM; for example, use of the
java.nio.channels.FileChannel to memory-map a file directly into RAM is not allowed.

There are many ways to perform an external sort, and the final choice of algorithm is up to you. One
simple solution is to use merge sort as follows. Imagine dividing the integers stored in the input file into
n sorted blocks, each of size k, where k is initially equal to one and n is equal to the number of integers
stored in the file. On each pass through the file, data held in odd blocks can be merged with data held
in even blocks to create n/2 blocks each of length 2k. On each pass, data will need to be read from one
file and written to the other. For example, on the first pass, data in file A will be used as input, and the
results of the merge will be written into file B; on the second pass, data in file B will be used as input,
and the results of the merge will be written into file A. In this way, after log n passes, a sorted copy of
the data will reside in either file A or file B.

You can implement external merge sort by creating two RandomAccessFile objects for file A called
a1 and a2, and another two RandomAccessFile objects for file B called b1 and b2. On each pass,
one of the files, let's say A, will contain the input data, and the other file, let's say B, will be used for
output. At the start of the pass, file pointers a1 and a2 should be located at the start of the first and

2

Workbook 0

second blocks of (sorted) data and file pointer b1 should be located at the start of file B. The integers
in the first block, accessible from a1, can be merged with the integers in the second block, accessible
from a2, and the results written to b1; when the first two blocks have been merged, then a1 and a2 can
seek ahead in file A to point to the start of the third and fourth blocks of file A, and the process repeated
until all pairs of blocks in file A have been merged into blocks of twice the size in file B.

There are some additional subtleties with the above approach which will also need to be addressed.
Firstly, you may find that on some passes you have an odd number of blocks. Secondly, the final block in
the file may be shorter than k integers in length, so you will need to make use of the length method on
the RandomAccessFile object to ensure that you copy only valid elements from the final block. Finally,
as mentioned in the previous section, calling readInt or writeInt directly on a RandomAccessFile
object is simply too slow to be practical, so on each pass through the file you will need to create
appropriate buffered input and output streams; you can use the skipBytes method on such streams
to advance to new blocks on the input file as necessary. Figure 1, “External merge sort”, shows an
execution trace of external merge sort for a file containing six integers; note the last copy stage, which
is required here to ensure the sorted list exists in file A when the program terminates.

1

2

3

4

5

6

2

1

4

3

6

5

2

1

6

5

4

3

6

5

4

3

2

1

6

5

4

3

2

1
Merge

Merge

Merge

Merge

Copy

Merge Copy

k=1 k=2 k=4

File A File B File A File B File A

Figure 1. External merge sort

Create a class called ExternalSort in the package uk.ac.cam.crsid.fjava.tick0. The class
must contain a sort method with the following prototype:

public static void sort(String filenameA, String filenameB)
 throws FileNotFoundException, IOException

The sort method must sort the integers found in filenameA into numerical order from smallest to
largest. Your implementation may use the space provided in filenameB as temporary storage.

In order to help you test your program, a skeleton implementation of ExternalSort is available for
download from the course website, together with a ZIP file which contains a set of input files to test your
program. When you have completed your implementation you can use the main method provided in
ExternalSort to test your program. For example, given two files, test1a.dat and test1b.dat
from the ZIP file, you can test your program as follows:

crsid@machine~:> java -Xmx10m uk.ac.cam.crsid.fjava.tick0.ExternalSort \
 test1a.dat test1b.dat
The checksum is XXXXXX

3

Workbook 0

You should check that the value of the checksum printed by your program is the same as that printed
in checksum.txt (a file also available in the ZIP file) to double-check that you have sorted the list of
integers correctly. If you do not get the correct checksum value, your implementation is incorrect, and
there is no point submitting your code as it will fail! In the above example, the option -Xmx10m limits
the amount of memory available to the JVM to 10 MB; you may like to alter this parameter in order to
see how the performance of your solution varies.

You are, of course, welcome (and encouraged!) to devise your own external sorting algorithm, however
your own implementation of ExternalSort must retain the sort method with the prototype as
described above so that the testing framework can check your implementation is correct. Remember
that the amount of memory available to the JVM may be less than the size of the input files to be sorted.

Tick 0 and Tick 0*
You have now completed all the necessary code to gain Ticklet 0. All submitted implementations will be
checked for correctness against all the provided test datasets, together with several additional datasets
which we do not make available to students. You can submit your work via Chime by starting at this
URL: https://chime.cl.cam.ac.uk/start/fjava/tick0.

This year the tickers will be checking your code for good programming style. We understand that this is a
subjective area but would like you to comply with the following guidelines. We will use (with permission)
a slight adaption of the BAE Systems Applied Intelligence coding standard. You should comply with
everything described on the three-page summary except where we have marked it as optional ('Opt').
The following documents are available from the course website:

• Three-page summary of guidelines as annotated code [BAE-Java-standard-summary.pdf]

• Complete document with full explanations and examples [BAE-Java-standard.pdf]

We will award a star to the ten implementations which are submitted before the deadline, and process
all our datasets correctly in the shortest total time. You may resubmit your solution to improve your time
as often as you like. Once we have released the testing framework, we will update a leaderboard of
the time taken by each submission on the course website, so you will be able to see how well your
implementation is doing compared with the others. Good luck!

We encourage you to discuss your ideas on external sorting algorithms with each other and to seek help
from other students in order to understand and clarify the exercise requirements. However, your final
submission must be the result of your own work and should only contain code you have written yourself.

4

https://chime.cl.cam.ac.uk/start/fjava/tick0
BAE-Java-standard-summary.pdf
BAE-Java-standard-summary.pdf
BAE-Java-standard.pdf
BAE-Java-standard.pdf

	Workbook 0
	External Sort
	Tick 0 and Tick 0*

