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Computational	interaction	
•  Classic	human-computer	interaction	(HCI)	method	

does	not	handle	user	interface	design	under	
uncertainty	very	well	

•  Classic	HCI	method	is	underpinned	on	eliciting	user	
needs	using	a	variety	of	processes	and	then	an	
iterative	process	of	design	and	evaluation,	in	which	
design	is	driven	by	design	ingenuity	rather	than	
principles	

•  This	means:	
–  No	automated	design	work	
–  No	explicit	model	
–  Data	influenced	design	only	through	the	designer	

•  Computational	interaction	is	an	emerging	discipline	in	
HCI	which	proposes	user	interface	development	by	
allowing	algorithms	to	perform	work,	by	explicit	
modelling,	and	by	allowing	data	to	directly	influence	
design.	



Computational	interaction	
•  Computational	interaction	would	typically	involve	

at	least	one	of:	
I.  an	explicit	mathematical	model	of	user-system	

behavior;	
II.  a	way	of	updating	that	model	with	observed	data	

from	users;	
III.  an	algorithmic	element	that,	using	this	model,	can	

directly	synthesise	or	adapt	the	design;	
IV.  a	way	of	automating	and	instrumenting	the	

modeling	and	design	process;	
V.  the	ability	to	simulate	or	synthesise	elements	of	the	

expected	user-system	behavior.	





Intelligent	text	entry	as	an	example	
of	designing	interaction	under	

uncertainty	
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Principles	of	intelligent	text	entry	
•  ...which	can	often	be	

thought	of	as	an	
inference	problem:	

Kristensson,	P.O.	2009.	Five	challenges	
for	intelligent	text	entry	methods.	AI	
Magazine	30(4):	85-94.	



Why	do	nearly	all	text	entry	
methods	fail?	
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The	cross-over	point	

Objective	benefit	

Nicosia,	M.,	Oulasvirta,	A.	and	Kristensson,	P.O.	2014.	Modeling	the	perception	of	user	
performance.	In	Proceedings	of	the	32nd	ACM	Conference	on	Human	Factors	in	Computing	
Systems	(CHI	2014).	ACM	Press:	1747-1756.	



The	cross-over	point	

Perceived	benefit	

Nicosia,	M.,	Oulasvirta,	A.	and	Kristensson,	P.O.	2014.	Modeling	the	perception	of	user	
performance.	In	Proceedings	of	the	32nd	ACM	Conference	on	Human	Factors	in	Computing	
Systems	(CHI	2014).	ACM	Press:	1747-1756.	
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The	narrow	design	space	

Optimising	layouts	

Efficient	encodings	

Interaction	strategies	
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The	narrow	design	space	



Solution	principles	
•  From	closed	to	open-loop	

–  Avoid	the	need	for	a	visual	feedback	loop	
•  Continuous	novice-to-expert	transition	

–  Avoid	explicit	learning	
•  Path	dependency	

–  Avoid	redesigning	the	interaction	layer	
•  Flexibility	

–  Enable	users	to	compose	and	edit	in	a	variety	of	styles	without	
explicit	mode	switching	

•  Probabilistic	error	correction	
–  Use	the	hypothesis	space	to	design	optimal	error	correction	

strategies	
•  Fluid	regulation	of	uncertainty	

–  Allow	users	to	seamlessly	influence	the	inference	process	
•  Efficiency	

–  Let	users’	creativity	be	the	bottle-neck	



From	Closed	to	Open	Loop	
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How	gesture	keyboards	work	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

Just	then,	the	white	rabbit	

Prior	probability	

Likelihood	

Posterior	probability	

Decoding	noisy	gestures	into	text	using	a	combination	of	
gesture	recognition	and	language	modelling	



Closed-	and	open-loop	
•  Closed-loop:	

–  Continuous	feedback-driven	interaction	
–  Visually-guided	motion	
–  Slow	and	precise	
–  Modelled	well	by	the	“crossing	law”	

•  Average	movement	time	=	a	+	b	log2(D/W+1);	a	and	b	are	linear	
regression	coefficients;	D	and	W	are	the	distance	and	width	to	the	
crossing	goal	respectively	

•  Open-loop:	
–  Not	feedback-driven	
–  Direct	recall	from	motor	memory	
–  Fast	and	imprecise	
–  No	good	model	exits	

•  Gesture	keyboard	interaction	is	a	mix	of	closed-	and	open-
loop	interaction	



Continuous	Novice-to-Expert	
Transition	



Continuous	transition	from	novice	to	
expert	behaviour	

Skill	acquisition	

Falling	back	and	relearning	

Consistent	
movement	
pattern	

Complete	novice:	
	
Tracing	letter	to	letter	
Closed-loop	
Slow	and	accurate	
	

Complete	expert:	
	
Gesturing	word	shapes	
Open-loop	
Fast	and	inaccurate	



Path	Dependency	





Example:	typing	on	a	smartwatch	

•  Small	screen	size	is	obviously	a	constraint	
•  Many	naïve	solutions:	
– Progressive	zooming	techniques	
– Reduce	keyset	(á	la	the	old	telephone	keypad	
techniques)	

– Various	multi-stroke	strategies	
•  All	slow	
•  All	demand	user	learning	(no	immediate	
efficacy)	
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Time	
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New	smartwatch	
input	method	

Familiar	interface	
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Time	investment	
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User	performance	after	
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Touch	modelling	

2D	Gaussians	centered	at	each	key.		
Separate	variances	in	the	x-	and	y-dimensions.	

Vertanen,	K.,	Memmi,	H.,	Emge,	J.,	Reyal,	S.	and	Kristensson,	P.O.	2015.	VelociTap:	investigating	
fast	mobile	text	entry	using	sentence-based	decoding	of	touchscreen	keyboard	input.	In	
Proceedings	of	the	33rd	ACM	Conference	on	Human	Factors	in	Computing	Systems	(CHI	2015).	
ACM	Press:	659-668.		



Language	modelling	

•  Language	models:	
– 12-gram	letter	model	
– 4-gram	word	model	with	unknown	word	
– Trained	on	billions	of	words	of	data	

§ Twitter,	blog,	social	media,	Usenet,	and	web	data	

– Optimized	for	short	email-like	messages	
– Letter	+	word	language	model	=	~4	GB	memory	

Vertanen,	K.,	Memmi,	H.,	Emge,	J.,	Reyal,	S.	and	Kristensson,	P.O.	2015.	VelociTap:	investigating	
fast	mobile	text	entry	using	sentence-based	decoding	of	touchscreen	keyboard	input.	In	
Proceedings	of	the	33rd	ACM	Conference	on	Human	Factors	in	Computing	Systems	(CHI	2015).	
ACM	Press:	659-668.		



Decoding	

Observation	1	 Observation	2	 Observation	3	
f
g
c

z

ϵ

ab
z

Tokens	track:	probability,	LM	context,	traceback	

o

ϵ

a

z

X X

d

ϵ

o za

X

d

good	

god	

go	

Beam	prune	to	keep	tractable	

X X
X

X



Entry	and	error	rate	

Condition	

Normal	 Standard	portrait	keyboard,	60mm	wide	

Small	 Big	smartwatch,	40mm	wide	

Tiny	 Small	smartwatch,	25mm	wide	



Typing	on	a	tiny	keyboard	



Flexibility	



Speech	recognition	error	correction:	
the	standard	method	

•  User:	“the	cat	sat”	
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Speech	recognition	error	correction:	
the	standard	method	

•  User:	“the	cat	sat”	
•  System:	“the	bat	sat”	
•  User:	“select	bat”	
•  System:	“the	bat	sat	dissect	rat”	



Speech	recognition	error	correction:	
the	standard	method	

•  User:	“the	cat	sat”	
•  System:	“the	bat	sat”	
•  User:	“select	bat”	
•  System:	“the	bat	sat	dissect	rat”	
•  (User:	“I	hate	this…”)	
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The	flexible	multimodal	fusion	
approach	

•  User	speaks:	“the	cat	sat”	
•  System:	“the	bat	sat”	
•  User	gestures	the	word:	“cat”	
•  System:	“the	cat	sat”	

•  The	system	automatically	identifies	the	error	
location	and	corrects	the	error	

Kristensson,	P.O.	and	Vertanen,	K.	2011.	Asynchronous	multimodal	text	entry	using	speech	and	
gesture	keyboards.	In	Proceedings	of	the	12th	Annual	Conference	of	the	International	Speech	
Communication	Association	(Interspeech	2011).	ISCA:	581-584.	



Output	from	a	text	entry	modality	

Gesture	
keyboard	
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Output	from	a	text	entry	modality	

Gesture	
keyboard	

Time	step	1	 Time	step	2	



Output	from	a	text	entry	modality	

Gesture	
keyboard	

thee	0.3	

the	0.6	

three	0.1	



Output	from	a	text	entry	modality	

Gesture	
keyboard	

the	0.3	

	ε	0.6	

thee	0.1	



Output	from	a	text	entry	modality	

Gesture	
keyboard	

thee	0.3	

the	0.6	

three	0.1	



VAT	0.2	

Output	from	a	text	entry	modality	

Gesture	
keyboard	

thee	0.3	

the	0.6	

three	0.1	

cat	0.6	

cart	0.2	



at	0.28	rat	0.28	

Output	from	two	text	entry	modalities	

the	0.56	

a	0.38	

cat	0.82	

at	0.06	
fat	0.06	

ε	0.87	

at	0.09	

sat	0.75	

nat	0.19	

the	0.94	 bat	0.57	

cat	0.09	

sat	0.47	

ε	0.21	



at	0.28	rat	0.28	

Softening	the	word	confusion	networks:	
adding	wild-card	transitions	

the	0.56	

a	0.38	
*	0.03	

cat	0.82	

at	0.06	
fat	0.06	
*	0.03	

ε	0.87	

at	0.09	
*	0.03	

sat	0.75	

nat	0.19	
*	0.03	

the	0.94	

*	0.03	

bat	0.57	

cat	0.09	
*	0.03	

sat	0.47	

ε	0.21	
*	0.03	



at	0.28	rat	0.28	

Softening	the	word	confusion	networks:	
adding	epsilon	transitions	

the	0.56	

a	0.38	
*	0.03	
ε	0.02	

cat	0.82	

at	0.06	
fat	0.06	
*	0.03	
ε	0.02	

ε	0.87	

at	0.09	
*	0.03	

sat	0.75	

nat	0.19	
*	0.03	
ε	0.02	

the	0.94	

*	0.03	
ε	0.02	

bat	0.57	

cat	0.09	
*	0.03	
ε	0.02	

sat	0.47	

ε	0.21	
*	0.03	



at	0.28	rat	0.28	

Softening	the	word	confusion	networks:	
adding	wild-card	self-loops	

the	0.56	

a	0.38	
*	0.03	
ε	0.02	

0.01	
*	

0.01	
*	 cat	0.82	

at	0.06	
fat	0.06	
*	0.03	
ε	0.02	

0.01	
*	 ε	0.87	

at	0.09	
*	0.03	

0.01	
*	 sat	0.75	

nat	0.19	
*	0.03	
ε	0.02	

0.01	
*	

the	0.94	

*	0.03	
ε	0.02	

0.01	
*	

0.01	
*	 bat	0.57	

cat	0.09	
*	0.03	
ε	0.02	

0.01	
*	 sat	0.47	

ε	0.21	
*	0.03	

0.01	
*	



at	0.28	rat	0.28	

Search	for	the	highest	joint	path	in	both	
recognition	modalities	

the	0.56	

a	0.38	
*	0.03	
ε	0.02	

0.01	
*	

0.01	
*	 cat	0.82	

at	0.06	
fat	0.06	
*	0.03	
ε	0.02	

0.01	
*	 ε	0.87	

at	0.09	
*	0.03	

0.01	
*	 sat	0.75	

nat	0.19	
*	0.03	
ε	0.02	

0.01	
*	

the	0.94	

*	0.03	
ε	0.02	

0.01	
*	

0.01	
*	 bat	0.57	

cat	0.09	
*	0.03	
ε	0.02	

0.01	
*	 sat	0.47	

ε	0.21	
*	0.03	

0.01	
*	



Speech-only	flexible	repair	



Probabilistic	error	correction	



Probabilistic	error	correction	

•  For	any	probabilistic	text	entry	method…	
–  Capable	of	assigning	posterior	probability	

distributions	to	words	
•  …there	exists	a	hypothesis	space	
•  The	best	result	is	the	maximum	probability	path	

in	this	hypothesis	space	
– However,	it	need	not	be	the	one	the	user	intended	

•  By	exposing	part	of	the	hypothesis	space	to	
users,	high	efficiencies	can	be	gained	when	users	
correct	words	



Fluid	regulation	of	uncertainty	



The	auto-correct	trap	
•  Auto-correct	is	great	when	it	works	
•  However,	when	auto-correct	fails	error	correction	activities	

exhibit	a	high	penalty	
•  The	solution	is	to	provide	users	with	more	agency	and	

allow	them	to	regulate	their	certainty	

Weir,	D.,	Pohl,	H.,	Rogers,	S.,	Vertanen,	K.	and	Kristensson,	P.O.	2014.	Uncertain	text	entry	on	
mobile	devices.	In	Proceedings	of	the	32nd	ACM	Conference	on	Human	Factors	in	Computing	
Systems	(CHI	2014).	ACM	Press:	2307-2316.	



Pressure-sensitive	auto-correct	

•  Likelihood	of	a	Gaussian	with	standard	deviation	
regulated	by	pressure	

•  Standard	deviation	computed	as	C/ωT,	where	C	is	a	
constant	and	ωT	is	the	pressure	for	touch	T	

•  Tuned	C	so	that	the	pressure	of	a	typical	touch	had	a	
standard	deviation	of	half	a	key	width	

Weir,	D.,	Pohl,	H.,	Rogers,	S.,	Vertanen,	K.	and	Kristensson,	P.O.	2014.	Uncertain	text	entry	on	
mobile	devices.	In	Proceedings	of	the	32nd	ACM	Conference	on	Human	Factors	in	Computing	
Systems	(CHI	2014).	ACM	Press:	2307-2316.	



Results	
•  Enabling	users	to	regulate	their	certainty	by	force	

resulted	in	a	10%	percentage	drop	in	active	
corrections	(fixing	a	word	by	backspacing	or	
retyping)	

•  This	improved	entry	rate	by	20%	



Efficiency	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	



Eye-typing	
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Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

125	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

250	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

375	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

500	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

625	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

750	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

875	ms	



Eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

1000	ms	



Record	speeds	achieved	when	writing	
by	gaze	

•  Eye-typing	
– 5–10	wpm	(Majaranta	and	Räihä	2002;	Rough	et	
al.	2014)	

•  Eye-typing	with	adjustable-dwell	
– 7-20	wpm	(Majaranta	et	al.	2009;	Räihä	and	
Ovaska	2012;	Rough	et	al.	2014)	

•  Dasher	
– 12–26	wpm	(Tuisku	et	al.	2008;	Ward	and	MacKay	
2002;	Rough	et	al.	2014)	



Dwell-free	eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	

Kristensson,	P.O.	and	Vertanen,	K.	2012.	The	potential	of	dwell-free	eye-typing	for	fast	assistive	
gaze	communication.	In	Proceedings	of	the	7th	ACM	Symposium	on	Eye-Tracking	Research	&	
Applications	(ETRA	2012).	ACM	Press:	241-244.	
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Dwell-free	eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	



The	cat	

Dwell-free	eye-typing	

Q	 W	 E	 R	 T	 Y	 U	 I	 O	 P	

A	 S	 D	 F	 G	 H	 J	 K	 L	

Z	 X	 C	 V	 B	 N	 M	



Human	performance	estimate	of	
dwell-free	eye-typing	

•  Recorded	400	minutes	of	eye-trace	data	
•  Participants	entered	a	total	of	2026	phrases	
•  Participants	were	prompted	phrases	and	asked	to	copy	

them	as	quickly	and	as	accurately	as	possible	
•  Our	system	knew	what	the	user	was	supposed	to	write	and	

verified	that	the	user	is	gazing	at	the	letter	sequence	
corresponding	to	the	stimulus	



Entry	rate	



Human	performance	model	



Human	performance	model	

Eye-typing	using	adjustable	dwell,	
final	entry	rate	(mean	=	20	wpm)	
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Eye-typing	using	adjustable	dwell,	
final	entry	rate	(mean	=	20	wpm)	



Human	performance	model	

Eye-typing	using	adjustable	dwell,	
final	entry	rate	(mean	=	20	wpm)	

230%	



Entry	rate,	first	10-15	minutes	



Entry	rate,	first	10-15	minutes	

Eye-typing	using	adjustable	dwell,	
entry	rate	in	the	first	session	(mean	=	6.9	wpm)	



Entry	rate,	first	10-15	minutes	

Eye-typing	using	adjustable	dwell,	
entry	rate	in	the	first	session	(mean	=	6.9	wpm)	

520%	



A	step-change	in	gaze	communication	

•  Existing	gaze	communication	solutions	
– Limited	to	circa	20	wpm	

•  Dwell-free	eye-typing	
– Empirically	measured	human	performance	
potential:	46	wpm	average	

•  Released	as	a	product:	Tobii-Dynavox	I-Series+	
		



Conclusions	
•  A	text	entry	method	likely	to	be	adopted	by	users	is	

probably	similar	to	existing	solutions	and	at	least	as	fast	
•  It	is	still	possible	to	make	progress	by	using	a	few	solution	

principles:	
–  From	closed	to	open-loop	
–  Continuous	novice-to-expert	transition	
–  Path	dependency	
–  Flexibility	
–  Probabilistic	error	correction	
–  Fluid	regulation	of	uncertainty	
–  Efficiency	

•  In	general,	these	can	be	viewed	as	solution	principles	for	
uncertain	interaction	

Kristensson,	P.O.	2015.	Next-generation	text	entry.	IEEE	Computer	48(7):	84-87.	


