
Appendices
Additional topics of interest in computer graphics.

These slides are not examinable.

A. Constructive Solid Geometry
B. Antialiasing
C. Procedural textures
D. Perlin noise
E. Voxels
F. Particle systems

1
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Appendix A:
Constructive Solid Geometry

Constructive Solid Geometry
(CSG) is a ray-tracing technique
which builds complicated forms
out of simple primitives,
comparable to (and more
complicated than, but also more
precise than) Signed Distance
Fields.

These primitives are combined
with the standard boolean
operations: union, intersection,
difference. CSG figure by Neil Dodgson

2

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

3

Constructive Solid Geometry

CSG surfaces are described by a binary tree,
where each leaf node is a primitive and each
non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4

4

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

A B

Ray-tracing CSG models

5

Ray-tracing CSG models

Each boolean operation can
be modeled as a state
machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).
● Union:

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

6

Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

7

Constructive Solid Geometry - References

● Jules Bloomenthal, Introduction to Implicit
Surfaces (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● MIT lecture notes:
http://groups.csail.mit.edu/graphics/classes/
6.837/F98/talecture/

8

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

9

Aliasing

-

=

10

Antialiasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely
continuous function (the color of the scene) with a finite, discrete function (the
pixels of the image).

One solution to this is super-sampling. If we fire multiple rays through each
pixel, we can average the colors
computed for every ray together
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

11Lecture note: Four printed slides removed here,
reviewing antialiasing from last year’s notes.

http://www.svi.nl/

Antialiasing with OpenGL

Antialiasing remains a challenge with
hardware-rendered graphics, but image quality
can be significantly improved through GPU
hardware.
● The simplest form of hardware

anti-aliasing is Multi-Sample
Anti-Aliasing (MSAA).

● “Render everything at higher resolution,
then down-sample the image to blur
jaggies”

● Enable MSAA in OpenGL with
glfwWindowHint(GLFW_SAMPLES, 4);

12

Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs
4x supersampled (right)
polygon edge, using
OpenGL’s built-in
supersampling support.
Images magnified 4x.

13

Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be
very limiting in high-resolution scenarios (high demand
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur
the lines’ width

3. Composite the filtered lines into the framebuffer
using alpha blending

This approach is great for polygonal models, tougher for
effects-heavy visual scenes like video games

14

Antialiasing on
the GPU

More recently, NVIDIA’s Fast
Approximate Anti-Aliasing
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those

subject to aliasing.
2. Map these to horizontal (gold) or vertical (blue) edges.
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 15

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is

dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in GLSL by the methods dFdx(F) and
dFdy(F).
● These methods return the derivative with respect to X and Y, in screen

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 16

Antialiasing texture reads with Signed
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map
instead of as pixels. This allows per-pixel smoothing at multiple distances.

17

3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest

black pixel (if white) or white pixel (if
black). Distance from white is negative.

Conventional antialiasing Signed distance field 18

Antialiasing texture reads with Signed
Distance Fields

Conventional bilinear filtering
computes a weighted average of
color, but an SDF computes a
weighted average of distances.

This means that a small step away
from the original values we find
smoother, straighter lines where
the slope of the isocline is
perpendicular to the slope of the
source data.

By smoothing the isocline of the
distance threshold, we achieve
smoother edges and nifty edge
effects.

low = 0.02; high = 0.035;

double dist =
bilinearSample(tex coords);

double t =
(dist - low) / (high - low);

return (dist < low) ? BLACK

 : (dist > high) ? WHITE

 : BLACK*(1 - t) + WHITE*(t);

Adding a
second
isocline
enables
colored
borders. 19

Antialiasing - Interesting further reading

● https://people.csail.mit.edu/ericchan/articles/prefilter/
● https://developer.download.nvidia.com/assets/gamedev/fi

les/sdk/11/FXAA_WhitePaper.pdf
● http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in

-15-Slides.pdf

20

https://people.csail.mit.edu/ericchan/articles/prefilter/
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf
http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in-15-Slides.pdf

Procedural texture
Instead of relying on discrete

pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

21

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the renderer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

22

Non-color textures: normal mapping

23

Procedural texturing in the
fragment shader

(Code truncated for brevity--check out the
source on github for how I did the curved
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
 bool isOutsideFace = (length(position - CENTER) > 1);
 bool isEye = (length(position - LEFT_EYE) < 0.1)
 || (length(position - RIGHT_EYE) < 0.1);
 bool isMouth = (length(position - CENTER) < 0.75)
 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)
 ? BLACK : YELLOW;
 fragmentColor = vec4(color, 1.0);
}

24

Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

25

Perlin Noise

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 26

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in

space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

27

Perlin noise
Perlin noise (invented by Ken Perlin) is a method for

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 28

http://www.noisemachine.com/talk1/

Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at

integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html29

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2
For each of the four corners, take the dot product of the

random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

30

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.

Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

31

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html

32

https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
https://web.archive.org/web/20160303232627/http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Voxels and volume rendering

A voxel (“volume pixel”) is a cube in space
with a given color; like a 3D pixel.

● Voxels are often used for medical
imaging, terrain, scanning and model
reconstruction, and other very large
datasets.

● Voxels usually contain color but could
contain other data as well—flow rates (in
medical imaging), density functions
(analogous to implicit surface modeling),
lighting data, surface normals, 3D texture
coordinates, etc.

● Often the goal is to render the voxel data
directly, not to polygonalize it.

Volume ray casting
If speed can be sacrificed for accuracy,
render voxels with volume ray casting:

● Fire a ray through each pixel;
● Sample the voxel data along the ray,

computing the weighted average (trilinear
filter) of the contributions to the ray of
each voxel it passes through or near;

● Compute surface gradient from of each
voxel from local sampling; generate
surface normals; compute lighting with
the standard lighting equation;

● ‘Paint’ the ray from back to front,
occluding more distant voxels with nearer
voxels; this gives hidden-surface removal
and easy support for transparency.

The steps of volume rendering; a volume ray-cast skull.
Images from wikipedia.

Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit,

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere
between eight (in 3d) voxel centers.
Weight the color of the sample by the
inverse of its distance from the center
of each voxel.

Reasonably fast voxels

If speed is of the essence, cast your
rays but stop at the first opaque
voxel.

● Store precomputed lighting
directly in the voxel

● Works for diffuse and ambient
but not specular

● Popular technique for video
games (e.g. Comanche →)

Another clever trick: store voxels
in a sparse voxel octree.

● Watch for it in id’s
next-generation engine…

Sparse Voxel Octree Ray-Casting, Cyril Crassin

Comanche Gold, NovaLogic Inc (1998)

Ludicrously fast voxels

If speed is essential (like if, say, you’re
writing a video game in 1992) and you
know that your terrain can be
represented as a height-map (ie., without
overhangs), replace ray-casting with
‘column’-casting and use a “Y-buffer”:

● Draw from front to back, drawing
columns of pixels from the bottom of
the screen up. For each pixel in
receding order, track the current max y
height painted and only draw new pixels
above that y. Anything shorter must be
behind something that’s nearer, and it’s
shorter; so don’t draw it.

Depth

D e p
 t h

References
Voxels:
J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for Direct Volume
Rendering, Computer Graphics, 35(4):275-284,July 1991.
http://en.wikipedia.org/wiki/Volume_ray_casting

http://en.wikipedia.org/wiki/Volume_ray_casting

Particle systems
Particle systems are a monte-carlo style
technique which uses thousands (or
millions) or tiny graphical artefacts to
create large-scale visual effects.

Particle systems are used for hair, fire,
smoke, water, clouds, explosions,
energy glows, in-game special effects
and much more.

The basic idea:
“If lots of little dots all do something
the same way, our brains will see the
thing they do and not the dots doing it.”

A particle system
created with 3dengfx,
from wikipedia.

Screenshot from the
game Command and
Conquer 3 (2007) by
Electronic Arts; the
“lasers” are particle
effects.

http://en.wikipedia.org/wiki/Particle_system

History of particle systems

1962: Ships explode into
pixel clouds in
“Spacewar!”, the 2nd
video game ever.
1978: Ships explode into
broken lines in
“Asteroid”.
1982: The Genesis Effect
in “Star Trek II: The
Wrath of Khan”.

Fanboy note: OMG. You can play the original Spacewar!
at http://spacewar.oversigma.com/ -- the actual original
game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/

“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g

Particle systems

How it works:
● Particles are generated from an emitter.

○ Emitter position and orientation are specified discretely;
○ Emitter rate, direction, flow, etc are often specified as a bounded

random range (monte carlo)
● Time ticks; at each tick, particles move.

○ New particles are generated; expired particles are deleted
○ Forces (gravity, wind, etc) accelerate each particle
○ Acceleration changes velocity
○ Velocity changes position

● Particles are rendered.

Particle systems — emission

Each frame, your emitter will generate
new particles.
Here you have two choices:

● Constrain the average number of particles
generated per frame:

○ # new particles = average # particles per frame +
rand() * variance

● Constrain the average number of particles per
screen area:

○ # new particles = average # particles per area +
rand() * variance * screen area

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)

Particle systems — integration

Each new particle will have at
least the following attributes:

● initial position
● initial velocity (speed and

direction)

You now have a choice of
integration technique:

● Evaluate the particles at
arbitrary time t as a
closed-form equation for a
stateless system.

● Or, use iterative (numerical)
integration:

○ Euler integration
○ Verlet integration
○ Runge-Kutta integration

Particle systems — two integration shortcuts:

Closed-form function:
● Represent every particle as a

parametric equation; store only
the initial position p0, initial
velocity v0, and some fixed
acceleration (such as gravity g.)

● p(t)=p0+v0t+½gt2

No storage of state
● Very limited possibility of

interaction
● Best for water, projectiles,

etc—non-responsive particles.

Discrete integration:
● Remember your

physics—integrate
acceleration to get velocity:

○ v’=v + a •∆t
● Integrate velocity to get

position:
○ p’=p + v •∆t

● Collapse the two, integrate
acceleration to position:

○ p’’=2p’-p + a •∆t2

Timestep must be
nigh-constant; collisions are
hard.

Particle systems—rendering

Can render particles as points, textured polys, or
primitive geometry

● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make

pretty good fire, smoke, etc
Transitioning one particle type to another
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter for
‘splash’ particles on impact

Particles can be the force sources for a
blobby model implicit surface

● This is sometimes an effective way to
simulate liquids

nvidia

Hagit Schechter
http://www.cs.ubc.ca/~hagitsch/Researc
h/

References
Particle Systems:
William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy
Objects”, Computer Graphics 17:3 pp. 359-376, 1983 (SIGGRAPH 83).
Lutz Latta, Building a Million Particle System,
http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf , 2004
http://en.wikipedia.org/wiki/Particle_system

http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf
http://en.wikipedia.org/wiki/Particle_system

