
Appendices
Additional topics of interest in computer graphics.  

These slides are not examinable.

A. Constructive Solid Geometry
B. Antialiasing
C. Procedural textures
D. Perlin noise
E. Voxels
F. Particle systems

1
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd



Appendix A:
Constructive Solid Geometry

Constructive Solid Geometry 
(CSG) is a ray-tracing technique 
which builds complicated forms 
out of simple primitives, 
comparable to (and more 
complicated than, but also more 
precise than) Signed Distance 
Fields.

These primitives are combined 
with the standard boolean 
operations: union, intersection, 
difference. CSG figure by Neil Dodgson
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Constructive Solid Geometry

Three operations:
1. Union   2. Intersection      3. Difference
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Constructive Solid Geometry

CSG surfaces are described by a binary tree, 
where each leaf node is a primitive and each 
non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4
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For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points 

where r enters of leaves A or B.
● You can think of each intersection as 

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t 
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

A B

Ray-tracing CSG models
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Ray-tracing CSG models

Each boolean operation can 
be modeled as a state 
machine.
For each operation, retain 
those intersections that 
transition into or out of
the critical state(s).
● Union: 

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and 
B

In A In B

Not in A 
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A
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Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B  Was In A  Is In A  Was In B  Is In B

 t1  No  Yes  No  No

 t2  Yes  Yes  No  Yes

 t3  Yes  No  Yes  Yes

 t4  No  No  Yes  No

difference = 
((wasInA != isInA) &&
 (!isInB)&&(!wasInB)) 
|| 
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models
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Constructive Solid Geometry - References

● Jules Bloomenthal, Introduction to Implicit 
Surfaces (1997)

● Alan Watt, 3D Computer Graphics, 
Addison Wesley (2000)

● MIT lecture notes: 
http://groups.csail.mit.edu/graphics/classes/
6.837/F98/talecture/
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Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency, 
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that 
curved or inclined lines appear 
inappropriately jagged, caused by the 
mapping of a number of points to the same 
pixel.
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Antialiasing

Fundamentally, the problem with aliasing is that we’re sampling an infinitely 
continuous function (the color of the scene) with a finite, discrete function (the 
pixels of the image).

One solution to this is super-sampling.  If we fire multiple rays through each 
pixel, we can average the colors 
computed for every ray together 
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

11Lecture note: Four printed slides removed here, 
reviewing antialiasing from last year’s notes.

http://www.svi.nl/


Antialiasing with OpenGL

Antialiasing remains a challenge with 
hardware-rendered graphics, but image quality 
can be significantly improved through GPU 
hardware.
● The simplest form of hardware 

anti-aliasing is Multi-Sample 
Anti-Aliasing (MSAA).

● “Render everything at higher resolution, 
then down-sample the image to blur 
jaggies”

● Enable MSAA in OpenGL with 
glfwWindowHint(GLFW_SAMPLES, 4);
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Antialiasing with OpenGL: MSAA

Non-anti-aliased (left) vs 
4x supersampled (right) 
polygon edge, using 
OpenGL’s built-in 
supersampling support.  
Images magnified 4x.
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Antialiasing on the GPU
MSAA suffers from high memory constraints, and can be 
very limiting in high-resolution scenarios (high demand 
for time and texture access bandwidth.)
Eric Chan at MIT described an optimized hardware-based 
anti-aliasing method in 2004:
1. Draw the scene normally
2. Draw wide lines at the objects' silhouettes

a. Use blurring filters and precomputed luminance tables to blur 
the lines’ width

3. Composite the filtered lines into the framebuffer 
using alpha blending

This approach is great for polygonal models, tougher for 
effects-heavy visual scenes like video games
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Antialiasing on 
the GPU

More recently, NVIDIA’s Fast 
Approximate Anti-Aliasing 
(“FXAA”) has become popular because it optimizes MSAA’s limitations.
Abstract:
1. Use local contrast (pixel-vs-pixel) to find edges (red), especially those 

subject to aliasing.  
2. Map these to horizontal (gold) or vertical (blue) edges. 
3. Given edge orientation, the highest contrast pixel pair 90 degrees to the edge 

is selected (blue/green)
4. Identify edge ends (red/blue)
5. Re-sample at higher resolution along identified edges, using sub-pixel 

offsets of edge orientations
6. Apply a slight blurring filter based on amount of detected sub-pixel aliasing

Image from 
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf 15

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf


Antialiasing technique: adaptive analytic prefiltering.
● The precision with which an edge is rendered to the screen is 

dynamically refined based on the rate at which the function defining 
the edge is changing with respect to the surrounding pixels on the 
screen.

This is supported in GLSL by the methods dFdx(F) and 
dFdy(F).  
● These methods return the derivative with respect to X and Y, in screen 

space, of some variable F.
● These are commonly used in choosing the filter width for antialiasing 

procedural textures.

Preventing aliasing in texture reads

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the 
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost, 
Addison Wesley, 2006.  Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002. 16



Antialiasing texture reads with Signed 
Distance Fields

Conventional anti-aliasing in texture reads can only smooth pixels immediately 
adjacent to the source values.

Signed distance fields represent monochrome texture data as a distance map 
instead of as pixels.  This allows per-pixel smoothing at multiple distances.
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3.6 2.8 2 1 -1

3.1 2.2 1.4 1 -1

2.8 2 1 -1 -1.4

2.2 1.4 1 -1 -2

2 1 -1 -1.4 -2.2

2 1 -1 -2 -2.8

Antialiasing texture reads with Signed 
Distance Fields

The bitmap becomes a height map.
Each pixel stores the distance to the closest 

black pixel (if white) or white pixel (if 
black).  Distance from white is negative.

Conventional antialiasing Signed distance field 18



Antialiasing texture reads with Signed 
Distance Fields

Conventional bilinear filtering 
computes a weighted average of 
color, but an SDF computes a 
weighted average of distances.

This means that a small step away 
from the original values we find 
smoother, straighter lines where 
the slope of the isocline is 
perpendicular to the slope of the 
source data.

By smoothing the isocline of the 
distance threshold, we achieve 
smoother edges and nifty edge 
effects.

low = 0.02;    high = 0.035;

double dist =
bilinearSample(tex coords);

double t = 
(dist - low) / (high - low);

return (dist < low) ? BLACK

  : (dist > high) ? WHITE

  : BLACK*(1 - t) + WHITE*(t);

Adding a 
second 
isocline 
enables 
colored 
borders. 19



Antialiasing - Interesting further reading

● https://people.csail.mit.edu/ericchan/articles/prefilter/ 
● https://developer.download.nvidia.com/assets/gamedev/fi

les/sdk/11/FXAA_WhitePaper.pdf 
● http://iryoku.com/aacourse/downloads/09-FXAA-3.11-in

-15-Slides.pdf 
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Procedural texture
Instead of relying on discrete 

pixels, you can get infinitely 
more precise results with 
procedurally generated textures. 

Procedural textures compute the 
color directly from the U,V 
coordinate without an image 
lookup.

For example, here’s the code for 
the torus’ brick pattern (right):

  tx = (int) 10 * u

  ty = (int) 10 * v
  oddity = (tx & 0x01) == (ty & 0x01)
  edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
  return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u 
coordinate by 4 to repeat the brick texture 
four times around the torus.
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Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the renderer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a 
dent on the surface.

If we duplicate the normals, we don’t 
have to duplicate the dent.
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Non-color textures: normal mapping

23



Procedural texturing in the 
fragment shader

(Code truncated for brevity--check out the 
source on github for how I did the curved 
mouth and oval eyes.)

// ...
const vec3 CENTER = vec3(0, 0, 1);
const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);
// ...

void main() {
  bool isOutsideFace = (length(position - CENTER) > 1);
  bool isEye = (length(position - LEFT_EYE) < 0.1)
      || (length(position - RIGHT_EYE) < 0.1);
  bool isMouth = (length(position - CENTER) < 0.75)
      && (position.y <= -0.1);

  vec3 color = (isMouth || isEye || isOutsideFace)
      ? BLACK : YELLOW;
  fragmentColor = vec4(color, 1.0);
}
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Advanced surface effects
● Ray-tracing, ray-marching!
● Specular highlights
● Non-photorealistic 

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the 

shader
● ...much, much more!
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Perlin Noise

By mapping 3D coordinates to colors, we can create 
volumetric texture.  The input to the texture is local model 
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow 
rings, with darker wood from earlier in the year and 
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood + 
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 26



Adding realism

The teapot on the previous slide doesn’t look very wooden, 
because it’s perfectly uniform.  One way to make the 
surface look more natural is to add a randomized noise 
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in 

space to scalar values chosen at random.

For natural-looking results, use 
Perlin noise, which interpolates 
smoothly between noise values.
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Perlin noise
Perlin noise (invented by Ken Perlin) is a method for 

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom 

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended 

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 28
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Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at 

integer intervals.  You’ll look up noise values at 
arbitrary points in the plane, and they’ll be 
determined by the four nearest seed randoms on 
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in 
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)} 
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html29
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Perlin noise 2
For each of the four corners, take the dot product of the 

random seed vector with the vector from that corner to 
(x, y).  This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values 
of the dot products will change smoothly, with no 
discontinuity.

● As (x, y) approaches a grid point, the contribution from 
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range 
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)
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Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.  

Perlin noise uses a weighted averaging function chosen 
such that values close to zero and one are moved closer 
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’
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Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/  

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html
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Voxels and volume rendering

A voxel (“volume pixel”) is a cube in space 
with a given color; like a 3D pixel.

● Voxels are often used for medical 
imaging, terrain, scanning and model 
reconstruction, and other very large 
datasets.

● Voxels usually contain color but could 
contain other data as well—flow rates (in 
medical imaging), density functions 
(analogous to implicit surface modeling), 
lighting data, surface normals, 3D texture 
coordinates, etc.

● Often the goal is to render the voxel data 
directly, not to polygonalize it.



Volume ray casting
If speed can be sacrificed for accuracy, 
render voxels with volume ray casting:

● Fire a ray through each pixel;
● Sample the voxel data along the ray, 

computing the weighted average (trilinear 
filter) of the contributions to the ray of 
each voxel it passes through or near;

● Compute surface gradient from of each 
voxel from local sampling; generate 
surface normals; compute lighting with 
the standard lighting equation;

● ‘Paint’ the ray from back to front, 
occluding more distant voxels with nearer 
voxels; this gives hidden-surface removal 
and easy support for transparency.

The steps of volume rendering; a volume ray-cast skull.
Images from wikipedia.



Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit, 

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between 

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere 
between eight (in 3d) voxel centers.
Weight the color of the sample by the 
inverse of its distance from the center 
of each voxel.



Reasonably fast voxels

If speed is of the essence, cast your 
rays but stop at the first opaque 
voxel.

● Store precomputed lighting 
directly in the voxel

● Works for diffuse and ambient 
but not specular

● Popular technique for video 
games (e.g. Comanche →)

Another clever trick: store voxels 
in a sparse voxel octree.

● Watch for it in id’s 
next-generation engine…

Sparse Voxel Octree Ray-Casting, Cyril Crassin

Comanche Gold, NovaLogic Inc (1998)



Ludicrously fast voxels

If speed is essential (like if, say, you’re 
writing a video game in 1992) and you 
know that your terrain can be 
represented as a height-map (ie., without 
overhangs), replace ray-casting with 
‘column’-casting and use a “Y-buffer”:

● Draw from front to back, drawing 
columns of pixels from the bottom of 
the screen up.  For each pixel in 
receding order, track the current max y 
height painted and only draw new pixels 
above that y.  Anything shorter must be 
behind something that’s nearer, and it’s 
shorter; so don’t draw it.

Depth

D e p
 t h
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Particle systems
Particle systems are a monte-carlo style 
technique which uses thousands (or 
millions) or tiny graphical artefacts to 
create large-scale visual effects.

Particle systems are used for hair, fire, 
smoke, water, clouds, explosions, 
energy glows, in-game special effects 
and much more.

The basic idea:
“If lots of little dots all do something 
the same way, our brains will see the 
thing they do and not the dots doing it.”

A particle system 
created with 3dengfx, 
from wikipedia.

Screenshot from the 
game Command and 
Conquer 3 (2007) by 
Electronic Arts; the 
“lasers” are particle 
effects.

http://en.wikipedia.org/wiki/Particle_system


History of particle systems

1962: Ships explode into 
pixel clouds in 
“Spacewar!”, the 2nd 
video game ever.
1978: Ships explode into 
broken lines in 
“Asteroid”.
1982: The Genesis Effect 
in “Star Trek II: The 
Wrath of Khan”.

Fanboy note: OMG.  You can play the original Spacewar!
at http://spacewar.oversigma.com/ -- the actual original 
game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/


“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g


Particle systems

How it works:
● Particles are generated from an emitter.

○ Emitter position and orientation are specified discretely;
○ Emitter rate, direction, flow, etc are often specified as a bounded 

random range (monte carlo)
● Time ticks; at each tick, particles move.

○ New particles are generated; expired particles are deleted
○ Forces (gravity, wind, etc) accelerate each particle
○ Acceleration changes velocity
○ Velocity changes position

● Particles are rendered.



Particle systems — emission

Each frame, your emitter will generate 
new particles.
Here you have two choices: 

● Constrain the average number of particles 
generated per frame:

○ # new particles = average # particles per frame + 
rand() * variance

● Constrain the average number of particles per 
screen area:

○ # new particles = average # particles per area + 
rand() * variance * screen area

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)



Particle systems — integration

Each new particle will have at 
least the following attributes:

● initial position
● initial velocity (speed and 

direction)

You now have a choice of 
integration technique:

● Evaluate the particles at 
arbitrary time t as a 
closed-form equation for a 
stateless system.

● Or, use iterative (numerical) 
integration:

○ Euler integration
○ Verlet integration
○ Runge-Kutta integration



Particle systems — two integration shortcuts:

Closed-form function:
● Represent every particle as a 

parametric equation; store only 
the initial position p0, initial 
velocity v0, and some fixed 
acceleration (such as gravity g.)

● p(t)=p0+v0t+½gt2

No storage of state
● Very limited possibility of 

interaction
● Best for water, projectiles, 

etc—non-responsive particles.

Discrete integration:
● Remember your 

physics—integrate 
acceleration to get velocity:

○ v’=v + a •∆t
● Integrate velocity to get 

position:
○ p’=p + v •∆t

● Collapse the two, integrate 
acceleration to position:

○ p’’=2p’-p + a •∆t2

Timestep must be 
nigh-constant; collisions are 
hard.



Particle systems—rendering

Can render particles as points, textured polys, or 
primitive geometry

● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make 

pretty good fire, smoke, etc
Transitioning one particle type to another 
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter for 
‘splash’ particles on impact

Particles can be the force sources for a 
blobby model implicit surface

● This is sometimes an effective way to 
simulate liquids

nvidia

Hagit Schechter
http://www.cs.ubc.ca/~hagitsch/Researc
h/
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