Proposition 46 Let m be a positive integer. For all natural numbers k and l,

Lemma.

Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

PROOF:

Corollary 47 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \operatorname{rem}(n, m) \pmod{m}$$
 .

2. For every integer k there exists a unique integer $[k]_m$ such that

$$0 \le [k]_{\mathfrak{m}} < \mathfrak{m}$$
 and $k \not\equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

PROOF: Assume k > 0. Then, k = rem(k, m) (mod m).

$$-k \equiv -reu(k,m) \quad with \quad 0 \leq reu(k,m) \leq m$$

[-k]_m = lm - rem (k, m) if vem (k, m) \ = 0 O sherwise. \ \(q, q' are integers and \)

Mighenos: Assume q.m+r=q'.m+r' where $\chi o \leq r,r' \leq m$ & whos. $r \geq r'$. Then o = (q-q').m+(r-r') whene $o \leq r-r' \leq m$. So, by Lemma 43, p=r'. This ensures the uniquens of lkJm.

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_{\mathfrak{m}}$$
 : 0, 1, ..., $\mathfrak{m}-1$.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k+_m l = [k+l]_m = \operatorname{rem}(k+l,m) ,$$

$$k\cdot_m l = [k\cdot l]_m = \operatorname{rem}(k\cdot l,m)$$
 for all $0 \le k, l < m$.
$$-k = [m-k]_m$$

$$2.1 = 2.3$$
 $2^{-1}.2.1 = 2^{-1}.2.3$
 $1 = 3$

Example 49 The addition and multiplication tables for \mathbb{Z}_4 are:

$$+_4$$
 0
 1
 2
 3

 0
 0
 1
 2
 3

 1
 1
 2
 3
 0
 1

 2
 2
 3
 0
 1
 2
 0
 2
 0
 2

 3
 3
 0
 1
 2
 0
 3
 2
 1
 3
 3
 3
 2
 1
 3
 3
 3
 2
 1
 3
 3
 3
 2
 1
 3
 3
 3
 2
 1
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	
1	3	1	1
2	2	2	
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 50 The addition and multiplication tables for \mathbb{Z}_5 are:

+5	0	1	2	3	4	•5	0	1	2	3	4
0						0	0	0	0	0	0
1						1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3						3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

FLT: $(2)i^{(p-1)} \equiv 1 \pmod{p}$ ppmie $i \equiv 0 \pmod{p}$ $i \equiv 0 \pmod{p}$

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 51 For all natural numbers m > 1, the modular-arithmetic structure

$$(\mathbb{Z}_{\mathfrak{m}},0,+_{\mathfrak{m}},1,\cdot_{\mathfrak{m}})$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses:

When m is a prime p the multiplicative inverse
$$j$$
 is \mathbb{Z}_p when $i \neq 0$ is $\mathbb{Z}_p^{(p-2)}$. \mathbb{Z}_p is a field.