Proposition 46 Let m be a positive integer. For all natural
numbers k and 1,

k=1 (mod m) < rem(k,m) = rem(l, m)
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Corollary 47 Let m be a positive integer.

1. For every natural number n,

n =rem(n,m) (mod m)
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Corollary 47 Let m be a positive integer.

1. For every natural number n,

n =rem(n,m) (modm) .

2. For every integer k there exists a unigue integer [k|,, such that
0<[kln,<m and k= k], (modm)
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Modular arithmetic

For every positive integer m, the integers modulo m are:

Zw = O, 1, ..., m—1.,

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k+nl = [k+1, = rem(k+1lm),
k- 1
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rem(k - [, m)

forall 0 < k,1 < m. k= [k,
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Example 49 The addition and multiplication tables for 7., are:

+410 1 2 3 01 2 3
0|0 1 2 3 00 0 0 O
1T (1 2 30 110 1 2 3
212 3 01 210 2 0 2
30301 2 3lo03 21 /£ -

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

é_zdditive mu{tiplicative
inverse inverse

0 0 0 —

] 3 ] ]

2 2 2 —

3 1 3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 50 The addition and multiplication tables for 75 are:

+510 1 2 3 4 510 1 2 3 4
0|01 2 3 4 00 00 0O
111 2 3 40 1101 2 3 4
212 3 4 0 1 210 2 41 3
313401 2 310 3 1 4 2
414 0 1 2 3 410 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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rom the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

qdditive
inverse
0 0
] 4
2 3
3 2
4 ]

mu{tiplicative
inverse
0 _
1 1
2 3
3 2
4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 51 For all natural numbers m > 1, the
modular-arithmetic structure

(Znu O> —|_m> 1 ) 'm)

IS a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses :
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