Numbers

Objectives

» Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.

» Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid’s algorithm, and the Extended Euclid’s algorithm.

» Exemplify the use of the mathematical theory surrounding Euclid’s Theorem and Fermat’s Little Theorem in the context of public-key cryptography.

» To understand and be able to proficiently use the Principle of Mathematical Induction in its various forms.
Natural numbers

In the beginning there were the *natural numbers*

\[\mathbb{N} : 0, 1, \ldots, n, n+1, \ldots \]

generated from *zero* by successive increment; that is, put in ML:

```
datatype
    N = zero | succ of N
```
The basic operations of this number system are:

- **Addition**

- **Multiplication**
The **additive structure** \((\mathbb{N}, 0, +)\) of natural numbers with zero and addition satisfies the following:

- **Monoid laws**

 \[
 0 + n = n = n + 0 , \quad (l + m) + n = l + (m + n)
 \]

- **Commutativity law**

 \[
 m + n = n + m
 \]

and as such is what in the mathematical jargon is referred to as a **commutative monoid**.
Also the *multiplicative structure* \((\mathbb{N}, 1, \cdot)\) of natural numbers with one and multiplication is a commutative monoid:

- **Monoid laws**

 \[
 1 \cdot n = n = n \cdot 1, \quad (l \cdot m) \cdot n = l \cdot (m \cdot n)
 \]

- **Commutativity law**

 \[
 m \cdot n = n \cdot m
 \]
The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive law

\[l \cdot (m + n) = l \cdot m + l \cdot n \]

and make the overall structure \((\mathbb{N}, 0, +, 1, \cdot)\) into what in the mathematical jargon is referred to as a \textit{commutative semiring}.
Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

► Additive cancellation

For all natural numbers k, m, n,

$$k + m = k + n \implies m = n.$$

► Multiplicative cancellation

For all natural numbers k, m, n,

if $k \neq 0$ then $k \cdot m = k \cdot n \implies m = n.$
Inverses

Definition 42

1. A number x is said to admit an **additive inverse** whenever there exists a number y such that $x + y = 0$.
Inverses

Definition 42

1. A number x is said to admit an **additive inverse** whenever there exists a number y such that $x + y = 0$.

2. A number x is said to admit a **multiplicative inverse** whenever there exists a number y such that $x \cdot y = 1$.
Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:
Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for non-zero numbers yields two very interesting results:

(i) the **integers**

\(\mathbb{Z} : \ldots -n, \ldots, -1, 0, 1, \ldots, n, \ldots \)

which then form what in the mathematical jargon is referred to as a **commutative ring**, and

(ii) the **rationals** \(\mathbb{Q} \) which then form what in the mathematical jargon is referred to as a **field**.
Lemma 43. For integers q, n and r with $n > 0$ and $0 < r < n$,

$$0 = q \cdot n + r \Rightarrow q = 0 \land r = 0.$$

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \geq 0$, $0 \leq r < n$, and $m = q \cdot n + r = q' \cdot n + r'$.

Proof of Lemma 43. Assume $0 = q \cdot n + r$. Proof by contradiction, assuming $q \neq 0$, i.e. (1) $q > 0$ or (2) $q < 0$.

Case 1: $q > 0$. Then $q \cdot n + r > 0 \not\in$.

Case 2: $q < 0$. Then $q \cdot n + r \leq -n + r < -n + n = 0 \not\in$.

Thus $q = 0$ and $0 = 0 \cdot n + r$, so $r = 0$.

Lemma 43 gives the uniqueness part of Thm. 43.
The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number \(m \) and positive natural number \(n \), there exists a unique pair of integers \(q \) and \(r \) such that \(q \geq 0 \), \(0 \leq r < n \), and \(m = q \cdot n + r \).

Definition 44 The natural numbers \(q \) and \(r \) associated to a given pair of a natural number \(m \) and a positive integer \(n \) determined by the Division Theorem are respectively denoted \(\text{quo}(m, n) \) and \(\text{rem}(m, n) \).
The Division Algorithm in ML:

```ml
fun divalg( m , n )
    = let
        fun diviter( q , r )
            = if r < n then ( q , r )
                else diviter( q+1 , r-n )
        in
        diviter( 0 , m )
    end

fun quo( m , n ) = #1( divalg( m , n ) )

fun rem( m , n ) = #2( divalg( m , n ) )
```

ad hoc semantics via computation sequences

divide \((m,n) \)
divide \((0,m) \)
\(m < n \)
\((0,m) \)
\((1,m-n) \)
\(m-n < n \)
\((1,m-n) \)
\((2,m-2n) \)

Can I C I m - n-?

I (2, m-2n)

I (1,m-n)

I (0,m)

I (2,m-2n)

I (1,m-n)

I (0,m)

I (1,m-n)

I (2,m-2n)
Theorem 45 For every natural number \(m \) and positive natural number \(n \), the evaluation of \(\text{divalg}(m, n) \) terminates, outputing a pair of natural numbers \((q_0, r_0)\) such that \(r_0 < n \) and \(m = q_0 \cdot n + r_0 \).

PROOF: (Idea)

\[(0, m) \]
\[(0, m) \]
\[(q, r) \]
\[(q+1, r-n) \]

\[m < n \]
\[r < n \]
\[m \leq r \]
\[n - n \]

\[0 \leq 0 \land 0 \leq m \land m = 0 \cdot n + m \]

IN Variant:

\[0 \leq q \land 0 \leq r \land m = q \cdot n + r \]

\[(\text{as assume } n \leq r) \]

\[0 \leq q+1 \land 0 \leq r-n \land m = (q+1) \cdot n + (r-n) \]