Discrete Mathematics
<www.cl.cam.ac.uk/teaching/1819/DiscMath>

Prof Glynn Winskel
Glynn.Winskel@cl.cam.ac.uk

"Set Theory for Computer Science"
What are we up to?

- Learn to read and write, and also work with, mathematical arguments.
- Doing some basic discrete mathematics.
- Getting a taste of computer science applications.
Discrete Mathematics is the branch of Mathematics in which we deal with questions involving finite or countably infinite sets. In particular this means that the numbers involved are either integers, or numbers closely related to them, such as fractions or ‘modular’ numbers.
What is it that we do?

In general:

Build mathematical models and apply methods to analyse problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of definitions and theorems. We aim at understanding their properties and limitations.
Lecture plan

I. Proofs.

II. Numbers.

III. Sets.

IV. Regular languages and finite automata.
Proofs

Objectives

► To develop techniques for analysing and understanding mathematical statements.

► To be able to present logical arguments that establish mathematical statements in the form of clear proofs.

► To prove Fermat’s Little Theorem, a basic result in the theory of numbers that has many applications in computer science.
Proofs in practice

We are interested in examining the following statement:

\[\text{The product of two odd integers is odd.} \]

This seems innocuous enough, but it is in fact full of baggage.
Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

► what a statement is;

► what the integers (..., −1, 0, 1, ...) are, and that amongst them there is a class of odd ones (..., −3, −1, 1, 3, ...);

► what the product of two integers is, and that this is in turn an integer.
More precisely put, we may write:

If \(m \) and \(n \) are odd integers then so is \(m \cdot n \).
More precisely put, we may write:

\[
\text{If } m \text{ and } n \text{ are odd integers then so is } m \cdot n.
\]

which further presupposes that you know:

▶ what variables are;

▶ what if . . . then . . . statements are, and how one goes about proving them;

▶ that the symbol “·” is commonly used to denote the product operation.
Even more precisely, we should write

For all integers m and n, if m and n are odd then so is $m \cdot n$.

which now additionally presupposes that you know:

- what

for all . . .

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of *mathematical jargon* that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.
Some mathematical jargon

Statement
A sentence that is either true or false — but not both.

Example 1

\[e^{i\pi} + 1 = 0 \]

Non-example

‘This statement is false’
Predicate

A statement whose truth depends on the value of one or more variables.

Example 2

1. ‘$e^{ix} = \cos x + i \sin x$’

2. ‘the function f is differentiable’
Theorem
A very important true statement.

Proposition
A less important but nonetheless interesting true statement.

Lemma
A true statement used in proving other true statements.

Corollary
A true statement that is a simple deduction from a theorem or proposition.

Example 3
1. Fermat’s Last Theorem
2. The Pumping Lemma
Conjecture
A statement believed to be true, but for which we have no proof.

Example 4

1. Goldbach’s Conjecture
2. The Riemann Hypothesis
Proof

Logical explanation of why a statement is true; a method for establishing truth.
Proof
Logical explanation of why a statement is true; a method for establishing truth.

Logic
The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

Example 5

1. *Classical predicate logic*
2. *Hoare logic*
3. *Temporal logic*
Axiom
A basic assumption about a mathematical situation.
Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

Example 6
1. Euclidean Geometry
2. Riemannian Geometry
3. Hyperbolic Geometry
Definition
An explanation of the mathematical meaning of a word (or phrase).
The word (or phrase) is generally defined in terms of properties.

Warning: It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.
Definition, theorem, intuition, proof in practice

Proposition 8 For all integers \(m \) and \(n \), if \(m \) and \(n \) are odd then so is \(m \cdot n \).
Definition, theorem, intuition, proof in practice

Definition 7 An integer is said to be odd whenever it is of the form $2 \cdot i + 1$ for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so is $m \cdot n$.
Intuition:
PROOF OF Proposition 8: Assume \(m, n \) odd.

So \(m = 2i + 1 \), \(n = 2j + 1 \) for integers \(i, j \).

\[
m \cdot n = (2i + 1)(2j + 1) = 2 \cdot 2ij + 1 \cdot 2j + 2 \cdot 1i + 1 = 2 \cdot (2ij + j + i) + 1 = 2k + 1 \text{ for } k = \ldots
\]

So \(m \cdot n \) is odd.
Simple and composite statements

A statement is *simple* (or *atomic*) when it cannot be broken into other statements, and it is *composite* when it is built by using several (simple or composite statements) connected by *logical* expressions (e.g., if...then...; ...implies ...; ...if and only if ...; ...and...; either ...or ...; it is not the case that ...; for all ...; there exists ...; etc.)

Examples:

‘2 is a prime number’

‘for all integers \(m\) and \(n\), if \(m \cdot n\) is even then either \(n\) or \(m\) are even’
Implication

Theorems can usually be written in the form

\[
\text{if a collection of assumptions holds, then so does some conclusion}
\]

or, in other words,

\[
a \text{ collection of assumptions implies some conclusion}
\]

or, in symbols,

\[
a \text{ collection of hypotheses } \implies \text{ some conclusion}
\]

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.
The main proof strategy for implication:

To prove a goal of the form

\[P \implies Q \]

assume that \(P \) is true and prove \(Q \).

NB *Assuming* is not *asserting*! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.
Proof pattern:
In order to prove that

\[P \implies Q \]

1. Write: Assume \(P \).
2. Show that \(Q \) logically follows.
Scratch work:

Before using the strategy

Assumptions Goal

\[P \implies Q \]

\[\vdots \]

After using the strategy

Assumptions Goal

\[Q \]

\[\vdots \]

\[P \]
Proposition 8 \textit{If } m \text{ and } n \text{ are odd integers, then so is } m \cdot n. \\

\textbf{Proof:} \\
Assume \(m \), \(n \) odd \\
\(m \cdot n \) odd.
An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the *contrapositive* of ‘P implies Q’ is ‘not Q implies not P’
Proof pattern:
In order to prove that
\[P \implies Q \]

1. Write: We prove the contrapositive; that is, ... and state the contrapositive.

2. Write: Assume ‘the negation of Q’.

3. Show that ‘the negation of P’ logically follows.
Scratch work:

Before using the strategy

Assumptions Goal

\[P \implies Q \]

After using the strategy

Assumptions Goal

\[\text{not } P \]

\[\text{not } Q \]
Definition 9 A real number is:

- **rational** if it is of the form \(\frac{m}{n} \) for a pair of integers \(m \) and \(n \); otherwise it is **irrational**.

- **positive** if it is greater than \(0 \), and **negative** if it is smaller than \(0 \).

- **nonnegative** if it is greater than or equal \(0 \), and **nonpositive** if it is smaller than or equal \(0 \).

- **natural** if it is a nonnegative integer.
Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x}.

Proof: By contradiction. We show the contrapositive: \sqrt{x} is rational \Rightarrow x is rational.

Assume \sqrt{x} is rational $\Rightarrow \sqrt{x} = \frac{p}{q}$.

Then $x = (\sqrt{x})^2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2}$.

So x is a rational \Box.