Topic 7

Relating Denotational and Operational Semantics

Recall :

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket.$

• Soundness.

For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

• Adequacy.

For $\tau = bool \text{ or } nat$, $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$. e.g. if $M : nat & \llbracket M \rrbracket = n \in \mathbb{N}$, then $M \Downarrow_{nat} Succ_{\tau_1}(0)$ Recall:

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

 $\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad \text{(soundness)}$

$$\Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket = \llbracket V \rrbracket \quad \text{(compositionality} \\ \text{on } \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{)}$$

 $\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \quad (adequacy)$ and symmetrically (& Similarly for \Downarrow_{lool}).

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

if $M \Downarrow_{\tau} V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$.

Induction step for
$$(V_{cbn})$$
 $\frac{M_1 V_{2,z}}{M_1 M_2, z}$ $M_1 M_2 V_2, V$
 $M_1 M_2 V_2, V$

Suppose
$$\int [M_1] = [fnx; \tau, M]$$

 $\int [M_1] = [fnx; \tau, M]$
 $\int [M_2[x_2]] = [V]$
Have to prove $[M_1M_2] = [V]$.

Induction step for
$$(U_{cbn})$$
 $\frac{M_1 V_{2,z}}{M_1 M_2, z}$ $\frac{M_2 V_{z,z}}{M_1 M_2 M_z}$ V

Suppose
$$\int [M_1] = [fnx:\tau.M]$$

 $\int [M_1] = [fnx:\tau.M]$
 $\int [M_1M_2] = [V]$
Have to prove $[M_1M_2] = [V]$.
But $[M_1M_2] = [M_1]([M_2])$
by definition
 $f=J$

Induction step for
$$(U_{cm}) = \frac{M_1 V_{z * z}}{M_1 M_2 * z} \frac{M_1 V_{z * z}}{M_1 M_2 V_z} V$$

Suppose
$$[[M_1] = [[M_2:\tau.M]]$$

 $[[M[M_2]a]] = [[V]]$
Have to prove $[[M_1M_2] = [[V]]$.
But $[[M_1M_2]] = [[M_1]([[M_2]])]$
 $= [[M_1Z:\tau.M]([[M_2]])]$
 $= [[M_1Z:\tau.M]([[M_2]])]$
 $\downarrow de[[\tau], [[× h \tau + M](d)]$

Induction step for
$$(V_{cbn}) = \frac{M_1 V_{z * z} \cdot fn x : z M}{M_1 M_2 x : z M}$$

Suppose
$$[[M_1] = [fnx:\tau.M]$$

 $[[M[M_2]a]] = [[V]]$
Have to prove $[[M_1M_2] = [[V]]$.
But $[[M_1M_2]] = [[M_1]([M_2]))$
 $= [[fnx:\tau.M]([M_2]))$
 $= [[fnx:\tau.M]([M_2]))$

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

$$\begin{bmatrix} \Gamma \vdash M'[M/x] \end{bmatrix} (\rho) \\ = \begin{bmatrix} \Gamma[x \mapsto \tau] \vdash M' \end{bmatrix} (\rho[x \mapsto [\Gamma \vdash M](\rho)])$$

for all $\rho \in [\Gamma]$. (Proved by induction on structure of M')

In particular when $\Gamma = \emptyset$, $[\![\cdot x \mapsto au \vdash M']\!] : [\![au]\!] o [\![au']\!]$ and

$$\llbracket M'[M/x] \rrbracket = \llbracket x \mapsto \tau \vdash M' \rrbracket (\llbracket M \rrbracket)$$

Induction step for
$$(U_{cbn}) = \frac{M_1 U_{z \Rightarrow z}}{M_1 M_2 \Rightarrow z} \frac{M_2 Z_2 T_2 T_2 M_2}{M_1 M_2 W_2 T_2}$$

Suppose
$$[[M_1] = [[M_2:\tau, M]]$$

 $[[M_1] = [[M_2:\tau, M]]$
Have to prove $[[M_1M_2] = [[V]]$.
But $[[M_1M_2]] = [[M_1]([[M_2]])$
 $= [[M_2:\tau, M]([[M_2]])$
 $= [[M_1M_2] = [[M_2/2]]]$

Induction step for
$$(V_{cm})$$
 $\frac{M_1 V_{2,z_1} fn_{2;z} M_2}{M_1 M_2 J V_2, V}$

Suppose
$$[[M_1] = [[M_2:\tau. M]]$$

 $[[M[M_2]a]] = [V]$
Have to prove $[[M_1M_2] = [V]$.
But $[[M_1M_2]] = [[M_1]([M_2]))$
 $= [[M_2:\tau.M]([M_2]))$
 $= [[M[M_2/2]] = [[V]]$

Q.E.D.

For any closed PCF terms M and V of *ground* type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V$. NB. Adequacy does not hold at function types For any closed PCF terms M and V of *ground* type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

For any closed PCF terms M and V of *ground* type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

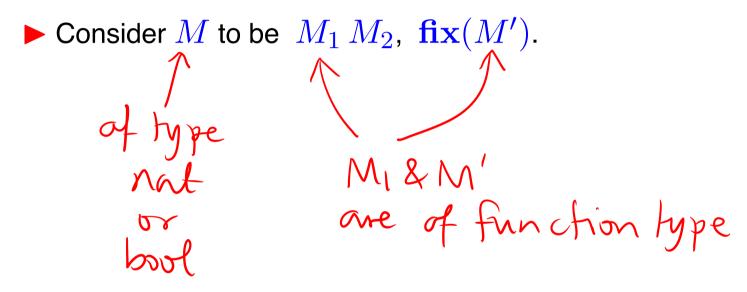
NB. Adequacy does not hold at function types:

 $\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket \quad = \quad \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$

but

$$\mathbf{fn} \ x:\tau. \ (\mathbf{fn} \ y:\tau. \ y) \ x \ \not \Downarrow_{\tau \to \tau} \ \mathbf{fn} \ x:\tau. \ x$$

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.



1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

• Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

 \blacktriangleright Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M \rrbracket \lhd_{\tau} M$ for all types τ and all $M \in \mathrm{PCF}_{\tau}$

where the *formal approximation relations*

$$\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}^{\checkmark}$$

closed PCF terms of are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall V \left(\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V\right)}_{\text{adequacy}}$$

 $\begin{array}{l} \text{Definition of } d \triangleleft_{\gamma} M \ (d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}) \\ \text{for } \gamma \in \{nat, bool\} \end{array}$

$$d \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{d}(\mathbf{0}))$$
$$d \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (d = true \Rightarrow M \Downarrow_{bool} \operatorname{true})$$
$$\& (d = false \Rightarrow M \Downarrow_{bool} \operatorname{false})$$

 $\begin{array}{l} \text{Definition of } d \triangleleft_{\gamma} M \ (d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}) \\ \text{for } \gamma \in \{nat, \, bool\} \end{array}$

$$d \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} \left(d \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{d}(\mathbf{0}) \right)$$

$$d \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} \left(d = true \Rightarrow M \Downarrow_{bool} \operatorname{true} \right)$$

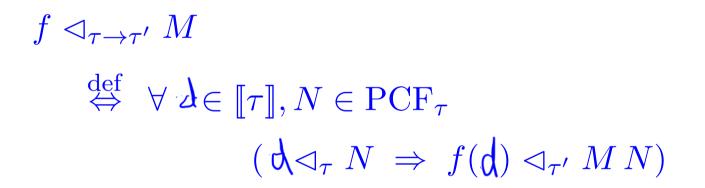
$$\& \left(d = false \Rightarrow M \Downarrow_{bool} \operatorname{false} \right)$$

$$\lor equivalently :$$

$$d = \bot \lor \left(d \in \mathbb{N} \land \mathbb{M} \Downarrow_{nk} \operatorname{Succ}^{d}(\mathbf{0}) \right)$$

Definition of $f \triangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$

Definition of $f \triangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \operatorname{PCF}_{\tau \to \tau'})$



The full
$$d \triangleleft_{\tau} M \quad (d \in \llbracket \tau \rrbracket, M \in \mathrm{PCF}_{\tau})$$

$$d \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{d}(\mathbf{0}))$$

$$d \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (d = true \implies M \Downarrow_{bool} \mathbf{true})$$
$$\& (d = false \implies M \Downarrow_{bool} \mathbf{false})$$

 $d \triangleleft_{\tau \to \tau'} M \stackrel{\text{def}}{\Leftrightarrow} \forall e, N \ (e \triangleleft_{\tau} N \ \Rightarrow \ d(e) \triangleleft_{\tau'} M N)$

Fundamental property

Theorem. For all $\Gamma = [x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n]$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $[\Gamma \vdash M][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

٠

Fundamental property

Theorem. For all
$$\Gamma = [x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n]$$
 and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $[\Gamma \vdash M][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

 $\llbracket M \rrbracket \lhd_{\tau} M$

for all $M \in \mathrm{PCF}_{\tau}$.

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

• Consider the case $M = \mathbf{fix}(M')$.

→ *admissibility* property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

 $\{ d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} M \}$

is an admissible subset of $\llbracket \tau \rrbracket$.

(Easy proof by induction on structure of types
$$\tau$$
.)

Further properties

Lemma. For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
- 2. If $d \triangleleft_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \triangleleft_{\tau} N$.

(Easy proofs by induction on structure of types
$$\tau$$
.)

Fundamental property of the relations \lhd_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

 $\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Proof of Adequacy property
Case
$$\gamma = nat$$
.

 $\llbracket M \rrbracket = \llbracket V \rrbracket$ $\implies \llbracket M \rrbracket = \llbracket \mathbf{succ}^{n}(\mathbf{0}) \rrbracket$ $\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M$ $\implies M \Downarrow \mathbf{succ}^{n}(\mathbf{0})$

for some $n \in \mathbb{N}$ by Fundamental Property by definition of \triangleleft_{nat}

Case $\gamma = bool$ is similar.