Continuity of the fixpoint operator

Let D be a domain.

By Tarski’s Fixed Point Theorem we know that each continuous function $f \in (D \to D)$ possesses a least fixed point, $\text{fix}(f) \in D$.

Proposition. The function

$$\text{fix} : (D \to D) \to D$$

is continuous.

Proof just uses defining properties of \text{fix} — $(\text{fp} 1) \& (\text{fp} 2)$ rather than the explicit construction $\text{fix}(f) = \bigcup_{n \geq 0} f^n(\bot)$.
Pre-fixed points

Let D be a poset and $f : D \to D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written $\text{fix}(f)$.

It is thus (uniquely) specified by the two properties:

\begin{align*}
f(\text{fix}(f)) & \sqsubseteq \text{fix}(f) & \text{(lfp1)} \\
\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow \text{fix}(f) & \sqsubseteq d. & \text{(lfp2)}
\end{align*}
\(\text{fix} : (D \to D) \to D \)

is monotone: if \(f \leq f' \) in \(D \to D \), then

\[
\text{fix}(f) \leq \text{fix}(f') \leq \text{fix}(f)
\]
\(\text{fix} : (D \rightarrow D) \rightarrow D \)

is monotone: if \(f \preceq f' \) in \(D \rightarrow D \), then

\[f(\text{fix}\, f') \preceq f'(\text{fix}\, f') \preceq \text{fix}\, f' \]

so \(\text{fix}\, f' \) is a pre-fixed point of \(f \)

so by (1fp2) \(\text{fix}\, f \preceq \text{fix}\, f' \)
\[\text{fix} : (D \to D) \to D \]

is continuous: given \(f_0 \leq f_1 \leq f_2 \leq \ldots \) in \(D \to D \)

want to show \(\text{fix} (\bigcup_{n \geq 0} f_n) \subseteq \bigcup_{n \geq 0} \text{fix}(f_n) \)

By \((\text{fp2})\), enough to show

\((\bigcup_{n \geq 0} f_n)(d) \leq d \) for \(d = \bigcup_{n \geq 0} \text{fix}(f_n) \)
\text{fix} : (D \to D) \to D

\text{is continuous : given } f_0 \leq f_1 \leq f_2 \leq \ldots \text{ in } D \to D

want to show \(\text{fix} \left(\bigcup_{n \geq 0} f_n \right) \subseteq \bigcup_{n \geq 0} \text{fix}(f_n) \)

By (lfp2), enough to show
\(\left(\bigcup_{n \geq 0} f_n \right)(d) \subseteq d \text{ for } d = \bigcup_{n \geq 0} \text{fix}(f_n) \)

But \(\left(\bigcup_{n \geq 0} f_n \right)(d) = \left(\bigcup_{n \geq 0} f_n \right) \left(\bigcup_{m \geq 0} \text{fix}(f_m) \right) \)

\[= \bigcup_{n \geq 0} \bigcup_{m \geq 0} f_n \left(\text{fix}(f_m) \right) \]

\[= \bigcup_{k \geq 0} f_k \left(\text{fix}(f_k) \right) \]

\[\subseteq \bigcup_{k \geq 0} \text{fix}(f_k) = d \]

(\text{lfp1) for each } f_k
Topic 4

Scott Induction
Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ in D

$$(\forall n \geq 0 . d_n \in S) \Rightarrow \left(\bigsqcup_{n \geq 0} d_n \right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.
Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ in D

$$(\forall n \geq 0. \ d_n \in S) \implies \left(\bigsqcup_{n \geq 0} d_n \right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called chain-closed (resp. admissible) iff $\{d \in D \mid \Phi(d)\}$ is a chain-closed (resp. admissible) subset of D.

Scott’s Fixed Point Induction Principle

Let $f : D \to D$ be a continuous function on a domain D.

For any admissible subset $S \subseteq D$, to prove that the least fixed point of f is in S, i.e. that

$$\text{fix}(f) \in S,$$

it suffices to prove

$$\forall d \in D \ (d \in S \Rightarrow f(d) \in S).$$
Let $f : D \rightarrow D$ be a continuous function on a domain D. Then

- f possesses a least pre-fixed point, given by
 \[\text{fix}(f) = \bigsqcup_{n \geq 0} f^n(\bot). \]

- Moreover, $\text{fix}(f)$ is a fixed point of f, i.e. satisfies $f(\text{fix}(f)) = \text{fix}(f)$, and hence is the least fixed point of f.

where
\[
\begin{align*}
 f^0(\bot) & \triangleq \bot \\
 f^{n+1}(\bot) & \triangleq f(f^n(\bot))
\end{align*}
\]
Proof of the Scott Induction Principle

If we know \(\forall d \in D, d \in S \Rightarrow f(d) \in S \), then \(\bot \in S \) since \(S \) is admissible.
Proof of the Scott Induction Principle

If we know $\forall d \in D. \, d \in S \Rightarrow f(d) \in S$, then

$\bot \in S$

so $f(\bot) \in S$

since S is admissible by
Proof of the Scott Induction Principle

If we know \(\forall d \in D. \ d \in S \Rightarrow f(d) \in S \), then

\[\bot \in S \quad \text{since } S \text{ is admissible} \]

so \(f(\bot) \in S \)

so \(f(f(\bot)) \in S \) by

\[f^n(\bot) \in S \quad \text{for all } n \in \mathbb{N} \]
Proof of the Scott Induction Principle

If we know $\forall d \in D, \; d \in S \Rightarrow f(d) \in S$, then

$\bot \in S$ since S is admissible

So $f(\bot) \in S$

So $f(f(\bot)) \in S$

\[\vdots \]

$f^n(\bot) \in S$ for all $n \in \mathbb{N}$

Hence $\bigcup_{n \geq 0} f^n(\bot) \in S$ since S is admissible

That is, $\text{fix}(f) \in S$
Example 4.2.1

Given \(\{ \text{domain } D \) \)

\(\) continuous function \(f : D \times D \times D \to D \)

then \(g : D \times D \to D \times D \)

is continuous.

\(g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2)) \)

So by Tarski's FPT we get \(\text{fix}(g) \in D \times D \).

Claim: \(u_1 = u_2 \), where \((u_1, u_2) = \text{fix}(g) \)

Proof: by Scott Induction...
Example 4.2.1

\[
g : D \times D \to D \times D
\]

\[
g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2))
\]

Claim: \(u_1 = u_2 \), where \((u_1, u_2) = \text{fix}(g)\)

Proof
\[
\Delta \overset{\Delta}{=} \{(d, d) \mid d \in D\}
\]
is an admissible subset of \(D \times D\) because

- \((\perp, \perp) \in \Delta\)
- \((d_0, d'_0) \leq (d_1, d'_1) \leq \ldots \) & \(\forall n. (d_n, d'_n) \in \Delta\) implies
 \[
 \bigcup_{n \geq 0} (d_n, d'_n) = (\bigcup_{n \geq 0} d_n, \bigcup_{n \geq 0} d'_n) = (\bigcup_{n \geq 0} d_n, \bigcup_{n \geq 0} d'_n) \in \Delta
 \]
Example 4.2.1

\[
\begin{aligned}
g : D \times D &\rightarrow D \times D \\
g(d_1, d_2) &= (f(d_1, d_1, d_2), f(d_1, d_2, d_2))
\end{aligned}
\]

Claim: \(u_1 = u_2 \), where \((u_1, u_2) = \text{fix}(g)\)

Proof

\[\Delta = \{(d, d) \mid d \in D\} \text{ admissible}\]

and \(\forall (d, d') \in D \times D. \ (d, d') \in \Delta \Rightarrow g(d, d') \in \Delta \)

because

\[(d, d') \in \Delta \Rightarrow d = d' \]

\[\Rightarrow g(d, d') = (f(d, d, d), f(d, d, d)) \in \Delta \]
Example 4.2.1

\[
\begin{align*}
g : D \times D &\rightarrow D \times D \\
g(d_1, d_2) &= (f(d_1, d_1, d_2), f(d_1, d_2, d_2))
\end{align*}
\]

Claim: \(u_1 = u_2 \), where \((u_1, u_2) = \text{fix}(g) \)

Proof

\[\Delta = \{(d, d) \mid d \in D\} \text{ admissible}\]

and \(\forall (d, d') \in D \times D. \ (d, d') \in \Delta \Rightarrow g(d, d') \in \Delta \)

So by Scott Induction

\[\text{fix}(g) \in \Delta\]

Q.E.D.
Example (III): Partial correctness

Let $\mathcal{F} : \text{State} \rightarrow \text{State}$ be the denotation of

\[
\text{while } X > 0 \text{ do } (Y := X \cdot Y; X := X - 1) .
\]

For all $x, y \geq 0$,

\[
\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow \\
\implies \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y].
\]
Recall that $F = \text{fix}(f)$ where

$f : (\text{State} \to \text{State}) \to (\text{State} \to \text{State})$

is given by

$$f(w)[x \mapsto x, y \mapsto y] = \begin{cases} [x \mapsto x, y \mapsto y] & \text{if } x \leq 0 \\ w[x \mapsto x-1, y \mapsto xy] & \text{if } x > 0 \end{cases}$$

for all $w \in \text{State} \to \text{State}$ & $x, y \in \mathbb{Z}$
Proof by Scott induction.

We consider the admissible subset of \((\text{State} \rightarrow \text{State})\) given by

\[
S = \left\{ w \mid \begin{array}{l}
\forall x, y \geq 0.
\quad w[X \mapsto x, Y \mapsto y] \downarrow \\
\quad \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y]
\end{array} \right\}
\]

and show that

\[
w \in S \implies f(w) \in S.
\]

From now on, let's just write \([x \mapsto x, y \mapsto y]\) as \((x, y)\)
(i.e. identify \text{State} with \(\mathbb{Z} \times \mathbb{Z}\)).
Suppose \(w \in S \). Want to show \(f(w) \in S \), i.e.

\[
x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \Rightarrow f(w)(x, y) = (0, !x \cdot y)
\]

So suppose \(x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \)

Case \(x = 0 \):

\[
f(w)(x, y) = (x, y) = (0, y) = (0, !0 \cdot y) = (0, !x \cdot y)
\]

by def. of \(f \)

\(x = 0 \)

Since \(0! = 1 \)

Since \(x = 0 \)
Suppose \(w \in S \). Want to show \(f(w) \in S \), i.e.

\[x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \quad \Rightarrow \quad f(w)(x, y) = (0, ! x \cdot y) \]

So suppose \(x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \)

Case \(x > 0 \) : Since \(f(w)(x, y) \downarrow \)

get \(w(x-1, x \cdot y) \downarrow \) by definition of \(f \)
Suppose \(w \in S \). Want to show \(f(w) \in S \), i.e.

\[
x, y \geq 0 \ \& \ f(w)(x, y) \downarrow \Rightarrow f(w)(x, y) = (0, !x \cdot y)
\]

So suppose \(x, y \geq 0 \ \& \ f(w)(x, y) \downarrow \)

Case \(x > 0 \) : Since \(f(w)(x, y) \downarrow \)

get \(w(x-1, x \cdot y) \downarrow \) \ by \ definition \ of \(f \)

But \(x-1, x \cdot y \geq 0 \ \& \ w \in S \)

so \(w(x-1, x \cdot y) = (0, !(x-1) \cdot (x \cdot y)) \) \ by \ def. \ of \(S \)
Suppose \(w \in S \). Want to show \(f(w) \in S \), i.e.

\[
x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \implies f(w)(x, y) = (0, !x \cdot y)
\]

So suppose \(x, y \geq 0 \quad \& \quad f(w)(x, y) \downarrow \)

Case \(x > 0 \): Since \(f(w)(x, y) \downarrow \)

get \(w(x-1, x \cdot y) \downarrow \) by definition of \(f \)

But \(x-1, x \cdot y \geq 0 \quad \& \quad w \in S \)

so \(w(x-1, x \cdot y) = (0, !(x-1) \cdot (x \cdot y)) \) by def. of \(S \)

\[
= (0, !x \cdot y)
\]

so \(f(w)(x, y) = w(x-1, x \cdot y) = (0, !x \cdot y) \quad \checkmark
\]

↑ def. of \(f \)
Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset

$$\downarrow(d) \overset{\text{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.
Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset
 \[
 \downarrow(d) \overset{\text{def}}{=} \{ x \in D \mid x \sqsubseteq d \}
 \]
 of D is chain-closed.

- The subsets
 \[
 \{(x, y) \in D \times D \mid x \sqsubseteq y\}
 \]
 and
 \[
 \{(x, y) \in D \times D \mid x = y\}
 \]
 of $D \times D$ are chain-closed.
Building chain-closed subsets (II)

Inverse image:

Let $f : D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{ x \in D \mid f(x) \in S \}$$

is a chain-closed subset of D.
Building chain-closed subsets (II)

Inverse image:

Let $f : D \rightarrow E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$

is a chain-closed subset of D.

Proof: if $d_0 \subseteq d_1 \subseteq d_2 \subseteq \ldots$ in D & $\forall n. d_n \in f^{-1}S$
Inverse image:

Let \(f : D \rightarrow E \) be a continuous function.

If \(S \) is a chain-closed subset of \(E \) then the inverse image

\[
f^{-1}S = \{ x \in D \mid f(x) \in S \}
\]

is a chain-closed subset of \(D \).

Proof: if \(d_0 \leq d_1 \leq d_2 \leq \ldots \) in \(D \) & \(\forall n. \ d_n \in f^{-1}S \)
then \(\forall n. \ f(d_n) \in S \), so \(\bigcup_{n \geq 0} f(d_n) \in S \) (\(\text{cos } S \text{ ch.-cl.} \))
Building chain-closed subsets (II)

Inverse image:

Let \(f : D \to E \) be a continuous function.

If \(S \) is a chain-closed subset of \(E \) then the inverse image

\[
f^{-1}S = \{ x \in D \mid f(x) \in S \}
\]

is a chain-closed subset of \(D \).

Proof: If \(d_0 \leq d_1 \leq d_2 \leq \ldots \) in \(D \) and \(\forall n \quad d_n \in f^{-1}S \) then \(\forall n \quad f(d_n) \in S \), so \(\bigcup_{n=0}^{\infty} f(d_n) \in S \) (cos \(S \) ch.-cl.)

So \(f(\bigcup_{n=0}^{\infty} d_n) \in S \) (cos \(f \) cts.)

So \(\bigcup_{n=0}^{\infty} d_n \in f^{-1}S \)
Example (II)

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies \text{fix}(f) \sqsubseteq \text{fix}(g).$$
Example (II)

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies \text{fix}(f) \sqsubseteq \text{fix}(g).$$

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D.

Since

$$f(x) \sqsubseteq g(x) \implies g(f(x)) \sqsubseteq g(g(x)) \implies f(g(x)) \sqsubseteq g(g(x))$$

we have that

$$f(\text{fix}(g)) \sqsubseteq g(\text{fix}(g)).$$
Example (II)

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies \text{fix}(f) \sqsubseteq \text{fix}(g).$$

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \subseteq g(x))$ of D.

Since

$$f(x) \sqsubseteq g(x) \implies g(f(x)) \sqsubseteq g(g(x)) \implies f(g(x)) \sqsubseteq g(g(x))$$

we have that

$$f(\text{fix}(g)) \sqsubseteq g(\text{fix}(g)) \sqsubseteq \text{fix}(g) \text{ by (lfp1) for } g$$

so by (lfp2) for f, we have

$$\text{fix}(f) \sqsubseteq \text{fix}(g) \quad \Box.$$
Logical operations:

- If \(S, T \subseteq D \) are chain-closed subsets of \(D \) then \(S \cup T \) and \(S \cap T \) are chain-closed subsets of \(D \).
- If \(\{ S_i \}_{i \in I} \) is a family of chain-closed subsets of \(D \) indexed by a set \(I \), then \(\bigcap_{i \in I} S_i \) is a chain-closed subset of \(D \).
- If a property \(P(x, y) \) determines a chain-closed subset of \(D \times E \), then the property \(\forall x \in D. P(x, y) \) determines a chain-closed subset of \(E \).
S,T chain-closed $\Rightarrow S \cup T$ chain-closed

Suppose $d_0 \subseteq d_1 \subseteq d_2 \subseteq \ldots$ in D & $\forall n. d_n \in S \cup T$.

If $\bigcup_{n \geq 0} d_n \in S$, we are done.

So suppose $\bigcup_{n \geq 0} d_n \notin S$.

For each $m \geq 0$,

$(\forall n \geq m. d_n \in S) \Rightarrow \bigcup_{n \geq 0} d_n = \bigcup_{n \geq m} d_n \in S$.
\(S, T \) chain-closed \(\Rightarrow \) \(S \cup T \) chain-closed

Suppose \(d_0 \subseteq d_1 \subseteq d_2 \subseteq \ldots \) in \(D \) \& \(\forall n \in \mathbb{N}, d_n \in S \cup T \)

If \(\bigcup_{n \geq 0} d_n \in S \), we are done.

So suppose \(\bigcup_{n \geq 0} d_n \notin S \)

For each \(m \geq 0 \),

\[
(\forall n \geq m. d_n \in S) \Rightarrow \bigcup_{n \geq 0} d_n = \bigcup_{n \geq m} d_n \in S
\]

So \(\neg (\forall n \geq m. d_n \in S) \)

i.e. \(\exists n \geq m. d_n \in T \) since
$S,T \text{ chain-closed } \Rightarrow S \cup T \text{ chain-closed}$

Suppose $d_0 \subseteq d_1 \subseteq d_2 \subseteq \ldots$ in D & $\forall n. d_n \in S \cup T$

If $\bigcup_{n>0} d_n \in S$, we are done.

So suppose $\bigcup_{n>0} d_n \notin S$

For each $m \geq 0$, $\exists n \geq m. d_n \in T$
S, T chain-closed $\Rightarrow SU T$ chain-closed

Suppose $d_0 \leq d_1 \leq d_2 \leq \ldots$ in D & $\forall n. d_n \in SU T$

If $\bigcup_{n \geq 0} d_n \in S$, we are done.

So suppose $\bigcup_{n \geq 0} d_n \notin S$

For each $m \geq 0$, $\exists n \geq m. d_n \in T$

So we can choose $n_0 \leq n_1 \leq n_2 \leq \ldots$ satisfying $\forall m. m \leq n_m$ & $d_{n_m} \in T$.

So $\bigcup_{n \geq 0} d_n = \bigcup_{m \geq 0} d_{n_m} \in T$ Q.E.D.
Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then $S \cup T$ and $S \cap T$ are chain-closed subsets of D.

- If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D.

- If a property $P(x, y)$ determines a chain-closed subset of $D \times E$, then the property $\forall x \in D. P(x, y)$ determines a chain-closed subset of E.

\[\text{N.B. in general } \bigcup_{i \in I} S_i = \{ d \mid \exists i. d \in S_i \} \quad \text{and} \quad D - S \text{ need not be chain-closed.} \]
for each $i \in \mathbb{N}$

$S_i = \{0, 1, 2, \ldots, i\}$ is chain-closed subset
of the domain $\Omega = \left\{ \begin{array}{c} \vdots \\ \vdots \end{array} \right\}$

but

$\bigcup_{i \in \mathbb{N}} S_i = \mathbb{N}$ is not a chain-closed subset
of the domain $\Omega = \left\{ \begin{array}{c} \vdots \\ \vdots \end{array} \right\}$
\[S = \{0,2,4,\ldots\} \cup \{\omega\} \text{ is chain-closed subset of the domain } \Omega = \left\{ \begin{array}{c} \vdots \\ \omega \\ \vdots \\ \downarrow \\ \omega_0 \end{array} \right\} \]

but
\[D - S = \{1,3,5,\ldots\} \]

is \underline{not} a chain-closed subset of the domain \[\Omega = \left\{ \begin{array}{c} \vdots \\ \omega \\ \vdots \\ \downarrow \\ \omega_0 \end{array} \right\} \]