A chain complete poset, or cpo for short, is a poset \((D, \sqsubseteq)\) in which all countable increasing chains \(d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots\) have least upper bounds, \(\bigsqcup_{n \geq 0} d_n\):

\[
\forall m \geq 0. \ d_m \sqsubseteq \bigsqcup_{n \geq 0} d_n \quad \text{(lub1)}
\]

\[
\forall d \in D. (\forall m \geq 0. \ d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n \geq 0} d_n \sqsubseteq d. \quad \text{(lub2)}
\]

A domain is a cpo that possesses a least element, \(\bot\):

\[
\forall d \in D. \bot \sqsubseteq d.
\]
Continuity and strictness

- If D and E are cpo’s, the function f is continuous iff
 1. it is monotone, and
 2. it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f \left(\bigsqcup_{n \geq 0} d_n \right) = \bigsqcup_{n \geq 0} f(d_n) \text{ in } E.$$
Continuity and strictness

- If D and E are cpo’s, the function f is continuous iff
 1. it is monotone, and
 2. it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

 $$f\left(\bigsqcup_{n \geq 0} d_n\right) = \bigsqcup_{n \geq 0} f\left(d_n\right) \text{ in } E.$$

 NB

 $$f(d_0) \subseteq f(d_1) \subseteq f(d_2) \subseteq \ldots$$

 \Rightarrow f monotone

 $$\forall i. d_i \sqsubseteq \bigcup_{n \geq 0} d_n \Rightarrow \forall i. f(d_i) \sqsubseteq f\left(\bigcup_{n \geq 0} d_n\right)$$

 $$\Rightarrow \bigcup_{n \geq 0} f\left(d_i\right) \sqsubseteq f\left(\bigcup_{n \geq 0} d_n\right)$$
Continuity and strictness

- If D and E are cpo’s, the function f is continuous iff
 1. it is monotone, and
 2. it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

 \[f(\bigsqcup_{n \geq 0} d_n) = \bigsqcup_{n \geq 0} f(d_n) \quad \text{in } E. \]

 \[\text{NB} \quad \forall i: d_i \sqsubseteq \bigcup_{n \geq 0} d_n \quad \text{monotonicity} \quad \Rightarrow \quad \forall i: f(d_i) \sqsubseteq f\left(\bigcup_{n \geq 0} d_n \right) \]

 \[\Rightarrow \quad \bigcup_{i \geq 0} f(d_i) \sqsubseteq f\left(\bigcup_{n \geq 0} d_n \right) \]

 So given 1, for 2 just need $f(\bigcup_{n \geq 0} d_n) \sqsubseteq \bigcup_{n \geq 0} f(d_n)$
Continuity and strictness

• If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f\left(\bigsqcup_{n \geq 0} d_n\right) = \bigsqcup_{n \geq 0} f(d_n) \quad \text{in } E.$$

• If D and E have least elements, then the function f is strict iff $f(\bot) = \bot$.

38
Tarski’s Fixed Point Theorem

Let \(f : D \to D \) be a continuous function on a domain \(D \). Then

- \(f \) possesses a least pre-fixed point, given by
 \[
 \text{fix}(f) = \bigsqcup_{n \geq 0} f^n(\bot).
 \]

- Moreover, \(\text{fix}(f) \) is a fixed point of \(f \), i.e. satisfies
 \[
 f(\text{fix}(f)) = \text{fix}(f),
 \]
 and hence is the least fixed point of \(f \).

where
\[
\begin{cases}
 f^0(\bot) \triangleq \bot \\
 f^{n+1}(\bot) \triangleq f(f^n(\bot))
\end{cases}
\]
Let D be a poset and $f : D \rightarrow D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written $\text{fix}(f)$.

It is thus (uniquely) specified by the two properties:

$$f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \quad \text{(lfp1)}$$

$$\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow \text{fix}(f) \sqsubseteq d. \quad \text{(lfp2)}$$
Proof of Tarski’s Theorem

\[\bot \in f(\bot) \] because \(\bot \) is least elt of D
Proof of Tarski's Theorem

\[\bot \subseteq f(\bot) \quad \text{because } \bot \text{ is least elt of } D \]

so \[f(\bot) \subseteq f(f(\bot)) \subseteq f^2(\bot) \quad \text{by monotonicity of } f \]

so \[f^2(\bot) \subseteq f(f^2(\bot)) = f^3(\bot) \]

etc.
Proof of Tarski's Theorem

\[\bot \subseteq f(\bot) \text{ because } \bot \text{ is least elt of } D \]

so \[f(\bot) \subseteq f(f(\bot)) \subseteq f^2(\bot) \text{ by monotonicity of } f \]

so \[f^2(\bot) \subseteq f(f^2(\bot)) = f^3(\bot) \]

etc.

We get a chain \[\bot \subseteq f(\bot) \subseteq f^2(\bot) \subseteq f^3(\bot) \subseteq \ldots \]
and can form its lub \[\bigcup_{n \geq 0} f^n(\bot) \]
Proof of Tarski’s Theorem

Applying f to $\bot \leq f(\bot) \leq f^2(\bot) \leq \cdots \leq \bigcup_{n \geq 0} f^n(\bot)$ we get

$f(\bot) \leq f(f(\bot)) \leq f(f^2(\bot)) \leq \cdots \leq f\left(\bigcup_{n \geq 0} f^n(\bot) \right)$

by monotonicity of f
Proof of Tarski’s Theorem

Applying f to

$$
\bot \subseteq f(\bot) \subseteq f^2(\bot) \subseteq \cdots \subseteq \bigcup_{n \geq 0} f^n(\bot)
$$

we get

$$
f(\bot) \subseteq f(f(\bot)) \subseteq f(f^2(\bot)) \subseteq \cdots \subseteq f\left(\bigcup_{n \geq 0} f^n(\bot) \right)
$$

by continuity of f

$$
\bigcup_{n \geq 0} f(f^n(\bot))
$$

$$
\bigcup_{n \geq 0} f^{n+1}(\bot)
$$

$$
\bigcup_{m \geq 1} f^m(\bot)
$$
Proof of Tarski's Theorem

So $\bigcup_{n \geq 0} f^n(\perp)$ is a (pre-)fixed point for f

\[
\bigcup_{n \geq 0} f^n(\perp) = \bigcup_{m \geq 1} f^m(\perp)
\]
Proof of Tarski’s Theorem

For any pre-fixed point \(f(d) \leq d \) we have \(\bot \leq d \) because \(\bot \) is least elt of \(D \).
Proof of Tarski’s Theorem

For any pre-fixed point \(f(d) \equiv d \) we have \(\bot \subseteq d \) because \(\bot \) is least elt of \(D \).

So \(f(\bot) \subseteq f(d) \subseteq d \) by monotonicity.
Proof of Tarski’s Theorem

For any pre-fixed point \(f(d) \subseteq d \) we have

\[\bot \subseteq d \quad \text{because } \bot \text{ is least elt of } D \]

So \(f(\bot) \subseteq f(d) \subseteq d \) \hspace{1cm} \text{monotonicity +}

So \(f^2(\bot) = f(f(\bot)) \subseteq f(d) \subseteq d \)

etc.
Proof of Tarski’s Theorem

For any pre-fixed point \(f(d) \leq d \) we have
\[\bot \leq d \] because \(\bot \) is least elt of \(D \)

So \(f(\bot) \leq f(d) \leq d \)

So \(f^2(\bot) = f(f(\bot)) \leq f(d) \leq d \)

etc.

We get \(f^n(\bot) \leq d \) for all \(n \geq 0 \)

So \(\bigcup_{n \geq 0} f^n(\bot) \leq d \)
Proof of Tarski’s Theorem

For any pre-fixed point \(f(d) \equiv d \) we have

We get

\[
\bigcup_{n \geq 0} f^n(\bot) \subseteq d
\]

So \(\bigcup_{n \geq 0} f^n(\bot) \) is a least pre-fixed point.

QED
Fixed point property of
\[[\text{while } B \text{ do } C]\]

\[[\text{while } B \text{ do } C] = f_{[B],[C]}([\text{while } B \text{ do } C])

where, for each \(b : \text{State} \rightarrow \{\text{true, false}\}\) and \(c : \text{State} \rightarrow \text{State}\), we define

\(f_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})\)

as

\[f_{b,c} = \lambda w \in (\text{State} \rightarrow \text{State}) . \lambda s \in \text{State}. \text{if } (b(s), w(c(s)), s).\]

- Why does \(w = f_{[B],[C]}(w)\) have a solution?
- What if it has several solutions—which one do we take to be \([\text{while } B \text{ do } C]\)?
Fixed point property of
\[\text{[while } B \text{ do } C] \]

\[\text{[while } B \text{ do } C] = f_{[B],[C]}(\text{[while } B \text{ do } C]) \]

where, for each \(b : \text{State} \rightarrow \{\text{true, false}\} \) and \(c : \text{State} \rightarrow \text{State} \), we define

\[f_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State}) \]

as

\[f_{b,c} = \lambda w \in (\text{State} \rightarrow \text{State}). \lambda s \in \text{State}. \]

\[\text{if } (b(s), w(c(s)), s) . \]

- Why does \(w = f_{[B],[C]}(w) \) have a solution?
- What if it has several solutions—-which one do we take to be \(\text{[while } B \text{ do } C] \)?

\(\text{least (pre-)fixed point} \)
Continuity of $f_{b,c}$

Suppose $c_0 \subseteq c \subseteq c_2 \subseteq \ldots$ in State \rightarrow State

$$f_{b,c}(U_{n \geq 0} c_n) = \lambda s \in \text{State. if } (b(s), (U_{n \geq 0} c_n)(c(s)), s)$$

That is

$$f_{b,c}(U_{n \geq 0} c_n) = \left\{ (s, s') \mid \begin{array}{l}
 b(s) = \text{true} \land \exists s''. (c(s) = s'' \land (U_{n \geq 0} c_n)(s'') = s') \\
 b(s) = \text{false} \land s = s'
\end{array} \right\}$$
Continuity of $f_{b,c}$

Suppose $c_0 \subseteq c_1 \subseteq c_2 \subseteq \ldots$ in State → State

$$f_{b,c} \left(\bigcup_{n \geq 0} c_n \right) = \lambda s \in \text{State}. \text{if } (b(s), (\bigcup_{n \geq 0} c_n)(c(s)), s)$$

that is

$$f_{b,c} \left(\bigcup_{n \geq 0} c_n \right) = \left\{ (s, s') \mid b(s) = \text{true} \land \exists s''. c(s) = s'' \land \exists n \geq 0. c_n(s'') = s' \lor b(s) = \text{false} \land s = s' \right\}$$
Continuity of $f_{b,c}$

Suppose $c_0 \subseteq c \subseteq c_2 \subseteq \ldots$ in State \rightarrow State

$$f_{b,c} \left(U_{n \geq 0} \mathcal{C}_n \right) = \lambda s \in \text{State}. \text{ if } (b(s), \left(U_{n \geq 0} \mathcal{C}_n \right) (c(s)), s)$$

That is

$$f_{b,c} \left(U_{n \geq 0} \mathcal{C}_n \right) = \left\{ (s, s') \left| \begin{array}{l}
\exists n \geq 0. b(s) = \text{true} \land \exists s''. c(s) = s'' \land c_n (s'') = s' \land \right.
Continuity of $f_{b,c}$

Suppose $c_0 \leq c \leq c_2 \leq \ldots$ in State \Rightarrow State

$$f_{b,c} \left(\bigcup_{n \geq 0} c_n \right) = \lambda s \in \text{State}. \text{ if } (b(s), (\bigcup_{n \geq 0} c_n)(c(s)), s)$$

That is

$$f_{b,c} \left(\bigcup_{n \geq 0} c_n \right) = \left\{ (s,s') \left| \begin{array}{l}
\exists n \geq 0. b(s) = \text{true} \land \exists s''. (c(s) = s'' \land c_n(s'') = s') \\
\lor b(s) = \text{false} \land s = s'
\end{array} \right. \right\}$$

$$= \bigcup_{n \geq 0} \left\{ (s,s') \left| \text{if} (b(s), c_n(c(s)), s) = s' \right. \right\}$$

$$= \bigcup_{n \geq 0} f_{b,c} (c_n)$$

QED
\[\textbf{[while } B \text{ do } C \text{]} \]

\[\textbf{[while } B \text{ do } C \text{]} \]

\[= \text{fix}(f_{B}, f_{C}) \]

\[= \bigcup_{n \geq 0} f_{B}, f_{C}^{n}(\bot) \]

\[= \lambda s \in \text{State.} \]

\[\begin{cases}
[C]^{k}(s) & \text{if } k \geq 0 \text{ is such that } [B](C)^{k}(s)) = \text{false} \\
\text{undefined} & \text{if } [B](C)^{i}(s)) = \text{true} \text{ for all } i \geq 0 \end{cases} \]

\[\text{requires proof...} \]
Example

Domain \(D = (\mathcal{P}(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \rightarrow \uparrow \))

Function \(f : D \rightarrow D \)

\[
f(S) = \{0\} \cup \{x+2 \mid x \in S\}
\]
Example

Domain \(D = (\mathcal{P}(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \rightarrow \mathbb{N} \))

Function \(f : D \rightarrow D \)

\[
f(S) = \{0\} \cup \{x+2 \mid x \in S\}
\]

\(S \in D \) is a prefixed point of \(f \) if \(f(S) \subseteq S \)

i.e. \(0 \in S \) \& \(x+2 \in S \) for all \(x \in S \)

i.e. \(S \) is closed under the rules \(0 \in S \) \& \(x \in S \) \(\Rightarrow x+2 \in S \)
Example

Domain \(D = (P(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \to \mathbb{N} \))

Function \(f : D \to D \)

\[
f(S) = \{ 0 \} \cup \{ x+2 \mid x \in S \}
\]

\(S \in D \) is a pre-fixed point of \(f \) if

\[
f(S) \subseteq S
\]

i.e. \(0 \in S \) & \(x+2 \in S \) for all \(x \in S \)

i.e. \(S \) is closed under the rules

\[
\begin{align*}
0 & \in S \\
x + 2 & \in S
\end{align*}
\]

So expect least pre-fixed point of \(f \) to be \(\text{Even} = \{ 2x \mid x \in \mathbb{N} \} \)
Example

Domain \(D = (P(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \rightarrow \mathbb{1} \))

Function \(f : D \rightarrow D \)

\[
f(S) = \{0\} \cup \{x + 2 | x \in S\}
\]

\(f \) is monotone: \(S \subseteq S' \Rightarrow f(S) \subseteq f(S') \) \(\checkmark \)
Example

Domain \(D = (\mathcal{P}(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \to 1 \))

Function \(f : D \to D \)

\[
f(S) \triangleq \{0\} \cup \{x+2 \mid x \in S\}
\]

\(f \) is monotone: \(S \subseteq S' \Rightarrow f(S) \subseteq f(S') \) \(\checkmark \)

\(f \) is continuous:

\[
f(\bigcup_{n \geq 0} S_n) = \{0\} \cup \{x+2 \mid x \in \bigcup_{n \geq 0} S_n\}
\]

\[
= \{0\} \cup \bigcup_{n \geq 0} \{x+2 \mid x \in S_n\}
\]

\[
= \bigcup_{n \geq 0} f(S_n) \quad \checkmark
\]
Example

Domain $D = (\mathcal{P}(\mathbb{N}), \subseteq)$ (same as $\mathbb{N} \to \mathbb{N}$)

Function $f : D \to D$

$f(S) = \{0\} \cup \{x+2 \mid x \in S\}$

Tarski's Theorem applies:

$\text{fix}(f) = \bigcup_{n \geq 0} f^n(\emptyset)$

$f(\emptyset) = \{0\}$

$f^2(\emptyset) = \{0\} \cup \{0+2\}$

$f^3(\emptyset) = \{0, 2, 4\}$

$f^n(\emptyset) = \{0, 2, 4, \ldots, 2(n-1)\}$
Example

Domain \(D = (\mathcal{P}(\mathbb{N}), \subseteq) \) (same as \(\mathbb{N} \to \mathbb{N} \))

Function \(f : D \to D \)

\[
f(S) \triangleq \{0\} \cup \{x+2 | x \in S\}
\]

Tarski's Theorem applies:

\[
\text{fix}(f) = \bigcup_{n \geq 0} f^n(\emptyset) = \{0, 2, 4, 8, \ldots\}
\]

\[
= \{2^x | x \in \mathbb{N}\}
\]

(as expected).

\[
\begin{align*}
 f(\emptyset) &= \{0\} \\
f^2(\emptyset) &= \{0\} \cup \{0+2\} \\
f^3(\emptyset) &= \{0, 2, 4\} \\
 f^n(\emptyset) &= \{0, 2, 4, \ldots, 2^{(n-1)}\}
\end{align*}
\]