A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \ge 0} d_n$:

$$\forall m \ge 0 \, . \, d_m \sqsubseteq \bigsqcup_{n \ge 0} d_n$$
 (lub1)
$$\forall d \in D \, . \, (\forall m \ge 0 \, . \, d_m \sqsubseteq d) \implies \bigsqcup_{n \ge 0} d_n \sqsubseteq d.$$
 (lub2)

A domain is a cpo that possesses a least element, \perp :

$$\forall d \in D \, . \, \bot \sqsubseteq d.$$

"lub" = least upper bound

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

• If D and E are cpo's, the function f is continuous iff NB 1. it is monotone, and $f(d_o) \subseteq f$ 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that 'los f $f(\bigsqcup d_n) = \bigsqcup f(d_n)$ in E. $n \ge 0$ $\forall i. d; \equiv \bigcup_{n>0} d_n \implies \forall i. f(d_i) \equiv f(\bigcup_{n>0} d_n)$ $\implies \Box_{i>0} f(d_i) = f(\bigcup_{n>0} d_n)$

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \text{ in } E.$$

$$\underbrace{NB}_{i...d_i} \equiv \bigsqcup_{n\geq 0} d_n \xrightarrow{\text{monotonicity}}_{i...f(d_i)} \forall_{i...f(d_i)} \equiv f(\bigsqcup_{n\geq 0} d_n)$$

$$\Longrightarrow \bigsqcup_{i\geq 0} f(d_i) \equiv f(\bigsqcup_{n\geq 0} d_n)$$
So given 1, for 2 just need $f(\bigsqcup_{n\geq 0} d_n) \equiv \bigsqcup_{n\geq 0} f(d_n)$

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$$
 in E .

• If D and E have least elements, then the function f is strict iff $f(\perp) = \perp$.

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

where
$$\begin{cases} f^{\circ}(\bot) \stackrel{\Delta}{=} 1 \\ f^{n+1}(\bot) \stackrel{\Delta}{=} f(f^{n}(\bot)) \end{cases}$$

Let D be a poset and $f: D \rightarrow D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f, if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

 $\begin{aligned} f(fix(f)) &\sqsubseteq fix(f) & \text{(Ifp1)} \\ \forall d \in D. \ f(d) &\sqsubseteq d \ \Rightarrow \ fix(f) &\sqsubseteq d. & \text{(Ifp2)} \end{aligned}$

Proof of Tarski's Theorem

 $\bot \subseteq f(\bot)$ because \bot is least eff D

Proof of Tarski's Theorem

 $L \equiv f(\bot) \quad \text{because } \bot \text{ is least eff of } D$ so $f(\bot) \equiv f(f(\bot)) \triangleq f^{2}(\bot) \quad \text{by monotonicity of } f$ so $f^{2}(\bot) \equiv f(f^{2}(\bot)) = f^{3}(\bot)$

etc.

Proof of Tarski's Theorem

 $L \equiv f(\bot) \quad \text{because } \bot \text{ is least eff of } D$ so $f(\bot) \equiv f(f(\bot)) \triangleq f^{2}(\bot) \quad \text{by monotonicity of } f$ so $f^{2}(\bot) \equiv f(f^{2}(\bot)) = f^{3}(\bot)$

etc.

We get a chain
$$\bot \subseteq f(\bot) \subseteq f^{2}(\bot) \subseteq f^{3}(\bot) \subseteq ...$$

and can form its lub $\sqcup_{n \ge 0} f^{n}(\bot)$

Proof of Tarski's Theorem $f(\Box_{n2.0}f^n(L))$ So Unzo fn(1) is a (pre-)fixed point for f $\bigcup_{n\geq 0} f(f^{n}(\bot))$ $\bigcup_{n \geq 0} f^{n + 1}(\bot)$ $\int_{m>0} f^{m}(1) = \iint_{m>1} f^{m}(1)$

For any pre-fixed point
$$f(d) \equiv d$$
 we have
 $\bot \equiv d$ because \bot is least eff D

Proof of Tarski's Theorem
For any pre-fixed point
$$f(d) \equiv d$$
 we have
 $\perp \equiv d$ because \perp is least ett of D
so $f(\perp) \equiv f(d) \equiv d$ monotonicity +

Proof of Tarski's Theorem For any pre-fixed point $f(d) \equiv d$ we have $\bot \sqsubseteq d$ because \bot is least ett of DSo $f(\bot) \subseteq f(d) \subseteq d$ monotonicity +) So $f^2(T) = f(f(T)) \equiv f(q) \equiv q$ etc.

Proof of Tarski's Theorem For any pre-fixed point $f(d) \equiv d$ we have $\bot \sqsubseteq d$ because \bot is least ett of DSo $f(\bot) \subseteq f(d) \subseteq d$ monotonicity +) So $f^2(\bot) = f(f(\bot)) \subseteq f(d) \subseteq d$ otc. We get $f'(\bot) \subseteq d$ for all $n \ge 0$ So $\bigsqcup_{n>n} f^n(\bot) \subseteq d$

Proof of Tarski's Theorem
For any pre-fixed point
$$f(d) \equiv d$$
 we have
So $\bigcup_{n \gg 0} f^n(\bot)$ is
a least pre-fixed point
We get
 $\bigcup_{n \gg 0} f^n(\bot) \equiv d$

Fixed point property of [while B do C]

 $\begin{bmatrix} \mathbf{while} \ B \ \mathbf{do} \ C \end{bmatrix} = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$ where, for each $b : State \to \{true, false\}$ and we now know this $c : State \to State$, we define $f_{b,c} : (State \to State) \to (State \to State)$ as $f_{b,c} = \lambda w \in (State \to State). \ \lambda s \in State.$ if(b(s), w(c(s)), s).

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be $\llbracket while B do C \rrbracket$?

Fixed point property of [while B do C]

 $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$ where, for each $b: State \rightarrow \{true, false\}$ and $c: State \rightarrow State$, we define $f_{b,c}: (State \rightarrow State) \rightarrow (State \rightarrow State)$ as $f_{b,c} = \lambda w \in (State \rightharpoonup State). \lambda s \in State.$ if(b(s), w(c(s)), s).Tarskis Theorem • Why does $w = f_{[B],[C]}(w)$ have a solution? (need to show $f_{b,c}$) • What if it has several solutions—which one do we take to be [while $B \operatorname{do} C$]? < least (pre-) fixed point

Continuity of fb,c
Suppose
$$c_0 \in G \subseteq G_2 \subseteq \cdots$$
 in State-State
 $f_{b,c}(\bigcup_{n \geq 0} G_n) = \lambda \text{ seState. if } (b(s), (\bigcup_{n \geq 0} G_n)(c(s)), s)$
Heat is
 $f_{b,c}(\bigcup_{n \geq 0} G_n) = o \left((s,s') \middle| \begin{array}{c} b(s) = \text{tme } \Lambda \exists s''. ((s) = s'' \Lambda \\ (\bigcup_{n \geq 0} G_n)(s'') = s' \\ V \\ b(s) = \text{false } \Lambda s = s' \end{array} \right)$

Continuity of $f_{b,c}$ Suppose $C_0 \subseteq G \subseteq G \subseteq G \subseteq \cdots$ in State \rightarrow State $f_{b,c}(U_{n,2},C_n) = \lambda s \in State. if (b(s), (U_{n,2},C_n)(c(s)), s)$ that is that is $f_{b,c}(U_{n\geq 0}C_n) = o\left((s,s') \mid b(s) = tme \land \exists s". ((s) = s"\land f_{n\geq 0}. C_n(s") = s'\right)$ $b(s) = false \land s = s'$

Continuity of
$$f_{b,c}$$

Suppose $c_0 \in G \subseteq G \subseteq G$ in State-State
 $f_{b,c}(U_{n>0}G_n) = \lambda seState. if (b(s), (U_{n>0}G_n)(c(s)), s)$
Heat is
 $f_{b,c}(U_{n>0}G_n) = o ((s,s') | J_{n>0}.b(s) = true \land \exists s''. ((s) = s'' \land G_n(s'') = s')$
 $f_{b,c}(U_{n>0}G_n) = o ((s,s') | V_{b(s)} = false \land s = s'$

Continuity of fb,c
Suppose
$$c_0 \in c_1 \in c_2 \subseteq \cdots$$
 in State-State
 $f_{b,c}(\bigcup_{n \geq 0}) = \lambda seState. if (b(s), (\bigcup_{n \geq 0} c_n)(c(s)), s)$
that is
 $f_{b,c}(\bigcup_{n \geq 0} c_n) = o ((s,s') | Jn \geq 0. b(s) = twe \land \exists s". ((s) = s" \land c_n (s") = s')$
 $f_{b,c}(\bigcup_{n \geq 0} c_n) = o ((s,s') | Jn \geq 0. b(s) = twe \land \exists s". ((s) = s" \land c_n (s") = s')$
 $= \bigcup_{n \geq 0} \{(s,s') | if(b(s), c_n(c(s)), s) = s'\}$
 $= \bigcup_{n \geq 0} \{(s,s') | if(b(s), c_n(c(s)), s) = s'\}$

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

 $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$ lanski Theorem $= fix(f_{\llbracket B \rrbracket, \llbracket C \rrbracket})$ $\underline{\sqsubseteq}_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket^n}(\bot)$ $= \lambda s \in State.$
$$\begin{split} \llbracket C \rrbracket^k(s) & \text{ if } k \geq 0 \text{ is such that } \llbracket B \rrbracket(\llbracket C \rrbracket^k(s)) = \textit{false} \\ & \text{ and } \llbracket B \rrbracket(\llbracket C \rrbracket^i(s)) = \textit{true for all } 0 \leq i < k \end{split}$$
undefined if $\llbracket B \rrbracket (\llbracket C \rrbracket^i(s)) = true$ for all $i \ge 0$

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(s) \triangleq \{o\} \cup \{x+z\} \mid x \in S\}$

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(S) \triangleq \{0\} \cup \{x+z\} \mid x \in S\}$
 $S \in D$ is a pre-fixed point of f if
 $f(S) \subseteq S$
ie. $0 \in S \ \& \ x+2 \in S \ for all x \in S$
is closed under the rules $\frac{3}{0 \in S} \frac{x \in S}{x+2 \in S}$

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(S) \triangleq (0) \cup (x+z) \propto \in S$
 $S \in D$ is a pre-fixed point of f if
 $f(S) \subseteq S$
i.e. $0 \in S \ll x+2 \in S$ for all $x \in S$
i.e. S is closed under the rules $\frac{f(x) \in S}{O \in S \times x+2 \in S}$
 $S_0 \exp expect$ least profixed point of f
to be over $= f(2x) \propto iN$?

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(s) \triangleq \{0\} \cup \{x+z\} \mid x \in S\}$
 f is montone : $S \subseteq s' \Rightarrow f(s) \subseteq f(s')$

$$\begin{array}{l} \textbf{Example} \\ \textbf{Domain } D = (P(N), \subseteq) \quad (same as N \rightarrow 1) \\ \textbf{Function } f: D \rightarrow D \\ f(S) \triangleq (o) \cup (x+z) x \in S \\ f(S) \triangleq f(S) = f(S) \cup (x+z) \times S \\ f \text{ is nontone } : S \subseteq S' \Rightarrow f(S) \equiv f(S') \\ f \text{ is continuous } : f(\bigcup_{n \ge 0} S_n) = \{o\} \cup (a+z) \times (\bigcup_{n \ge 0} S_n) \\ = \{o\} \cup \bigcup_{n \ge 0} \{a+z\} \times (S_n) \\ = (\bigcup_{n \ge 0} f(S_n) \\ \end{array}$$

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(s) \triangleq \{o\} \cup \{x+z\} \mid x \in S\}$

Tarski Theorem applies:
$$fix(f) = \bigcup_{n \ge 0} f^n(\emptyset)$$

$$f(\phi) = \{0\} \\ f^{2}(\phi) = \{0\} \cup \{0+2\} \\ f^{3}(\phi) = \{0, 2, 4\} \\ \vdots \\ f^{n}(\phi) = \{0, 2, 4, \dots, 2(n-1)\}$$

Example
Domain
$$D = (P(N), \subseteq)$$
 (same as $N \rightarrow 1$)
Function $f: D \rightarrow D$
 $f(s) \triangleq (0 \} \cup \{x+z\} | x \in S \}$