CST 2018/19 Part II Denotational Semantics
 Exercise Sheet

Lectures 1-3

Exercise 1 Let Ω de the domain of "vertical natural numbers" pictured in Figure 1 of the lecture notes.
(i) Is every monotone function from Ω to Ω continuous?
(ii) Does every monotone function from Ω to Ω have a least prefixed point?

Exercise 2 For a partially ordered set (P, \sqsubseteq), let $\left(\mathrm{Ch}(P), \sqsubseteq_{\mathrm{ptw}}\right)$ be the partially ordered set of chains in P ordered pointwise. That is

$$
\mathrm{Ch}(P) \stackrel{\text { def }}{=}\left\{x=\left\{x_{n}\right\}_{n \in \mathbb{N}} \mid \text { for all } i \leq j \text { in } \mathbb{N}, x_{i} \sqsubseteq x_{j} \text { in } P\right\}
$$

and

$$
x \sqsubseteq_{\text {ptw }} x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x_{n} \sqsubseteq x_{n}^{\prime} \text { for all } n \in \mathbb{N}
$$

Show that if P is a domain then so is $\operatorname{Ch}(P)$.

Exercise 3

(i) Let D_{1}, D_{2} and E be domains. Show that a function $f: D_{1} \times D_{2} \rightarrow E$ is continuous if it is continuous is each argument separately, that is, if for all $d_{1} \in D_{1}$ and $d_{2} \in D_{2}$, the functions $f\left(d_{1},-\right): D_{2} \rightarrow E$ and $f\left(-, d_{2}\right): D_{1} \rightarrow E$ are continuous.
(ii) Let O be the domain with two elements $\perp \sqsubseteq T$. For a domain E and $e \in E$, define the function $g_{e}: E \rightarrow \mathbf{O}$ by

$$
g_{e}(x)= \begin{cases}\perp & \text { if } x \sqsubseteq e \\ \top & \text { if } x \sqsubseteq e\end{cases}
$$

Show that g_{e} is continuous.
(iii) As an example of the definition in part (ii), let $E=\mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B}=\{$ true, false $\}$, and consider $g_{(\text {falle fallse })}: E \rightarrow \mathbf{O}$. Show that $g_{(\text {falsefalse })}(x, y)=\top$ iff $x=$ true or $y=$ true.
(iv) Let $f: D \rightarrow E$ be a function between domains D and E. Show that f is continuous iff $\forall e \in E . g_{e} \circ f$ is continuous.

Exercise 4 Let O be the domain in Exercise 3(ii).
(i) Draw a diagram which represents the elements of the function domain $\mathrm{O} \rightarrow \mathrm{O}$ and shows their ordering.
(ii) Any set X can be considered as a flat domain X_{\perp} by adding a bottom element. Show that the strict continuous functions $X_{\perp} \rightarrow \mathrm{O}$ are in 1-1 correspondence with the subsets of X.

Lectures 4-6

Exercise 5 Let D be a domain and $k: D \rightarrow D$ a continuous function. Let $\mathbb{B}=\{$ true, false $\}$. Define the conditional function if : $\mathbb{B}_{\perp} \times D \times D \rightarrow D$ by

$$
\text { if }\left(b, d, d^{\prime}\right)= \begin{cases}d & \text { if } b=\text { true } \\ d^{\prime} & \text { if } b=\text { false } \\ \perp & \text { if } b=\perp\end{cases}
$$

Let $h: D \rightarrow \mathbb{B}_{\perp}$ be a continuous function which is strict (so $h(\perp)=\perp$). The function f^{*} is the least continuous function from D to D such that

$$
\forall x \in D \cdot f^{*}(x)=i f\left(h(x), x, f^{*}(k(x))\right)
$$

(i) Show that $\forall x \in D . h\left(f^{*}(x)\right)=i f\left(h(x), h(x), h\left(f^{*}(k(x))\right)\right)$.
(ii) Prove that the property $Q(f) \stackrel{\text { def }}{\Leftrightarrow} \forall x \in D . h(f(x)) \sqsubseteq$ true is admissible.
(iii) Prove $Q\left(f^{*}\right)$ by fixed point induction.

Exercise 6 Suppose that D is a domain and $f: D \times D \rightarrow D$ is a continuous function satisfying the property $\forall d, e \in D . f(d, e)=f(e, d)$. Let $g: D \times D \rightarrow D \times D$ be defined by

$$
g\left(d_{1}, d_{2}\right)=\left(f\left(d_{1}, f\left(d_{1}, d_{2}\right)\right), f\left(f\left(d_{1}, d_{2}\right), d_{2}\right)\right)
$$

Let $\left(u_{1}, u_{2}\right)=$ fix (g). Show that $u_{1}=u_{2}$ using Scott induction.
Exercise 7 Let D and E be domains and let $f: D \rightarrow D$ and $g: E \rightarrow E$ be continuous functions.
(i) Define $f \times g: D \times E \rightarrow D \times E$ to be the continuous function given by $(f \times g)(d, e)=$ $(f(d), g(e))$ and let $\pi_{1}: D \times E \rightarrow D$ and $\pi_{2}: D \times E \rightarrow E$ respectively denote the first and second projection functions. Show that fix $(f \times g) \sqsubseteq(f i x(f), f i x(g))$ and that fix $(f) \sqsubseteq \pi_{1}(f i x(f \times g))$ and fix $(g) \sqsubseteq \pi_{2}(f i x(f \times g))$.
(ii) It follows from part (i) that fix $(f \times g)=(f i x(f)$, fix $(g))$. Use this and Scott's Fixed Point Induction Principle to show that, for all strict continuous functions $h: D \rightarrow E$,

$$
h \circ f=g \circ h \Rightarrow h(f i x(f))=f i x(g)
$$

Lectures 7-10

Exercise 8 Which of the following statements are true or false, and why?
(i) For all PCF-types τ and closed PCF-terms M_{1} and M_{2} of type τ, if $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ in $\llbracket \tau \rrbracket$ then $M_{1} \cong_{c t x} M_{2}: \tau$.
(ii) For all PCF-types τ and closed PCF-terms M_{1} and M_{2} of type τ, if $M_{1} \cong_{c t x} M_{2}: \tau$, then $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ in $\llbracket \tau \rrbracket$.
(iii) For all closed PCF-terms M_{1} and M_{2} of type nat \rightarrow nat, if $M_{1} \cong_{\text {ctx }} M_{2}:$ nat \rightarrow nat, then $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ in $\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$.

Exercise 9 Consider the following two statements for PCF terms M_{1} and M_{2} for which the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold for some type environment Γ and type τ.
(1) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}\left[M_{1}\right]$: bool and $\mathcal{C}\left[M_{2}\right]$: bool,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {bool }} \Leftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {bool }}
$$

where, for a closed term M of type τ, the notation $M \Downarrow_{\tau}$ stands for the existence of a value $V: \tau$ for which $M \Downarrow_{\tau} V$.
(2) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}\left[M_{1}\right]$: bool and $\mathcal{C}\left[M_{2}\right]:$ bool,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {bool }} \text { true } \Leftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {bool }} \text { true }
$$

(i) Show that (1) implies (2).
(ii) Show that (2) implies that M_{1} and M_{2} are contextually equivalent.

Extra

Exercise 10 Suppose that D is a domain and that lam : $D \rightarrow D) \rightarrow D$ and app :D $\rightarrow(D \rightarrow$ $D)$ are continuous functions. Use this data to give a denotational semantics for the terms of the untyped λ-calculus, by answering question 5 from paper 7 of the 1998 CS Tripos.

