CST 2018/19 Part II Denotational Semantics Exercise Sheet

Lectures 1–3

Exercise 1 Let Ω de the domain of "vertical natural numbers" pictured in Figure 1 of the lecture notes.

- (i) Is every monotone function from Ω to Ω continuous?
- (ii) Does every monotone function from Ω to Ω have a least prefixed point?

Exercise 2 For a partially ordered set (P, \sqsubseteq) , let $(Ch(P), \sqsubseteq_{ptw})$ be the partially ordered set of chains in *P* ordered pointwise. That is

$$Ch(P) \stackrel{\text{def}}{=} \{x = \{x_n\}_{n \in \mathbb{N}} \mid \text{for all } i \le j \text{ in } \mathbb{N}, x_i \sqsubseteq x_j \text{ in } P\}$$

and

$$x \sqsubseteq_{ptw} x' \stackrel{\text{der}}{\Leftrightarrow} x_n \sqsubseteq x'_n$$
 for all $n \in \mathbb{N}$

Show that if *P* is a domain then so is Ch(P).

Exercise 3

- (i) Let D_1 , D_2 and E be domains. Show that a function $f : D_1 \times D_2 \to E$ is continuous if it is continuous is each argument separately, that is, if for all $d_1 \in D_1$ and $d_2 \in D_2$, the functions $f(d_1, -) : D_2 \to E$ and $f(-, d_2) : D_1 \to E$ are continuous.
- (ii) Let \mathbb{O} be the domain with two elements $\bot \sqsubseteq \top$. For a domain *E* and $e \in E$, define the function $g_e : E \to \mathbb{O}$ by

$$g_e(x) = \begin{cases} \bot & \text{if } x \sqsubseteq e \\ \top & \text{if } x \not\sqsubseteq e \end{cases}$$

Show that g_e is continuous.

- (iii) As an example of the definition in part (ii), let $E = \mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B} = \{true, false\}$, and consider $g_{(false, false)} : E \to \mathbb{O}$. Show that $g_{(false, false)}(x, y) = \top$ iff x = true or y = true.
- (iv) Let $f : D \to E$ be a function between domains *D* and *E*. Show that *f* is continuous iff $\forall e \in E. g_e \circ f$ is continuous.

Exercise 4 Let O be the domain in Exercise 3(ii).

- (i) Draw a diagram which represents the elements of the function domain $O \rightarrow O$ and shows their ordering.
- (ii) Any set X can be considered as a flat domain X_⊥ by adding a bottom element. Show that the strict continuous functions X_⊥ → O are in 1-1 correspondence with the subsets of X.

Lectures 4–6

Exercise 5 Let *D* be a domain and $k : D \to D$ a continuous function. Let $\mathbb{B} = \{true, false\}$. Define the conditional function $if : \mathbb{B}_{\perp} \times D \times D \to D$ by

$$if(b, d, d') = \begin{cases} d & \text{if } b = true \\ d' & \text{if } b = false \\ \bot & \text{if } b = \bot \end{cases}$$

Let $h : D \to \mathbb{B}_{\perp}$ be a continuous function which is strict (so $h(\perp) = \perp$). The function f^* is the least continuous function from D to D such that

$$\forall x \in D. f^*(x) = if(h(x), x, f^*(k(x)))$$

- (i) Show that $\forall x \in D$. $h(f^*(x)) = if(h(x), h(x), h(f^*(k(x))))$.
- (ii) Prove that the property $Q(f) \stackrel{\text{def}}{\Leftrightarrow} \forall x \in D$. $h(f(x)) \sqsubseteq true$ is admissible.
- (iii) Prove $Q(f^*)$ by fixed point induction.

Exercise 6 Suppose that *D* is a domain and $f : D \times D \rightarrow D$ is a continuous function satisfying the property $\forall d, e \in D$. f(d, e) = f(e, d). Let $g : D \times D \rightarrow D \times D$ be defined by

$$g(d_1, d_2) = (f(d_1, f(d_1, d_2)), f(f(d_1, d_2), d_2))$$

Let $(u_1, u_2) = fix(g)$. Show that $u_1 = u_2$ using Scott induction.

Exercise 7 Let *D* and *E* be domains and let $f : D \to D$ and $g : E \to E$ be continuous functions.

- (i) Define $f \times g : D \times E \to D \times E$ to be the continuous function given by $(f \times g)(d, e) = (f(d), g(e))$ and let $\pi_1 : D \times E \to D$ and $\pi_2 : D \times E \to E$ respectively denote the first and second projection functions. Show that $fix(f \times g) \sqsubseteq (fix(f), fix(g))$ and that $fix(f) \sqsubseteq \pi_1(fix(f \times g))$ and $fix(g) \sqsubseteq \pi_2(fix(f \times g))$.
- (ii) It follows from part (i) that $fix(f \times g) = (fix(f), fix(g))$. Use this and Scott's Fixed Point Induction Principle to show that, for all strict continuous functions $h : D \to E$,

$$h \circ f = g \circ h \Rightarrow h(fix(f)) = fix(g)$$

Lectures 7–10

Exercise 8 Which of the following statements are true or false, and why?

- (i) For all PCF-types τ and closed PCF-terms M_1 and M_2 of type τ , if $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$ in $\llbracket \tau \rrbracket$ then $M_1 \cong_{ctx} M_2 : \tau$.
- (ii) For all PCF-types τ and closed PCF-terms M_1 and M_2 of type τ , if $M_1 \cong_{ctx} M_2 : \tau$, then $[M_1] = [M_2]$ in $[\tau]$.
- (iii) For all closed PCF-terms M_1 and M_2 of type $nat \rightarrow nat$, if $M_1 \cong_{ctx} M_2 : nat \rightarrow nat$, then $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$ in $\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$.

Exercise 9 Consider the following two statements for PCF terms M_1 and M_2 for which the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold for some type environment Γ and type τ .

(1) For all PCF contexts C[-] for which $C[M_1]$: *bool* and $C[M_2]$: *bool*,

 $\mathcal{C}[M_1] \Downarrow_{bool} \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{bool}$

where, for a closed term *M* of type τ , the notation $M \Downarrow_{\tau}$ stands for the existence of a value *V* : τ for which $M \Downarrow_{\tau} V$.

(2) For all PCF contexts C[-] for which $C[M_1]$: *bool* and $C[M_2]$: *bool*,

 $\mathcal{C}[M_1] \Downarrow_{bool} \operatorname{true} \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{bool} \operatorname{true}$

- (i) Show that (1) implies (2).
- (ii) Show that (2) implies that M_1 and M_2 are contextually equivalent.

Extra

Exercise 10 Suppose that *D* is a domain and that $lam : (D \rightarrow D) \rightarrow D$ and $app : D \rightarrow (D \rightarrow D)$ are continuous functions. Use this data to give a denotational semantics for the terms of the untyped λ -calculus, by answering question 5 from paper 7 of the 1998 CS Tripos.