
1/13

Data Science: Principles and Practice

Marek Rei

Lecture 5: Deep Learning, Part II

2/38

Focusing on Tensorflow

Giving you all the basics you need in order to
use Tensorflow for building neural networks.

Can’t cover everything (not even close).
There is a lot of material online if you’re looking
for how to do something specific in Tensorflow.

Looking at some practical tips for training neural
networks.

Today:

3/38

Tensorflow

Open source library for implementing
neural networks.

Developed by Google, for both
production code and research.

Performs automatic differentiation.

Comes with many neural network
modules implemented.

Tensor - an n-dimensional vector.

https://www.cc.gatech.edu/~san37/post/dlhc-start/

4/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why Tensorflow?

5/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why Tensorflow?

6/38

Companies Using Tensorflow

7/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why Tensorflow?

8/38

Tensorflow: The First Steps

9/38

Very Minimal Tensorflow

One of the smallest examples of
running Tensorflow, while actually
looking like a normal Tensorflow code.

Creates a computation graph that
takes two inputs and sums them
together.

We then execute this graph with
values 4 and 5, and print the result.

Let’s go though this in more detail!

10/38

Very Minimal Tensorflow

import tensorflow as tf

Install tensorflow for CPU:
 pip install tensorflow

Install tensorflow for GPU:
 pip install tensorflow-gpu

Azure notebooks already have
tensorflow installed!

11/38

Very Minimal Tensorflow

tf.placeholder()

Define an input argument for our
network.

Can have different types
 (float32, float64, int32, …)

and shapes
 (scalar, vector, matrix, …)

Right now, we defined two single
scalar placeholders: a and b.

12/38

Very Minimal Tensorflow

y = a + b

Probably the most important thing to
understand about Tensorflow!

13/38

Symbolic Graphs

We first construct a symbolic graph and then apply it later with suitable data.

The system takes a and b, adds them together and stores the value in y. Right?

Not really!
Instead, we create a Tensorflow-specific object y that knows its value can be
calculated by summing together a and b. But the addition itself is not performed here!

y = a + b

For example, what happens when this Tensorflow line is executed in our code?

14/38

We can only use Tensorflow-specific* operations to construct a Tensorflow graph -
they return Tensorflow objects, as opposed to trying to execute the operation.

* Most of numpy and standard operations are compatible with Tensorflow

x 8

name: z
operation: add
arg1: x
arg2: 8

2

name: y
operation: div
arg1: z
arg2: 2

z = x + 8

y = z / 2

Symbolic Graphs
Can construct a whole network structure by intuitively combining operations.

15/38

Very Minimal Tensorflow

tf.Session()

Constructs the environment in which
the operations are performed and
evaluated.

Allocates the memory to store current
value of valuables.

When starting a new session, all the
values will be reset.

16/38

Very Minimal Tensorflow

sess.run()

Execute the network - actually perform
the calculations in the symbolic graph.

Specify which values you want calculated
and returned from the graph.

feed_dict specifies the values that you
give to placeholders for this execution.

result contains the executed value of y.

The keys in feed_dict are the tensors!

17/38

Training a Network

18/38

Training Tensorflow

An example of defining a network with
trainable parameters and actually
optimizing them.

Technically linear regression…

but we can add non-linearities and
more neurons to make it into a proper
neural network.

Some new parts. Let’s take a look!

19/38

Training Tensorflow

tf.placeholder()
This time creating 3 placeholders:

x is a vector of length 2

target and learning_rate are scalars

20/38

Training Tensorflow

tf.get_variable()

These Variable objects contain model
parameters that are updated during
model training.

At the moment, we are manually
initializing it with values.

Normally, we would just specify the
shape and initialize randomly.

21/38

Training Tensorflow

tf.train.GradientOptimizer()

This is where we define the strategy
for our model training.

Other strategies are available:

tf.train.AdadeltaOptimizer()
tf.train.AdagradOptimizer()
tf.train.AdamOptimizer()
tf.train.RMSPropOptimizer()
tf.train.MomentumOptimizer()

Part of the computation graph!

22/38

Training Tensorflow

optimizer.minimize()

Updates all the variables in the graph
- minimizing the loss function
- following the optimizer strategy

optimizer.variables() can give us a list
of all the variables that it updates.

optimizer.compute_gradients()
calculates gradients without updating
the variables.

Also part of the computation graph!

23/38

Training Tensorflow

tf.global_variables_initializer()

This is where all the variables get
initialized.

Just something you need to call after
constructing the network to actually
get the values into the variables.

24/38

Training Tensorflow

sess.run()

Both y and train_op are returned by
the sess.run() function.

The parameters are updated whenever
we ask the model to return train_op.

feed_dict now contains a vector and
two scalars.

25/38

Training Tensorflow

0.9

8.54

13.124001

15.874401

17.52464

18.514786

19.108871

19.46532

19.679192

19.807514

Result:

26/38

Useful Things to Know
about Deep Learning

27/38

The newest Tensorflow now also has eager execution support
 … but it’s still very much in active development.

Pytorch is designed for eager execution - no symbolic graphs, operations are
performed where they appear in the code.

Advantages of Symbolic Graphs

● Can be internally optimized

● Faster (in theory)

● Easily deployable, even across
languages

Advantages of Eager Execution

● Easier to understand

● Easier to debug

● Supports dynamic graphs

28/38

Different random initializations lead to
different results.

Solution: Explicitly set the random seed.
 All the random seeds!

Randomness in the Network

BUT!
GPU threads finish in a random order, also
leading to randomness!
 Small rounding errors really add up!
 Doesn’t affect all operations.

Solution: Embrace randomness, run with
different random seeds and report the average.

29/38

Tensorflow Playground

playground.tensorflow.org

30/38

Underfitting
The model does not have
the capacity to properly

model the data.

Ideal fit

Overfitting
Too complex, the model

memorizes the data,
does not generalize.

Fitting to the Data

31/38

Training Set Development Set Test Set

For training your models,
fitting the parameters

For continuous
evaluation and
hyperparameter
selection

For realistic
evaluation once
the training and
tuning is done

In order to get realistic results for our experiments, we need to evaluate on a
held-out test set.

Using a separate development set for choosing hyperparameters is even better.

Splitting the Dataset

32/38

Early Stopping
A sufficiently powerful model will keep improving on the training data until it overfits.
We can use the development data to choose when to stop.

Optimal point

33/38

Convolutional Neural Networks
Neural modules operating repeatedly over
different subsections of the input space.

Great when searching for feature patterns,
without knowing where they might be located in
the input.

https://github.com/vdumoulin/conv_arithmetic

The main driver in image recognition.
Can also be used for text.

34/38

Recurrent Neural Networks
Designed to process input sequences of arbitrary length.

Each hidden state A is calculated based on the current input and the previous hidden
state.

Main neural architecture for processing text, with each input being a word
representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

35/38

Dropout
During training, randomly set some activations to zero.

Typically drop 50% of activations in a layer

Form of regularization - prevents the network from relying on any one node.

https://www.learnopencv.com/understanding-alexnet/

36/38

GPU Acceleration

Parallelize large matrix operations to the GPU.
Really makes a difference!
Doesn’t help for small networks

Need to install CUDA:
https://developer.nvidia.com/cuda-downloads

CuDNN also recommended:
https://developer.nvidia.com/cudnn

Can control which GPUs Tensorflow sees
CUDA_VISIBLE_DEVICES=0 python experiment.py
CUDA_VISIBLE_DEVICES=’’ python experiment.py

No GPUs on Azure Notebooks unfortunately

37/38

TensorBoard
A tool for visualizing your own Tensorflow networks.

38/38

