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Data Science: Principles and Practice

Marek Rei

Lecture 5: Deep Learning, Part II
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Focusing on Tensorflow

Giving you all the basics you need in order to 
use Tensorflow for building neural networks.

Can’t cover everything (not even close). 
There is a lot of material online if you’re looking 
for how to do something specific in Tensorflow.

Looking at some practical tips for training neural 
networks.

Today:
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Tensorflow

Open source library for implementing 
neural networks.

Developed by Google, for both 
production code and research.

Performs automatic differentiation.

Comes with many neural network 
modules implemented.

Tensor - an n-dimensional vector.

https://www.cc.gatech.edu/~san37/post/dlhc-start/
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https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why Tensorflow?
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Why Tensorflow?
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Companies Using Tensorflow
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Why Tensorflow?
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Tensorflow: The First Steps
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Very Minimal Tensorflow

One of the smallest examples of 
running Tensorflow, while actually 
looking like a normal Tensorflow code.

Creates a computation graph that 
takes two inputs and sums them 
together.

We then execute this graph with 
values 4 and 5, and print the result.

Let’s go though this in more detail!
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Very Minimal Tensorflow

import tensorflow as tf

Install tensorflow for CPU:
  pip install tensorflow

Install tensorflow for GPU:
  pip install tensorflow-gpu

Azure notebooks already have 
tensorflow installed!
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Very Minimal Tensorflow

tf.placeholder()

Define an input argument for our 
network.

Can have different types 
     (float32, float64, int32, …) 

and shapes 
     (scalar, vector, matrix, …)

Right now, we defined two single 
scalar placeholders: a and b.
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Very Minimal Tensorflow

y = a + b

Probably the most important thing to 
understand about Tensorflow!



13/38

Symbolic Graphs

We first construct a symbolic graph and then apply it later with suitable data.

The system takes a and b, adds them together and stores the value in y. Right?

Not really!
Instead, we create a Tensorflow-specific object y that knows its value can be 
calculated by summing together a and b. But the addition itself is not performed here!

y = a + b

For example, what happens when this Tensorflow line is executed in our code?
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We can only use Tensorflow-specific* operations to construct a Tensorflow graph - 
they return Tensorflow objects, as opposed to trying to execute the operation.

* Most of numpy and standard operations are compatible with Tensorflow

x 8

name: z
operation: add
arg1: x
arg2: 8

2

name: y
operation: div
arg1: z
arg2: 2

z = x + 8

y = z / 2

Symbolic Graphs
Can construct a whole network structure by intuitively combining operations.
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Very Minimal Tensorflow

tf.Session()

Constructs the environment in which 
the operations are performed and 
evaluated.

Allocates the memory to store current 
value of valuables.

When starting a new session, all the 
values will be reset.
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Very Minimal Tensorflow

sess.run()

Execute the network - actually perform 
the calculations in the symbolic graph.

Specify which values you want calculated 
and returned from the graph.

feed_dict specifies the values that you 
give to placeholders for this execution.

result contains the executed value of y.

The keys in feed_dict are the tensors!
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Training a Network
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Training Tensorflow

An example of defining a network with 
trainable parameters and actually 
optimizing them.

Technically linear regression…

but we can add non-linearities and 
more neurons to make it into a proper 
neural network.

Some new parts. Let’s take a look!
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Training Tensorflow

tf.placeholder()
This time creating 3 placeholders:

x is a vector of length 2

target and learning_rate are scalars
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Training Tensorflow

tf.get_variable()

These Variable objects contain model 
parameters that are updated during 
model training.

At the moment, we are manually 
initializing it with values.

Normally, we would just specify the 
shape and initialize randomly.
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Training Tensorflow

tf.train.GradientOptimizer()

This is where we define the strategy 
for our model training.

Other strategies are available:

tf.train.AdadeltaOptimizer()
tf.train.AdagradOptimizer()
tf.train.AdamOptimizer()
tf.train.RMSPropOptimizer()
tf.train.MomentumOptimizer()

Part of the computation graph!
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Training Tensorflow

optimizer.minimize()

Updates all the variables in the graph
- minimizing the loss function
- following the optimizer strategy

optimizer.variables() can give us a list 
of all the variables that it updates.

optimizer.compute_gradients() 
calculates gradients without updating 
the variables.

Also part of the computation graph!
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Training Tensorflow

tf.global_variables_initializer()

This is where all the variables get 
initialized.

Just something you need to call after 
constructing the network to actually 
get the values into the variables.



24/38

Training Tensorflow

sess.run()

Both y and train_op are returned by 
the sess.run() function.

The parameters are updated whenever 
we ask the model to return train_op.

feed_dict now contains a vector and 
two scalars.
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Training Tensorflow

0.9

8.54

13.124001

15.874401

17.52464

18.514786

19.108871

19.46532

19.679192

19.807514

Result:
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Useful Things to Know 
about Deep Learning
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The newest Tensorflow now also has eager execution support
                                              … but it’s still very much in active development.

Pytorch is designed for eager execution - no symbolic graphs, operations are 
performed where they appear in the code.

Advantages of Symbolic Graphs

● Can be internally optimized

● Faster (in theory)

● Easily deployable, even across 
languages

Advantages of Eager Execution

● Easier to understand

● Easier to debug

● Supports dynamic graphs
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Different random initializations lead to 
different results.

Solution: Explicitly set the random seed.
                All the random seeds!

Randomness in the Network

BUT!
GPU threads finish in a random order, also 
leading to randomness!
             Small rounding errors really add up!
             Doesn’t affect all operations.

Solution: Embrace randomness, run with 
different random seeds and report the average.
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Tensorflow Playground

playground.tensorflow.org
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Underfitting
The model does not have 
the capacity to properly 

model the data.

Ideal fit

Overfitting
Too complex, the model 

memorizes the data, 
does not generalize.

Fitting to the Data
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Training Set Development Set Test Set

For training your models, 
fitting the parameters

For continuous 
evaluation and 
hyperparameter 
selection

For realistic 
evaluation once 
the training and 
tuning is done

In order to get realistic results for our experiments, we need to evaluate on a 
held-out test set.

Using a separate development set for choosing hyperparameters is even better.

Splitting the Dataset
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Early Stopping
A sufficiently powerful model will keep improving on the training data until it overfits.
We can use the development data to choose when to stop.

Optimal point
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Convolutional Neural Networks
Neural modules operating repeatedly over 
different subsections of the input space.

Great when searching for feature patterns, 
without knowing where they might be located in 
the input.

https://github.com/vdumoulin/conv_arithmetic

The main driver in image recognition. 
Can also be used for text.
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Recurrent Neural Networks
Designed to process input sequences of arbitrary length.

Each hidden state A is calculated based on the current input and the previous hidden 
state.

Main neural architecture for processing text, with each input being a word 
representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Dropout
During training, randomly set some activations to zero.

Typically drop 50% of activations in a layer

Form of regularization - prevents the network from relying on any one node.

https://www.learnopencv.com/understanding-alexnet/



36/38

GPU Acceleration

Parallelize large matrix operations to the GPU.
Really makes a difference!
Doesn’t help for small networks

Need to install CUDA:
https://developer.nvidia.com/cuda-downloads

CuDNN also recommended:
https://developer.nvidia.com/cudnn

Can control which GPUs Tensorflow sees
CUDA_VISIBLE_DEVICES=0  python experiment.py
CUDA_VISIBLE_DEVICES=’’ python experiment.py

No GPUs on Azure Notebooks unfortunately
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TensorBoard
A tool for visualizing your own Tensorflow networks.
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