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What is Deep Learning?

https://trends.google.com

Deep learning is a class of machine learning 
algorithms.

Neural network models with multiple hidden 
layers.

Today: The basics of neural network models, optimization

Next lecture: Implementing models with Tensorflow, network 
components, practical tips



http://uk.businessinsider.com/microsoft-research-beats-humans-at-speech-transcription-2017-8
https://www.economist.com/technology-quarterly/2017-05-01/language

The Rise of Deep Learning



https://venturebeat.com/2018/06/12/google-taps-neural-nets-for-better-offline-translation-in-59-languages/

The Rise of Deep Learning



https://arstechnica.com/gadgets/2017/05/googles-alphago-ai-beats-worlds-best-human-go-player/

The Rise of Deep Learning



Kiros et al. (2014) Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

The Rise of Deep Learning



The Rise of Deep Learning
Conference on Neural Information Processing Systems (NIPS) - one of the main 
conferences on deep learning and machine learning.



http://deeplearning.cs.cmu.edu

The Hype Train of Deep Learning

● “Deep learning” is often used 
as a buzzword, even without 
understanding it.

● Be mindful - it’s a powerful 
class of machine learning 
algorithms, but not a magic 
solution to every problem.



1958 - perceptrons, 
Rosenblatt

1974 - backpropagation, 
Werbos

2006 - Restricted Boltzmann 
Machine, Hinton

1998 - ConvNets for OCR, 
LeCun

1997 - LSTM, Hochreiter & 
Schmidhuber

2012 - AlexNet wins 
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better 
for putting it into action.

 2. Faster Hardware

○ Graphics 
Processing Units 
(GPUs)

○ Faster CPUs
○ More affordable

3. Better Software

○ Better 
Optimization 
Algorithms

○ Automatic 
Differentiation 
Libraries

 1. Big Data

○ Large datasets 
for training

○ Better methods 
for storing and 
managing data



Fundamentals 
of 

Neural Networks



Remember Linear Regression

Often implicit

Input features:

Model parameters:



Remember Linear Regression

Input features:

Model parameters:



Linear Separability of Classes

http://introtodeeplearning.com/

Linear models are great if the data is linearly separable.



Linear Separability of Classes

http://introtodeeplearning.com/

… but often that is not the case.



http://introtodeeplearning.com/

Linear Separability of Classes
Linear models are not able to capture complex patterns in the data.



Non-linear Activation Functions

The logistic function, aka the sigmoid function.



Connecting the Neurons
We can connect multiple neurons in parallel - each one will learn to detect 
something different.



Multilayer Perceptron
We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function 
over an input.

Not actually a perceptron



Multilayer Perceptron
We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function 
over an input.

Each block is a layer

Each arrow is a 
matrix of weights



Neep Neural Networks
In practice we train neural neural networks with thousands of neurons and millions 
(or billions) of trainable weights.



Learning Representations & Features

Traditional pattern recognition

End-to-end training: Learn useful features also from the data

Manually Crafted 
Feature Extractor

Trainable
Classifier

“Golden 
retriever”

Trainable 
Feature Extractor

Trainable
Classifier

“Golden 
retriever”



Learning Representations & Features
Automatically learning increasingly more complex feature detectors from the data.



Neural Network 
Optimization



Optimizing Neural Networks

Define a loss function that we want to 
minimize

Update the parameters using gradient 
descent, taking small steps in the 
direction of the gradient (going downhill 
on the slope).

All the operations in the network need to 
be differentiable.



Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3.       Compute gradient based 
      on the whole dataset

4.       Update weights

5. Return weights In practice, datasets are 
often too big for this



Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3.       Loop over each datapoint:

4.             Compute gradient based 
            on the datapoint

5.             Update weights

6. Return weights
Very noisy to take steps based only 

on a single datapoint



Mini-batched Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3.       Loop over batches of datapoints:

4.             Compute gradient based 
            on the batch

5.             Update weights

6. Return weights
This is what we mostly 

use in practice



Optimizing Neural Networks

Li et al., 2018. “Visualizing the Loss Landscape of Neural Nets”

Neural networks have very complex loss surfaces and finding the optimum is difficult.



https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
If the learning rate is too low, the model will take forever to converge.
If the learning rate is too high, we will just keep stepping over the optimum values.



https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
A small learning rate can get the model stuck in local minima.
A bigger learning rate can help the model converge better (if it doesn’t overshoot).



Alex Radford

Adaptive Learning Rates

Intuition:

Have a different learning rate for 
each parameter.

Take bigger steps if a parameter has 
not been updated much recently.

Take smaller steps if a parameter 
has been getting many big updates.



https://jed-ai.github.io/opt2_gradient_descent_1/

Random initialization Matters
All other things being equal, just starting from a different location can lead to a 
different result.



Underfitting
The model does not have 
the capacity to properly 

model the data.

Ideal fit

Overfitting
Too complex, the model 

memorizes the data, 
does not generalize.

Fitting the Data



Training Set Development Set Test Set

For training your models, 
fitting the parameters

For continuous 
evaluation and 
hyperparameter 
selection

For realistic 
evaluation once 
the training and 
tuning is done

In order to get realistic results for our experiments, we need to evaluate on a 
held-out test set.
Also using a separate development set for choosing hyperparameters is even better.

Splitting the Dataset



Early Stopping
A sufficiently powerful model will keep improving on the training data until it overfits.
We can use the development data to choose when to stop.

Optimal point




