
Data Science: Principles and Practice

Marek Rei

Lecture 4: Deep Learning, Part I

What is Deep Learning?

https://trends.google.com

Deep learning is a class of machine learning
algorithms.

Neural network models with multiple hidden
layers.

Today: The basics of neural network models, optimization

Next lecture: Implementing models with Tensorflow, network
components, practical tips

http://uk.businessinsider.com/microsoft-research-beats-humans-at-speech-transcription-2017-8
https://www.economist.com/technology-quarterly/2017-05-01/language

The Rise of Deep Learning

https://venturebeat.com/2018/06/12/google-taps-neural-nets-for-better-offline-translation-in-59-languages/

The Rise of Deep Learning

https://arstechnica.com/gadgets/2017/05/googles-alphago-ai-beats-worlds-best-human-go-player/

The Rise of Deep Learning

Kiros et al. (2014) Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

The Rise of Deep Learning

The Rise of Deep Learning
Conference on Neural Information Processing Systems (NIPS) - one of the main
conferences on deep learning and machine learning.

http://deeplearning.cs.cmu.edu

The Hype Train of Deep Learning

● “Deep learning” is often used
as a buzzword, even without
understanding it.

● Be mindful - it’s a powerful
class of machine learning
algorithms, but not a magic
solution to every problem.

1958 - perceptrons,
Rosenblatt

1974 - backpropagation,
Werbos

2006 - Restricted Boltzmann
Machine, Hinton

1998 - ConvNets for OCR,
LeCun

1997 - LSTM, Hochreiter &
Schmidhuber

2012 - AlexNet wins
ImageNet, Krizhevsky

But Why Now?

The theory was there before, but the conditions are now better
for putting it into action.

 2. Faster Hardware

○ Graphics
Processing Units
(GPUs)

○ Faster CPUs
○ More affordable

3. Better Software

○ Better
Optimization
Algorithms

○ Automatic
Differentiation
Libraries

 1. Big Data

○ Large datasets
for training

○ Better methods
for storing and
managing data

Fundamentals
of

Neural Networks

Remember Linear Regression

Often implicit

Input features:

Model parameters:

Remember Linear Regression

Input features:

Model parameters:

Linear Separability of Classes

http://introtodeeplearning.com/

Linear models are great if the data is linearly separable.

Linear Separability of Classes

http://introtodeeplearning.com/

… but often that is not the case.

http://introtodeeplearning.com/

Linear Separability of Classes
Linear models are not able to capture complex patterns in the data.

Non-linear Activation Functions

The logistic function, aka the sigmoid function.

Connecting the Neurons
We can connect multiple neurons in parallel - each one will learn to detect
something different.

Multilayer Perceptron
We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function
over an input.

Not actually a perceptron

Multilayer Perceptron
We can connect neurons in sequence in order to learn from higher-order features.

An MLP with sufficient number of neurons can theoretically model an arbitrary function
over an input.

Each block is a layer

Each arrow is a
matrix of weights

Neep Neural Networks
In practice we train neural neural networks with thousands of neurons and millions
(or billions) of trainable weights.

Learning Representations & Features

Traditional pattern recognition

End-to-end training: Learn useful features also from the data

Manually Crafted
Feature Extractor

Trainable
Classifier

“Golden
retriever”

Trainable
Feature Extractor

Trainable
Classifier

“Golden
retriever”

Learning Representations & Features
Automatically learning increasingly more complex feature detectors from the data.

Neural Network
Optimization

Optimizing Neural Networks

Define a loss function that we want to
minimize

Update the parameters using gradient
descent, taking small steps in the
direction of the gradient (going downhill
on the slope).

All the operations in the network need to
be differentiable.

Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Compute gradient based
 on the whole dataset

4. Update weights

5. Return weights In practice, datasets are
often too big for this

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over each datapoint:

4. Compute gradient based
 on the datapoint

5. Update weights

6. Return weights
Very noisy to take steps based only

on a single datapoint

Mini-batched Gradient Descent

Algorithm

1. Initialize weights randomly

2. Loop until convergence:

3. Loop over batches of datapoints:

4. Compute gradient based
 on the batch

5. Update weights

6. Return weights
This is what we mostly

use in practice

Optimizing Neural Networks

Li et al., 2018. “Visualizing the Loss Landscape of Neural Nets”

Neural networks have very complex loss surfaces and finding the optimum is difficult.

https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
If the learning rate is too low, the model will take forever to converge.
If the learning rate is too high, we will just keep stepping over the optimum values.

https://jed-ai.github.io/opt2_gradient_descent_1/

The Importance of the Learning Rate
A small learning rate can get the model stuck in local minima.
A bigger learning rate can help the model converge better (if it doesn’t overshoot).

Alex Radford

Adaptive Learning Rates

Intuition:

Have a different learning rate for
each parameter.

Take bigger steps if a parameter has
not been updated much recently.

Take smaller steps if a parameter
has been getting many big updates.

https://jed-ai.github.io/opt2_gradient_descent_1/

Random initialization Matters
All other things being equal, just starting from a different location can lead to a
different result.

Underfitting
The model does not have
the capacity to properly

model the data.

Ideal fit

Overfitting
Too complex, the model

memorizes the data,
does not generalize.

Fitting the Data

Training Set Development Set Test Set

For training your models,
fitting the parameters

For continuous
evaluation and
hyperparameter
selection

For realistic
evaluation once
the training and
tuning is done

In order to get realistic results for our experiments, we need to evaluate on a
held-out test set.
Also using a separate development set for choosing hyperparameters is even better.

Splitting the Dataset

Early Stopping
A sufficiently powerful model will keep improving on the training data until it overfits.
We can use the development data to choose when to stop.

Optimal point

