Data Science: Principles and Practice
Lecture 3: Classification

Ekaterina Kochmar

9 November 2018
Recap: Supervised Learning

Dataset: \{ < x^{(1)}, y^{(1)} >, < x^{(2)}, y^{(2)} >, ..., < x^{(m)}, y^{(m)} > \}

Input features: \((x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}) \)

Known (desired) outputs: \(y^{(1)}, y^{(2)}, ..., y^{(m)} \)

Our goal: Learn the mapping \(f : X \rightarrow Y \) such that \(y^{(i)} = f(x^{(i)}) \) for all \(i = 1, 2, ..., m \)

Strategy: Learn the function on the training set, use to predict \(\hat{y}^{(j)} = f(x^{(j)}) \) for all \(x_j \) in the test set

Last time we looked into regression tasks, today – classification
Recap: Regression vs. Classification

Regression tasks: the desired labels are continuous

Examples: House size, age, income → price
 Weather conditions, time → number of rented bikes

Classification tasks: the desired labels are discrete

Examples: Pixel distribution in the image → digit label
 Word distribution in movie reviews → sentiment (pos/neg/neut) label
Outline

1. Binary classification
2. Data transformations
3. Model evaluation
4. Multi-class classification
5. Practical 2
Binary classification

Case study

Let’s start with a simpler case – binary classification

Task: Sentiment analysis in movie reviews (Part IA CST Machine Learning and Real-world Data)

Data: $m \times n$ matrix X with m reviews and n features (words)

Labels: $y \in (0, 1)$ with 0 for *neg* and 1 for *pos*

Approach

Naive Bayes classifier:

- relies on probabilistic assumptions about the data
- makes “naive” independence assumption about the features
- fast and scalable compared to more sophisticated methods
- competitive results on a number of real-world tasks, despite over-simplistic assumptions
Binary classification with Naive Bayes

Prediction

\[\hat{y}(i) = \arg\max_{c \in (0,1)} p(y = c | x(i)) = \begin{cases} 1, & \text{if } p(y = 1 | x(i)) > p(y = 0 | x(i)) \\ 0, & \text{otherwise} \end{cases} \]

where \(x(i) = (f_1^{(i)}, ..., f_n^{(i)}) \)

Flipping the conditions

\[\hat{p}(y = c | x(i)) = \frac{p(c)p(x(i) | c)}{p(x(i))} \]

where \(p(c) \) is the prior, \(p(x(i) | c) \) is likelihood, \(p(x(i)) \) is evidence (note: it’s irrelevant for the argmax estimation), and \(p(y = c | x(i)) \) is the posterior
Binary classification with Naive Bayes

"Naive" independence assumption

\[p(f_1^{(i)}, \ldots, f_n^{(i)} | y) \approx \prod_{k=1}^{n} p(f_k^{(i)} | y) \]

Revised estimation

\[\hat{y}^{(i)} = \arg\max_y p(y | x^{(i)}) = \arg\max_y p(y) \prod_{k=1}^{n} p(f_k^{(i)} | y) \]

where probabilities can be estimated from the training data using maximum a posteriori estimate

Naive Bayes models typically differ with respect to the assumptions about the distribution of features \(p(x^{(i)} | y) \). Commonly used models:
Gaussian NB, Multinomial NB, Bernoulli NB.
Linearly separable data

Example

Linear ML models, or the models that try to build a linear separation boundary between the classes, are well-suited for such data. Examples: Logistic Regression, Perceptron, Support Vector Machines
Logistic Regression

Logistic Regression vs Linear Regression

- Last time – looked into Linear Regression and learned how to use it to output a continuous value.
- Despite the name, Logistic Regression outputs a discrete value, i.e. is used for classification.
- Logistic Regression estimates whether the probability of the instance i belonging to class c is greater than 0.5. If yes, the item is classified as c, otherwise as $\neg c$.
Logistic Regression

- Estimate \(w \cdot X \) as before, where \(w \) is the weight vector \((w_0, w_1, \ldots, w_n)\).

- Apply a sigmoid function to the result: \(\hat{p} = \sigma(w \cdot X) \), where
 \[
 \sigma(t) = \frac{1}{1+\exp(-t)}
 \]

- Prediction step:
 \[
 \hat{y} = \begin{cases}
 1, & \text{if } \hat{p} \geq 0.5 \\
 0, & \text{otherwise}
 \end{cases}
 \]
 or:
 \[
 \hat{y} = \begin{cases}
 1, & \text{if } t \geq 0 \\
 0, & \text{otherwise}
 \end{cases}
 \]
Logistic Regression

Training

- Learning objective: learn weights w such that prediction \hat{p} has a high positive value for $y = 1$ and high negative value for $y = 0$

- The following cost function answers this objective:
 \[
 c(w) = \begin{cases}
 -\log(\hat{p}), & \text{if } y = 1 \\
 -\log(1 - \hat{p}), & \text{if } y = 0
 \end{cases}
 \]

- Log-loss cost function:
 \[
 J(w) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{p}^{(i)})]
 \]

- No closed form solution for w that minimises the cost function, but since the function is convex, Gradient Descent (refer to the previous lecture) can be used to find the optimal weights
Single-layer perceptron

\[\hat{y}(i) = \begin{cases}
1, & \text{if } w \cdot x^{(i)} + b > 0 \\
0, & \text{otherwise}
\end{cases} \]

where \(w \cdot x^{(i)} \) is the dot product of weight vector \(w \) and the feature vector \(x^{(i)} \) for the instance \(i \), \(\sum_{j=1}^{n} w_j x_j^{(i)} \), and \(b \) is the bias term.
Training

1. **Initialisation**: Initialise the weights \(w = (w_1, \ldots, w_j) \) and the bias \(b = w_0 \) to some value (e.g., 0 or some small).

2. **Estimation** at time \(t \) for each instance \(i \):
 \[\hat{y}^{(i)} = f(w(t) \cdot x^{(i)}) = f(w_0(t) + w_1(t)x_1^{(i)} + \ldots + w_n(t)x_n^{(i)}) \]

3. **Update** for the weights at time \((t + 1) \) for instance \(i \) and each feature \(0 \leq j \leq n \):
 \[w_j(t + 1) = w_j(t) + r(y^{(i)} - \hat{y}^{(i)})x_j^{(i)} \]
 where \(r \) is a predefined learning rate.

4. **Stopping criteria**: convergence to an error below a predefined threshold \(\gamma \), or after a predefined number of iterations \(t \leq T \).
Single-layer perceptron

- If the data is linearly separable, the perceptron algorithm is guaranteed to converge.
- If the data is not linearly separable, the perceptron will never be able to find a solution to separate the classes in the training data.
- A single layer perceptron is a simple linear classifier. Often used to illustrate the simplest feedforward neural network. Multilayer perceptrons combined multiple layers and use non-linear activation function, which makes them capable to classify data that is not linearly separable (more on this in later lectures).
Non-linearly separable data

The classic example: XOR problem

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$Y = X_1 \oplus X_2$
Non-linearly separable data

Data transformations for non-linearly separable data

- **Actual (raw) data**: two classes non-linearly separable (on the left)
- **Objective**: transform the data using additional dimensions such that it becomes possible to separate the classes linearly (on the right)
- **Method**: data transformations / feature maps that transform the data into a higher dimensional space (e.g., *kernel trick*)
Non-linearly separable data

Toy example

- Suppose a non-linearly separable classes as above: e.g., instances $x^{(0)} = (0.5, 0.5)$ and $x^{(1)} = (-1, -1)$
- Consider using a square function: $x^{(0)} \rightarrow x'^{(0)} = (0.25, 0.25)$ and $x^{(1)} \rightarrow x'^{(1)} = (1, 1)$
- With the new data representation, the instances of class 0 (blue) end up on the left, and the instances of class 1 (red) end up on the right
- *Kernel trick* and feature maps allow to cast the original data into a higher dimensional data: e.g. $(x, y) \rightarrow (x^2, xy, y^2)$
Performance measures

Accuracy

- **Task:** suppose you select a digit in the handwritten digits dataset (e.g., 5), and perform a binary classification task of detecting 5 vs. \(\neg 5\) in a balanced dataset of 10 digits.

- **Evaluation:** the most straightforward way to evaluate, calculate the proportion of the correct predictions:
 \[
 ACC = \frac{\text{num}(\hat{y}==y)}{\text{num}(\hat{y}==y)+\text{num}(\hat{y}!=y)}
 \]

- **Results:** suppose that you get an accuracy of 91%. Is this a good accuracy score?
Performance measures

What accuracy score is missing

- If the classifier always predicts ¬5 (i.e., does nothing), the accuracy will be $ACC = 90\%$
- It’s unclear what exactly the classifier gets wrong

Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>predicted ¬5</th>
<th>predicted 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual ¬5</td>
<td>TN</td>
<td>FP</td>
</tr>
<tr>
<td>actual 5</td>
<td>FN</td>
<td>TP</td>
</tr>
</tbody>
</table>

- **True negatives** (TN) – actual instances of ¬5 correctly classified as ¬5
- **False negatives** (FN) – actual instances of 5 missed by the classifier
- **True positives** (TP) – actual instances of 5 correctly classified as 5
- **False positives** (FP) – actual instances of ¬5 misclassified as 5
Performance measures

Measures

- **Accuracy:** $\text{ACC} = \frac{TP + TN}{TP + TN + FP + FN}$
- **Precision:** $P = \frac{TP}{TP + FP}$
- **Recall:** $R = \frac{TP}{TP + FN}$
- **F$_1$-score:** $F_1 = 2 \times \frac{P \times R}{P + R}$ \[F_\beta = (1 + \beta^2) \times \frac{P \times R}{\beta^2 \times P + R} \]

Precision-recall trade-off

Some tasks require higher recall and some higher precision, e.g.:

- Detection of a potentially cancerous case that needs further tests?
- Detection of suspicious activity on a credit card? Automated blocking?
- Automated change of drug dosage for a hospital patient?
- Automated spell/grammar checker correction?
- Search for related web-pages online?
Performance measures

Confidence threshold

Precision: \(\frac{6}{8} = 75\% \)
Recall: \(\frac{6}{6} = 100\% \)

Precision: \(\frac{4}{5} = 80\% \)
Recall: \(\frac{4}{6} = 67\% \)

Precision: \(\frac{3}{3} = 100\% \)
Recall: \(\frac{3}{6} = 50\% \)

Precision-recall curve

[Graph showing precision and recall curves]
Performance measures

Receiver Operating Characteristic (ROC)

- **Specificity** = \(\frac{TN}{TN + FP} \)

- **False positive rate (FPR) / fall-out / probability of false alarm** = \((1 - \text{specificity})\)

- **True positive rate (TPR) / sensitivity / probability of detection** = recall
Multi-class classification

From binary to multi-class

- Directly classified with some algorithms: e.g., Naive Bayes – simply output the most probable class

- Linear classifiers: one of two strategies:
 1. One-vs-all (OvA) / one-vs-rest (OvR): n binary classifiers trained to detect one class each (e.g. 10 binary digit detectors); output the class with the highest score
 2. One-vs-one (OvO): $\frac{N(N-1)}{2}$ binary class-vs-class classifiers (e.g. 45 binary digit-vs-digit classifiers); output class that wins most
Multi-class classification

Error analysis

Confusion matrix:

Confusions heatmap:

```
array([[36, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 36, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 34, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 34, 0, 2, 0, 0, 0],
       [0, 0, 0, 0, 35, 0, 0, 0, 1],
       [0, 0, 0, 0, 0, 37, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 36, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 36, 0],
       [0, 4, 0, 2, 2, 1, 0, 1, 23],
       [1, 0, 0, 0, 0, 0, 1, 0, 34]])
```
Practical 2: Classification

Your task

- two datasets: iris flower dataset (150 samples, 3 classes, 4 features), and hand-written digits dataset (≈ 1.8K samples, 10 classes, 64 features)
- learn about binary and multi-class classification in practice
- investigate whether data is linearly separable and what to do when it is not
- apply 3 classifiers discussed in this lecture
- focus on evaluation of the classifiers
- one dataset is used to illustrate the ML techniques; your task is to implement all the above steps for the other one