
VISUALISATION
Lecture 7: dimension reduction

Damon Wischik

Ordinal: we can ask
which is greater, but not
measure how much

Interval: we can
subtract one value
from another

Ratio: we can
divide one value by
another

Ordinal scales show us proximity of datapoints.
Interval and ratio scales show us clustering.

How do we decide which scale to show?
What do we do when there are too many scales to choose from?

Principal Components
Analysis

DATASET: world
bank demographic
indicators for 161
countries

This dataset has 12 columns, in addition to Country Name.
In Lecture 2 we ran linear regression on some of them.
Who decides which variable is the response and which is the predictor?

...

Why just those two variables? (This chart is called a splom, scatter plot matrix).

A splom is unwieldy for 12 variables. And what if we had 1200 or 12000?
Is there a way to condense them? Perhaps it would help us see natural clusters.

Linear regression: model the data by
𝑦𝑖 = 𝛼 𝑥𝑖 + 𝛽

and choose the parameters 𝛼 and 𝛽 to
minimize

𝐿 𝛼, 𝛽 =
1

2

𝑖=1

𝑛

𝛼 𝑥𝑖 + 𝛽 − 𝑦𝑖
2

𝑦 = 15.81 + 0.7619𝑥
𝑥 = 6.728 + 0.6583𝑦
⇒ 𝑦 = −10.22 + 1.519𝑥

If we regress 𝑦 against 𝑥, should we get the same
answer as regressing 𝑥 against 𝑦?

If not, is there a way to express the relationship
between 𝑥 and 𝑦 that doesn’t require an arbitrary
choice of response versus predictor?

𝑦 = 3.89 + 1.11𝑥

Optimal projection: model the data by
𝑦 = 𝛼 𝑥 + 𝛽

and choose the parameters 𝛼 and 𝛽 to
minimize

𝐿 𝛼, 𝛽 =
1

2

𝑖=1

𝑛
𝑥𝑖
𝑦𝑖

− proj𝛼,𝛽
𝑥𝑖
𝑦𝑖

2

A better way to write this subspace is
𝑥𝑖
𝑦𝑖

=
𝜇𝑥
𝜇𝑦

+ 𝜆𝑖
𝛿𝑥
𝛿𝑦

+
휀𝑥,𝑖
휀𝑦,𝑖

Each 2d record (𝑥𝑖 , 𝑦𝑖) in the dataset is
summarised by a 1d summary 𝜆𝑖.

We can generalize the method, to reduce an
arbitrary number of data dimensions down to
one dimension.

Optimal 1d projection: model the data by
projecting it onto a linear subspace,

Ԧ𝑥𝑖 = Ԧ𝜇 + 𝜆𝑖 Ԧ𝛿 + Ԧ휀𝑖
and choose the subspace to minimize

𝐿 =
1

2

𝑖=1

𝑛

Ԧ휀𝑖
2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

fx,fy = 'Enrolment Rate, Tertiary (%)', 'Internet Users (%)'
X = countries[[fx,fy]].values

pca = sklearn.decomposition.PCA()
pca_result = pca.fit_transform(X)

Report the slope
δx,δy = pca.components_[0]

Report the means
μx,μy = pca.mean_

Report the predictions
λ = pca_result[:,0]
predx,predy = μx+λ*δx, μy+λ*δy

We can generalize the method, to reduce an
arbitrary number of data dimensions down to an
arbitrary number of dimensions.

PCA projection: model the data by representing
the entire space using an optimal basis

Ԧ𝑥𝑖 = Ԧ𝜇 +

𝑘=1

𝐾

𝜆𝑘,𝑖 Ԧ𝛿𝑘

where 𝐾 is the number of features for each

datapoint, and the basis vectors Ԧ𝛿𝑘 are chosen
so that partial projections onto 𝐿 < 𝐾
dimensions

Ԧ𝑥𝑖 ≈ Ԧ𝜇 +

𝑘=1

𝐿

𝜆𝑘,𝑖 Ԧ𝛿𝑘

are as accurate as possible, in the mean square
error sense.

1
2
3
4
5
6
7
8
9
10

X = countries[features].values
pca = sklearn.decomposition.PCA()
pca_result = pca.fit_transform(X)

μ = pca.mean_
pred = μ + np.zeros_like(pca_result)
for k in range(L): # L = number of PCA components to use

λk = pca_result[:,k]
δk = pca.components_[k]
pred = pred + λk.reshape((-1,1)) * δk.reshape((1,-1))

There is a gotcha.

Why do these two variables come out
looking so different?

Optimal 1d projection: model the data by
𝑥𝑖
𝑦𝑖

=
𝜇𝑥
𝜇𝑦

+ 𝜆𝑖
𝛿𝑥
𝛿𝑦

+
휀𝑥,𝑖
휀𝑦,𝑖

and choose the parameters 𝜇 and 𝛿 to
minimize

𝐿 𝜇, 𝛿 =
1

2

𝑖=1

𝑛
𝑥𝑖
𝑦𝑖

− proj𝜇,𝛿
𝑥𝑖
𝑦𝑖

2

Solution: scale the 𝑥 and 𝑦 columns so they
have the same standard deviation, before
doing the fit.

Run PCA, then project onto the first two principal
components, to get a nice visualization.

𝜆1

𝜆2

Run PCA, then project, and you may spot clusters.

But what if the data isn’t linear?

1d PCA

better 1d
projection?

t-SNE
(stochastic neighbourhood embedding with the t distribution)

1
2
3
4
5
6
7
8
9
10
11

X = countries[features].values
scale the columns, so they have the same variance
for k in range(len(features)):

X[:,k] = X[:,k] / np.std(X[:,k])

you have to declare up front how many dimensions you want to reduce to
tsne = sklearn.manifold.TSNE(n_components=2)
tsne_results = tsne.fit_transform(X)

p1,p2 = tsne_results[:,0], tsne_results[:,1]
plt.scatter(p1, p2, alpha=.2)

t-SNE is another method for dimension reduction

The idea behind t-SNE

1. Compute the 𝑛 × 𝑛 distance matrix between all 𝑛
datapoints in the original dataset

𝑑𝑖,𝑗 = Ԧ𝑥𝑖 − Ԧ𝑥𝑗

2. Let Ԧ𝑧𝑖 ∈ ℝ2 be an arbitrary embedding of Ԧ𝑥𝑖 into 2
dimensions, and compute the 𝑛 × 𝑛 distance matrix
in this space

𝑒𝑖,𝑗 = Ԧ𝑧𝑖 − Ԧ𝑧𝑗

3. Define an appropriate loss function that measures
the difference between these two distance matrices

𝐿 𝑑, 𝑒(𝑧) = ⋯

4. Pick the embedding to minimize this loss
min𝐿 𝑑, 𝑒 𝑧 over 𝑧 ∈ ℝ𝑛×2

You can also force the points onto a grid, using the Jonker-Volgenant algorithm https://blog.sourced.tech/post/lapjv/

Cross-validation,
generative models,
and perplexity

𝑘

training data
holdout

simple validation: set aside some holdout
data, train the model on the rest, and
evaluate your model on the holdout set

cross validation: for each block 𝑘, train your
model on the rest, and evaluate on block 𝑘,
then average the results

cross validation + model tuning: use cross
validation to tune parameters etc., then
evaluate your tuned model on a holdout set

𝑘

training with c.v. holdout

Parameter tuning: how many dimensions to use?
Model tuning: which features to use?
Method choice: PCA or t-SNE?

How should we evaluate the performance of a
model on the holdout set?

Is there a way to do this for t-SNE?

histogram of 𝜆

histogram of
errors+

=

Probabilistic generative models
From a reduced-dimension model, we can synthesize new
random values like those in the dataset.

1
2
3
4
5
6
7

fit a PCA model
get μ, δ
get a histogram of values of λ and of ε

def random_datapoint():
pick a random newλ from the (smoothed) distribution found for λ
pick a random newε from the (smoothed) distribution found for ε
return μ + newλ*δ + newε

histogram of 𝜆

histogram of
errors+

=

Perplexity

A generative model defines a probability density function
𝑃(Ԧ𝑥), the probability of seeing datapoint Ԧ𝑥.

If it’s a good model, 𝑃(Ԧ𝑥)will be high for the holdout
datapoints. We can evaluate the model on the 𝑚 holdout
datapoints by

loss = −
1

𝑚

𝑖=1

𝑚

log2 𝑃(Ԧ𝑥𝑖)

perplexity = 2loss

Variational autoencoders

PCA is more interpretable: it gives a decomposition into latent variable + noise, which allows
cross validation.

t-SNE is less rigid: it’s not limited to linear projections.

Can we get the best of both?

1. Train a neural network to reproduce its input.
This automatically gives a decomposition, datapoint = 𝑓(latent variable) + noise

2. Have just a few nodes in the middle layer,
so that it achieves dimension-reduction

3. Include in the loss function “The distribution of 𝜆 should be independent Normal(0,1)”,
similar to the t-SNE loss function

encoder decoder

𝜆

Latent space interpolation
https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

let enc(𝑥1)=𝜆1 let enc(𝑥2)=𝜆2

let enc(𝑥3)=𝜆3

let 𝜆new = 0.4𝜆1 + 0.4𝜆2 + 0.2𝜆3
what is dec(𝜆new)?

