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1

1. ProbabilisƟc modelling
1.1. Likelihood

tl;dr. In a probabilistic model, the likelihood is the probability of the observed outcome, viewed
as a function of the unknown parameter. (This is an incomplete definition, which will be ex-
panded on in Section 1.4.) The likelihood function measures how much evidence there is for
a particular parameter value. The maximum likelihood estimator is the parameter value with
maximum likelihood.

In an introductory probability course you might have been told the following: if we take a biased coin,
which gives heads with probability p and tails with probability 1 − p, and toss it n times, then the
probability we get x heads is (n

x

)
is the binomial

coefficient, also written
nCx, equal to
n! / x!(n − x)!

P(num. heads = x) =

(
n

x

)
px(1− p)n−x, x ∈ {0, . . . , n}.

What if we don’t know p? The heart of data science is to take the observed data (x, the number of heads
we actually saw) and use it to make inferences about the unknown parameters. Define the likelihood
function

lik(p) =
(
n

x

)
px(1− p)n−x.

Intuitively, this function measures how much evidence there is for a particular value of p: the higher
lik(p) is, the more likely that value of p is. It’s common to write

P(num. heads = x | p) or lik(p | x)

to emphasize that the formula involves both the unknown parameter p and the observed data x. This
is NOT a conditional probability, it just happens to use the same vertical bar symbol.

A sensible way to estimate p is to find the value that maximizes the likelihood, by solving

d

dp
lik(p) =

(
n

x

)(
xpx−1(1− p)n−x − (n− x)px(1− p)n−x−1

)
= 0

which has the solution
p =

x

n
.

This is called the maximum likelihood estimator. It’s usually easier to maximize log(lik(·)) rather
than lik(·), and it necessarily has the same solution. In this case,

log lik(p) = κ+ x log p+ (n− x) log(1− p)

d

dp
log lik(p) =

x

p
− n− x

1− p
= 0 =⇒ p =

x

n

where κ is a constant i.e. doesn’t depend on p.

* * *

A large part of this course (and of machine learning in general) is knowing enough building blocks
to come up with useful probability models and likelihood functions. The rest of this section is about
one of the core probability models, the random sample, and builds up to an explanation of ‘softmax
cross-entropy’, the training objective for a neural network classifier.

But what does likelihood actually measure? Another goal of this course is to explore the paths
that statisticians and philosophers have taken in thinking about likelihood and what it can be used for.
Here are two remarks, to start you thinking.

• The maximum likelihood procedure is intuitively sensible, but what guarantees do we have
about its accuracy? If I toss 3 coins and get 3 heads, the maximum likelihood estimator is
p = 1. If I toss 1 million coins and get 1 million heads, it’s still 1. I should be more confident
in the latter case, but how do we measure confidence? And what would it take to persuade me
I’ll never see a tail?

• The likelihood is NOT a probability density. Probability density functions must integrate to 1,
but in this example

∫ 1

0
lik(p) dp is equal to 1/(1 + n). If it’s not a probability density, what is

it?
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1.2. Random variables

tl;dr. A random variable is a function that can give different answers, e.g. a function that calls
a random number generator. We say it takes values in Ω to mean that the return value of the
function is an element of the set Ω. Every random variable X has a probabilty distribution

P(X ∈ A)

which specifies the probability that the return value lies in a susbset A ⊆ Ω. If Ω is countable
e.g. Ω = {. . . ,−1, 0, 1, 2, . . . }, the random variable is said to be discrete, and then

P(X ∈ A) =
∑
x∈A

P(X = x). (1)

For very many applications we work with real-valued random variables, and define the cumulative
distribution function (often shortened to distribution function or even distribution) to be

F (x) = P(X ≤ x).

If this function is differentiable, then X is said to be a continuous random variable with density
function f(x) = F ′(x), and

P(X ≤ x) =

∫ x

−∞
f(x) dx . (2)

For a continuous random variable, P(X = x) = 0 for every x, and so

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b).

NotaƟon. In this course we’ll write PrX(x) for

PrX(x) =


P(X = x) when X is a discrete random variable

(PrX is called the probability mass function)

f(x) when X is a continuous random variable with density f
(PrX is called the probability density function)

Many results in data science and machine learning apply to both discrete and continuous random
variables, but with slightly different meanings, and this notation helps us write formulae that work
for both cases. The reason we need different definitions is that for a continuous random variable
P(X = x) = 0 but P(X ∈ [x, x + δ]) ≈ δf(x) for small δ, and so it’s the density function that’s
useful.

A conditional random variable (X | C) is just a random variable whose distribution is condi-
tional: if Y = (X | C), then P(Y ∈ A) = P(X ∈ A | C). We write

PrX(x | C) =

{
P(X = x | C) when X is discrete
G′(x) where G(x) = P(X ≤ x | C) when X is continuous.

It’s worth mentioning some terminology for describing distribution functions for numerical random
The appendix on
page 101 gives Python
functions for finding
percentiles, as well as
densities and cumulative
distributions and others.

variables. The
first quartile is a number x such that P(X ≤ x) = 25%
median ... P(X ≤ x) = 50%
third quartile ... P(X ≤ x) = 75%
p-percentile ... P(X ≤ x) = p%

For discrete random variables it may not be possible to get exact percentiles, and there is no convention
about rounding. The range [x1, x2] is called a 95% confidence interval if P(x1 ≤ X ≤ x2) = 95%.
Often we choose a two-sided confidence interval with P(X < x1) = P(X > x2) = 2.5%. In some
contexts it may be more useful to report a one-sided confidence interval, either [x1,∞) or (−∞, x2].

* * *
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Exercise 1.1. Here is a discrete integer-valued random variable:

1 def rgeom(p) :
2 x = 1
3 while random.random() > p :
4 x = x + 1
5 return x

Let X be the output of rgeom(1/3). What is its cumulative distribution function?

To find the distribution of X , we can use simple probability calculation. To get X = 1 we need the
random.random()>1/3 test to fail on the first pass, which has probability 1/3. To get X = 2 we need
the test to succeed on the first pass then fail on the second, which has probability 2/3 × 1/3. To get
X = 3 we need the test to succeed on the first two passes then fail on the third, which has probability
2/3 × 2/3 × 1/3. Generalizing, if X is the outcome of rgeom(p) then

P(X = k) = (1− p)k−1p.

From here, it’s plain maths:
Standard maths formula:
1 + r + r2 + · · · =
1/(1 − r) for |r| < 1.P(X ≤ x) = 1− P(X > x)

= 1−
∞∑

k=x+1

P(X = k) = 1− (1− p)kp
∞∑
k=0

(1− p)k

= 1− (1− p)kp
1

1− (1− p)
= 1− (1− p)k.

Exercise 1.2. Consider these two random variables:

1 def rexp(λ) :
2 u = random.random()
3 return − math. log(u) / λ
4 def rgeom2(p) :
5 λ =− math. log(1−p)
6 x = rexp(λ)
7 return math. ce i l (x)

Let X be the output of rexp(λ). Find the density function of X . Hence show that rgeom and
rgeom2 have the same probability distribution.

Let’s work out the cumulative distribution function for X first. (It’s often easier to work with distribu- math.log is the natural
logarithm i.e. to base e,
and math.ceil rounds up
to the nearest integer.

tion functions rather than densities in problems like this.)

P(X ≤ x) = P
(
− 1

λ
logU ≤ x

)
= P(U ≥ e−λx) = 1− e−λx

where U is the output of random.random(). The density of X is thus

PrX(x) =
d

dx
P(X ≤ x) = λe−λx.

Now let Y be the output of rgeom2(p).

P(Y = k) = P(k − 1 < X ≤ k) =

∫ k

x=k−1

λe−λx dx

=
(
1− e−λk

)
−
(
1− e−λ(k−1)

)
= (e−λ)y−1e−λ(eλ − 1)

= (1− p)k−1p

which is exactly the same as for the output of rgeom(p). By (1),

P(rgeom(p) ∈ A) = P(rgeom2(p) ∈ A) for any set A

i.e. they have the same probability distribution.
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Exercise 1.3. Let X ∼ Exp(λ). Find PrX(x |X ≥ ν).

Exp is for the
Exponential random
variable. This and other
standard distributions are
listed in the appendix,
page 102.

According to the definition of conditional random variables,

PrX(x |X ≥ ν) = G′(x) where G(x) = P(X ≤ x |X ≥ ν).

By the definition of conditional probability,

G(x) =
P(X ≤ x and X ≥ ν)

P(X ≥ ν)
=

{
0 if x < ν(
P(X ≤ x)− P(X < ν)

)
/P(X ≥ ν) if x ≥ ν

and differentiating this with respect to x gives

G′(x) =

{
0 if x < ν

PrX(x)/P(X ≥ ν) if x ≥ ν.

For the Exponential random variable with rate λ, PrX(x) = λe−λx and P(X ≥ x) = e−λx, thus

PrX(x |X ≥ ν) =

{
0 if x < ν

λe−λ(x−ν) if x ≥ ν.

Example 1.4.
Let X be the set of birthdays of n people, assuming all days are equally likely, that people are
independent, and ignoring leap years. Then X is a random variable, and so is |X|. As you saw
in IA Maths for NST,

P(all n have different birthdays) = P(|X| = n) = 1× 364

365
× · · · × 365− n+ 1

365
.

* * *

What’s the chance that two or more people present in the first lecture for this course share a
birthday? This is badly put, since it’s not describing a random variable. There was only one first
lecture for this course, and so every time we ask the question “did two or more people in that lecture
share a birthday?” we get the same answer. Either there was a shared birthday, or there wasn’t, so the
probability is either 1 or 0.

When we write for example “Let X be rgeom(1/3)”, remember that X doesn’t have any partic-
ular value. It’s a stand-in for all the possible values that the random variable might produce, weighted
by their probabilities.

So when a deep neural network tells us “confidence 99.3%” in its image classification1, what
on earth does it mean? Is it referring to a probability, and if so then what’s the random variable—
is it the image, or the true label, or the (deterministic) output of the neural network classifier? If
not a probability, then what does ‘confidence’ measure? We’ll return to these questions in section 3.
Today’s neural networks have trouble reasoning about uncertainty—and anyway this is a panda not a
gibbon.

”gibbon”,
99.3%
confidence

1Example from I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial Examples”. In: ArXiv
e-prints (Dec. 2014). arXiv: 1412.6572 [stat.ML]

http://arxiv.org/abs/1412.6572
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1.3. Independence and joint distribuƟons

tl;dr. Any pair of random variables (X,Y ) has a joint distribution

P
(
(X,Y ) ∈ C

)
which specifies the probability of any joint event C. For a pair of continuous random variables,
the joint distribution can be specified by a joint probability density PrX,Y (x, y),

P
(
(X,Y ) ∈ C

)
=

∫
(x,y)∈C

PrX,Y (x, y) dx dy.

The marginal density of X can be derived from the joint distribution; it is

PrX(x) =

∫
y

PrX,Y (x, y) dy.

When one or other of the two random variables is discrete, just replace integrals by sums as
appropriate.
Two random variables X and Y are said to be independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B) for all A and B

Informally, it means “knowing the value of one of them gives no information about the other.”
Two equivalent definitions are

PrX,Y (x, y) = PrX(x)PrY (y) for all x and y ,

P(X ∈ A | Y ∈ B) = P(X ∈ A) for all A and B with P(Y ∈ B) > 0 .

The concept of independent random variables is fundamental in modelling. It was introduced infor-
mally in IA Maths for NST. Working with joint distributions is a key skill for Bayesian inference
(section 3.1) and for analyzing ‘exotic’ random variables like random processes (section 6).

Exercise 1.5. Let X and Y be independent Uniform[0, 1] random variables. Find P(|X − Y | <
δ). Hence find the density of |X − Y |.

Because they are independent the joint density is

PrX,Y (x, y) = PrX(x)PrY (y) = 1.

Then,

x

y

δ

P
(
|X − Y | < δ

)
=

∫
(x,y) : |x−y|<δ

1 dx dy =

∫ 1

x=0

∫
y : |y−x|<δ

1 dy dx = 1− (1− δ)2

and the density is Pr|X−Y |(δ) = 2(1− δ). (You could perhaps guess this, without going via integrals.
It’s useful to see the integration, to see how it would work for less simple distributions.)

Example 1.6. I throw a fair die. Let Z be the result. Let X = Z mod 2 and let Y = Z div 3, so
for example Z = 3 gives X = 1 and Y = 1. Show that X and Y are not independent. Show
that X ′ = (Z − 1) mod 2 and Y ′ = (Z − 1) div 2 are.

The definition gives a condition that has to be satisfied for all x and y. Let’s try some:

• Try x = 0, y = 0. For these, P(X = 0, Y = 0) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 0) = 1/3. So this pair passes the test.

• Try x = 0, y = 1. For these, P(X = 0, Y = 1) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 1) = 1/2. So the test fails.

Thus X and Y are not independent. An exhaustive test of all x and y shows that X ′ and Y ′ are
independent.
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Exercise 1.7 (IdenƟfying independence by factorizaƟon).
Suppose that PX,Y (x, y) = g(x)h(y) for some functions g and h. Show that X and Y are
independent, and

PrX(x) ∝ g(x), PrY (y) ∝ h(y).

Example 1.8.
Let X and Y be independent Bin(1, p) random variables, so

P(X = x, Y = y) = px(1− p)1−x py(1− p)1−y,

and suppose p is fixed but unknown. Obviously, learning the value of X tells us something about
p (exercise: show that the maximum likelihood estimator for p given X is p̂ = X). That doesn’t
prevent X and Y from being independent: the joint probability still factorizes into an x-part and
a y-part, so (using the result from example 1.7) they are independent.

Whenever you hear “independent random variables”, it’s a good idea to whisper to yourself the coda
“given their parameters”, so you don’t confuse ‘unrelated’ and ‘independent’.

RULES FOR CONDITIONAL PROBABIL ITY

There are five core definitions and laws in probability theory. In these equations, A and B are events.

1. P(Ω) = 1 where Ω is the entire sample space
2. Conditional probability: P(A |B) = P(A ∩B)/P(B), when P(B) > 0

3. Sum rule: If {B1, B2, . . . } partition Ω then P(A) =
∑

i P(A ∩Bi)‘partition Ω’ means the
Bi are mutually
exclusive and∪

i Bi = Ω

Law of total probability: P(A) =
∑

i P(Bi)P(A |Bi)

4. A and B are said to be independent if P(A ∩B) = P(A)P(B)

5. Bayes’ rule:

P(A |B) =
P(A) P(B |A)

P(B)
if P(B) > 0

These rules have direct translations into statements about joint distributions of random variables.
I’ve written the rules here for discrete random variables, but they also apply to continuous random
variables—just replace the sums by integrals2.

1’. Densities sum to one:
∑

x PrX(x) = 1

2’. Conditional density: PrX(x | Y = y) = PrX,Y (x, y)/ PrY (y), when PrY (y) > 0

3’. Marginal density: PrX(x) =
∑

y PrX,Y (x, y)
Law of total probability: P(A) =

∑
x PrX(x)P(A |X = x)

4’. X and Y are said to be independent if PrX,Y (x, y) = PrX(x)PrY (y)
5’. Bayes’ rule:

PrX(x | Y = y) =
PrX(x) PrY (y |X = x)

PrY (y)
if PrY (y) > 0

All of the laws still work if we stick ‘conditional on C’ onto them, if P(C) > 0. Such conditional
laws are easy to derive. Here are some of them.

1”. Densities sum to one:
∑

x PrX(x | C) = 1

2”. Conditional probability: P(A |B ∩C) = P(A ∩B | C) / P(B | C), when P(B | C) > 0

3”. Law of total probability: P(A | C) =
∑

x P(X = x | C) P(A | {X = x}∩C)

4”. X and Y are said to be conditionally independent given C if
PrX,Y (x, y | C) = PrX(x | C) PrY (y | C).

2The definition of PrX(x | Y = y) needs subtlety when Y is a continuous random variable. The event {Y = y} has
probability 0 for every y, so the straightforward definition of conditional probability doesn’t work.
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CONDITIONING ON A RANDOM VARIABLE *

If we ever try to compute a probability and we end up with a random variable on the right hand side,
we’ve made a mistake. Probabilities are numbers, and random variables are functions, and we should
be hyper-vigilant about which is which.

In machine learning we often want to write things like

P(email is spam) = some function of email contents.

It’s usually intuitively clear what is meant, but when we come across such statements deep in the
middle of a problem with 15 other moving parts it’s sometimes befuddling. Are the email contents
random? If so, what are they doing on the right hand side of a probability equation? If not, how can
the spam-nature be a random variable yet the email’s contents be non-random? What we really mean
is

P(IsSpam = true | Contents = c) = function(c).

and as a shorthand for this, we write

P(IsSpam = true | Contents) = function(Contents).

Here’s a formal definition, conditioning on a random variable.

P(A | Y ) means “Define h(y) = P(A | Y = y) then return h(Y )”

This is a random variable—it’s a function of Y , and Y is a random variable.
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1.4. Fiƫng distribuƟons

tl;dr. A random sample is a collection of random variables all drawn from the same distribution,
and all independent of each other. In mathematical notation, if Y = (X1, . . . , Xn) is the random
sample and y = (x1, . . . , xn) is a collection of values (i.e. a dataset), then

PrY (y) = PrX(x1)× · · · × PrX(xn)

where X is the common distribution. We also say that X1, . . . , Xn are independent and identi-
cally distributed or i.i.d.
Suppose that the distribution of X depends on some unknown parameter θ which we’d like to
estimate, given a dataset. The likelihood given a single observation is

lik(θ | x) = PrX(x | θ)

and the likelihood given a dataset is

lik(θ | x1, . . . , xn) = PrX(x1 | θ)× · · · × PrX(xn | θ).

Fitting the distribution means finding the maximum likelihood estimator for θ, i.e. solving

θ̂ = arg max
θ

log lik(θ | x1, . . . , xn).

scipy.optimize.fmin can be used for this.

This definition of likelihood works for both discrete and continuous random variables, whereas the
working definition in Section 1.1 only worked for discrete random variables.

ApplicaƟon. Suppose I’ve developed a new load-balancing algorithm for my web server. I want to
test my algorithm, by means of simulation. My simulator needs a random number generator (RNG)
to generate file sizes, request times etc. The performance of my load balancer will surely depend on
the random number generator I use. How should I program this random number generator?

We use RNGs in situations like this because the real world is too complicated to model in a
Newtonian cause-and-effect way. We use random numbers to say “There is variability, and I can
quantify the degree of variability, but I’m not going to look in excruciating detail for causes for every
little variation.” It’s up to the modeler to draw the line between ‘causes of variation that it’s worth
including explicitly’ and ‘residual variation that we’ll label noise’.

Typically we take real-world measurements, we look at the data, and we pick a random variable
(i.e. a random number generator with a particular probability distribution for its output) that produces
output consistent with the data. Many standard random variables come with tuneable parameters.
Typically we look at the data to estimate what values to use for the tuning parameters—and, in this
application, to figure out how the parameters vary with time of day, request type, etc.

* * *

Example 1.9. I collected 69,719 lines from the request log of a webserver, and extracted the size
in bytes of the response content. The dataset can be found at https://teachingfiles.blob.
core.windows.net/founds/weblog_sizes.txt. Fit a geometric distribution to this data. Also
fit a normal distribution. Which is the better fit?

For the geometric distribution: if X ∼ Geom(p) then X is a discrete random variable taking values
The Geometric and other
standard distributions are
listed in the appendix,
page 102

in {1, 2, . . . }, and it has probability mass function PrX(x | p) = (1 − p)x−1p where 0 ≤ p ≤ 1 is a

https://teachingfiles.blob.core.windows.net/founds/weblog_sizes.txt
https://teachingfiles.blob.core.windows.net/founds/weblog_sizes.txt
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parameter. The log likelihood function given a dataset x1, . . . , xn is

log lik(p | x1, . . . , xn) =
n∑

i=1

log PrX(xi | p)

=
∑
i

(
log p+ (xi − 1) log(1− p)

)
= n log p+

(∑
i

xi − n
)

log(1− p).

To find the maximum likelihood estimator, differentiate with respect to p and find where the derivative
is equal to zero: the answer is

p̂ =
n∑
i xi

.

For all but the simplest distributions, we’ll have to use numerical optimization rather than algebra
and calculus.

1 URL = ”https :// teachingf i les . blob . core .windows. net/founds/weblog_sizes . txt”
2 df = pandas . read_csv(URL, header=None, names=[ ’ s ize ’ ] )
3 x = df [ ’ s ize ’ ] . values
4 x = x [x>0] # restrict attention to non-empty response (why do you think?)
5

6 #Exact solution
7 p = 1 / numpy.mean(x) # less danger of overflow than len(x)/sum(x)
8

9 #Numerical solution (using a scaled loglik, for numerical stability)
10 def log l ik (p, x ) :
11 return numpy. log(p) + (numpy.mean(x) − 1) * numpy. log(1−p)
12 init ial_guess = numpy. array ( [0 .5 ])
13 mle = scipy . optimize . fmin(lambda p: −l og l ik (p, x) , init ial_guess )
14 (p,) = mle #unpack mle, which is a list of length 1

For the normal distribuion: if X ∼ Normal(µ, σ2) then X is a continuous random variable with
The Normal distribution:
page 103 in the appendixprobability density function

PrX(x | µ, σ) = 1√
2πσ2

e−(x−µ)2/2σ2

where −∞ < µ < ∞ and 0 ≤ σ < ∞ are parameters. The log likelihood function given a dataset
x1, . . . , xn is

log lik(µ, σ | x1, . . . , xn) =
n∑

i=1

log PrX(xi | µ, σ)

=
∑
i

(
−1

2
log(2πσ2)− (xi − µ)2

2σ2

= −n

2
log(2π)− n logσ −

∑
i(xi − µ)2

2σ2
.

To find the maximum likelihood estimator, differentiate with respect to µ and σ and find where the
derivative is equal to zero. There are two parameters, so we have a pair of simultaneous equations to
solve:

d

dµ
log lik = −

∑
i 2(xi − µ)

2σ2
= 0

d

dσ
log lik = −n

σ
+

∑
i(xi − µ)2

σ3
= 0.

The solution is

µ̂ =

∑
i xi

n
, σ̂ =

√
1

n

∑
i

(xi − µ̂)2.
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15 #Exact solution
16 µ = np.mean(x)
17 σ = np. sqrt (np.mean(x−µ)**2)
18

19 #Numerical solution (using a scaled loglik, for numerical stability)
20 def log l ik (µ , σ , x ) :
21 return −numpy. log(σ) − numpy.mean((x−µ)**2) / (2*σ**2)
22 init ial_guess = numpy. array([2**20, 2**10])
23 mle = scipy . optimize . fmin(lambda θ : −l og l ik (θ [0 ] ,θ [1 ] , x) , init ial_guess )
24 (µ ,σ) = mle

We are asked “Which is the better fit?” The unstated goal is to find a random number generator
whose output is consistent with the dataset, so let’s evaluate this in the most straightforward way we
can think of: run the RNG to produce a synthetic dataset, then plot histograms of the real dataset
and the synthetic dataset, and compare them by eye. Better, plot multiple synthetic datasets for each
RNG—this shows us how much variability there is from one synthetic dataset to another, and lets us
judge whether the RNG could plausibly have produced the real dataset. This plot shows 20 synthetic
datasets for each RNG (which all overlap), and we can see that neither RNG is any good for this
dataset. (The normal distribution plot has a spike at 0: can you work out why, by looking at the code
below?)

0 10 20 30
lg size [bytes]

0

5000

10000

15000

20000

geometric

0 10 20 30

normal
dataset
synthetic

25 #Prepare a list with the two rngs –
26 # It’s good practice to separate data science logic from plotting logic.
27 rngs = [( ’geometric ’ , lambda n: numpy.random. geometric(p, s ize=n)) ,
28 ( ’normal ’ , lambda n: numpy.random.normal(µ ,σ , s ize=n)) ]
29

30 import matplotlib . pyplot as plt
31 with plt . rc_context({ ’ f igure . f i g s i ze ’ : (8 ,2) , ’ f igure . subplot .wspace ’ : 0.15}):
32 f ig = plt . f igure ()
33 for i , ( lb l , rng) in enumerate(rngs ) :
34 ax = f ig . add_subplot(1 , 2 , i+1)
35 #On a linear x-scale, nearly everying ends up in the lowest bin.
36 #The plot looks better if we use a log scale.
37 ax . hist (numpy. log2(x) , bins=numpy. arange(0 ,30) , color=’wheat ’ , label=’dataset ’ )
38 ax . set_tit le ( l b l )
39 #Generate 20 synthetic datasets, and superimpose them.
40 #We need maximum(y,1) for a log plot, in case the rng produces values ≤ 0

41 for j in range(20):
42 y = rng( len (x))
43 ax . hist (numpy. log2(numpy.maximum(y ,1)) , bins=numpy. arange(0 ,30) ,
44 histtype=’ step ’ , color=’k ’ , alpha=.2, label=’ synthetic ’ )
45 ax . set_ylim(0,24000)
46 i f i == 0:
47 ax . set_xlabel ( ’ lg s ize [ bytes ] ’ )
48 else :
49 ax . set_yticklabels ( [ ] )
50 handles , labels = ax . get_legend_handles_labels ()
51 handles [ 1 ] . set_alpha(1)
52 ax . legend(handles [ : 2 ] , labels [ : 2 ] , bbox_to_anchor=(1.1, 1) , loc=2, frameon=False)
53 plt .show()
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1.5. Custom distribuƟons

tl;dr. If there aren’t standard off-the-shelf distributions that fit our dataset, we can design our
own. A good way to design a distribution function is to plot the empirical cumulative distribution
function

F̂ (x) =
1

n

(
how many items there are ≤ x

)
.

and then design a cumulative distribution function F (x) = P(X ≤ x) that fits.
There is a universal way to generate a random variable given its cumulative distribution function,
called the inversion method.

It’s easy to plot the empirical distribution function: just sort the data and put it on the x-axis.

x

F̂ (x)

smallest 2nd
smallest

3rd
smallest

1/n

2/n

Example 1.10. I collected 69,719 lines from the request log of a webserver, and extracted the size
in bytes of the response content. The dataset can be found at https://teachingfiles.blob.
core.windows.net/founds/weblog_sizes.txt. Design a random number generator that fits
this distribution of sizes.

Lets start by plotting a histogram of file size, shown as (a) below. This is useless, because nearly all
sizes are tiny and a handful are gigantic, and the binning of the histogram hides all the detail. The
empirical distribution F̂ (x) is shown in (b). It’s still not showing very much detail because of the
scale, so I’ll apply the golden rule of engineering: “if you don’t like what you see, take logs”. In
(c) I’ve taken logs of the x axis. It looks like there’s a slowly decaying curve, perhaps something like
z 7→ 1− e−λz , so to see it more clearly I’ve switched in (d) to plotting 1− F̂ (x) on a log axis.

The dotted reference line in (d) is at 1/n where n is the size of the dataset—it marks ‘single
datapoint’. Every tick on the y axis corresponds to 100 times more datapoints. From this, we can read
off that the precipitous drop at the right hand side of (d) is around 50 datapoints, all with the same
very large size.

0.0 0.2 0.4 0.6 0.8
size [Bytes] 1e7

0

20000

40000

60000

histogram

(a)

0.0 0.2 0.4 0.6 0.8
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1.00
F

(b)

210 214 218 222
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0.00

0.25

0.50

0.75

1.00
F

(c)

210 214 218 222

size [Bytes]

10 4

10 2

100
1 F

(d)

Plot (d) looks like the data is trying to tell me that there are two straight lines (plus a handful of huge
files, which I’ll ignore for now), i.e. that for some parameters α, β, γ and θ which I can fit from the
data,

log(1− F̂ (x)) ≈ α− β logx− γ max(logx− θ, 0).

Here’s what the fit might look like. The slope on the left is −β, the slope on the right is −(β + γ),
and the slope changes at x = eθ. I split the data into 20 pieces and superimposed the empirical
distributions for each of them, to give a sense of how confident we should be in the exact shape.

https://teachingfiles.blob.core.windows.net/founds/weblog_sizes.txt
https://teachingfiles.blob.core.windows.net/founds/weblog_sizes.txt
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24 27 210 213 216 219 222 225

size [Bytes]
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10 3

10 2

10 1

100

1 F

The plot shows parameters fitted by eye, but they should really be fitted by maximum likelihood esti-
mation.

1 URL = ”https :// teachingf i les . blob . core .windows. net/founds/weblog_sizes . txt”
2 s izes = pandas . read_csv(URL, header=None, names=[ ’ s ize ’ ] ) [ ’ s ize ’ ] . values
3 x = numpy. sort ( s izes )
4 ef = numpy. arange(1 , len (x)+1)/len (x)
5

6 with plt . rc_context({ ’ f igure . f i g s i ze ’ : (8 ,2) , ’ f igure . subplot .wspace ’ : .4}):
7 f ig , (ax1 ,ax2 ,ax3 ,ax4) = plt . subplots (1 ,4)
8 ax1 . hist (x , bins=50)
9 ax1 . set_xlabel ( ’ s ize [Bytes ] ’ )
10 ax1 . set_tit le ( ’histogram ’ )
11 ax2 . plot (x , ef , drawstyle=’ steps−post ’ , linewidth=2)
12 ax2 . set_tit le ( ’$\hat{F}$ ’ )
13 ax3 . semilogx(x , ef , drawstyle=’ steps−post ’ , linewidth=2, basex=2)
14 ax3 . set_tit le ( ’$\hat{F}$ ’ )
15 ax4 . loglog (x , 1−ef , drawstyle=’ steps−post ’ , linewidth=2, basex=2, basey=10)
16 ax4 . axhline(1/len (x) , l ines ty l e=’dotted ’ , color=’0.3 ’ )
17 ax4 . set_tit le ( ’$1−\hat{F}$ ’ )
18 plt .show()
19

20 α , β , γ , θ = (1.5 , 0.4 , 0.5 , 11) #picked by eye
21 def F(x ) :
22 y = α − β*numpy. log(x) − γ*numpy.maximum(numpy. log(x)−θ , 0)
23 return 1 − numpy. exp(y)
24 newx = numpy.power(2 , numpy. linspace (3 ,26,200))
25 xsp l i t = numpy. array_split (numpy.random. permutation( s izes ) , 20)
26

27 for xs in xsp l i t :
28 efs = numpy. arange(0 , len (xs))/ len (xs)
29 plt . loglog (numpy. sort (xs ) , 1−efs , basex=2, basey=10, alpha=0.15, color=’ steelblue ’ , linewidth=2)
30 plt . loglog (newx, 1−F(newx) , basex=2, basey=10, l ines ty l e=’dotted ’ , linewidth=2, zorder=2, color=’black ’ )
31 plt . xlabel ( ’ s ize [Bytes ] ’ )
32 plt . t i t l e ( ’$1−\hat{F}$ ’ )
33 plt .show()

For this problem, we arbitrarily invented a “two straight line” distribution function. Why straight
lines, and why only two of them? Is there a systematic way to pick the best RNG to fit a dataset? This
is a fundamentally wrong-headed question, as we’ll see in section 2.6.

THE INVERSION METHOD

There is a universal way to generate a random variable given its cumulative distribution function,
called the inversion method. (1) Generate a simple random variable U ∼ Uniform[0, 1]. (2) Solve
F (X) = U for X . (3) That’s it, X has cumulative distribution function F . This plot shows why the
method works:
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1

0
x

F (x)

X ≤ x

U ≤ F (x)

it ensures that for every x the event {X ≤ x} is precisely the event {U ≤ F (x)}, which has probability
F (x). Intuitively, in regions where the density PrX is high then F will be steep, and so U is more
likely to hit those regions.

The inversion method requires us to solve F (X) = U , which is easy to do algebraically for
simple continuous functions like the two-straight-line fit we found earlier. The method is also cor-
rect for discrete random variables, whose step functions are staircases, but here we usually want an
algorithmic method3 for solving F (X) = U rather than algebra. One very easy case of inverting a
staircase will appear in section 2.6.

COMPARING DISTRIBUTIONS *

There is a sophisticated plot for comparing distributions, the q-q (quantile-quantile) plot.
Quantile is another name for percentile; the q-quantile of a random variable X is the value x

‘percentile’: section 1.2.
In Python, the quantile
function is called ppf:
appendix, page 101.

such that P(X ≤ x) = q, thus x = F−1(q) where F is the cumulative distribution function.
Suppose the two cumulative distribution functions we want to compare are F (x) and G(x).

The q-q plot shows F−1(q) against G−1(q) as q varies in the range [0, 1]. If the two distributions
are identical, this will produce a straight 45° line. The q-q plot is better than a histogram because it
doesn’t involve arbitrary binning.

Here is a q-q plot comparing the empirical distribution of the weblog file sizes (x-axis) to
the fitted Geometric and Normal distributions from section 1.4, and to the two-straight-line custom
distribution we’ve just calculated (y-axis). Our custom distribution is much better, except that it does
poorly for small values and large values. If we think hard about what the axes mean, we can read off:

• For x ≈ 27, the two-straight-line fit is producing too few values around x, compared to the data.
• For x > 224, the two-straight-line fit is producing too many values around x.
• The Geometric and Normal fits have the opposite problem.

26 213 220 227

23

28

213

218

223

228 geom
norm
twoline

1 p , µ , σ , α , β , γ , θ = . . . #estimated parameters from all the fits
2

3 n = len ( s izes )
4 q = numpy. arange(1 , n+1) / n
5

6 #To compare an empirical distribution to a theoretical distribution, pick q ∈ {1/n, 2/n, . . . }
7 #Then, F̂−1(i/n) is just the ith smallest value in the dataset,

3For a discrete distribution over a finite set of n outcomes, there is an obvious brute force algorithm that preprocesses the
list of outcomes and then takes O(logn) to generate a random value; there is also an elegant algorithm called the alias method
which takes O(1) to generate a random value.
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8 # so there’s no need for any tricky interpolation.
9

10 f ig , ax = plt . subplots ()
11 ax . loglog ([2**1,2**30] ,[2**1 ,2**30] , color=’0.8 ’ )
12 ax . loglog (numpy. sort ( s izes ) , scipy . stats .geom. ppf(q, p=p) , label=’geom’ , l ines ty l e=’dashed ’ , linewidth=2, color=’0 ’ )
13 ax . loglog (numpy. sort ( s izes ) , scipy . stats .norm. ppf(q, loc=µ , scale=σ ) , label=’norm’ , l ines ty l e=’dotted ’ , linewidth=2, color=’0 ’ )
14 #Let twoline_ppf be the quantile function for the two-straight-line fit
15 ax . loglog (numpy. sort ( s izes ) , twoline_ppf(q, α , β , γ , θ) , label=’ twoline ’ , basex=2, basey=2, color=’blue ’ )
16 ax . legend()
17 ax . set_aspect( ’ equal ’ )
18 ax . legend(bbox_to_anchor=(1.1, 1) , loc=2, frameon=False)

* * *

In advanced machine learning, it becomes important to be able to measure how close two distributions
are. One of the most important measures is called the Kullback-Leibler divergence. It has deep links
to average log likelihood, which will be touched on in section 3.3.2.
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1.6. Fiƫng a model

tl;dr. A multivariate dataset contains records each consisting of a tuple of values. Think of it as
a spreadsheet: each row is a record, and the columns are fields in the tuple.
Often we want to understand how one item in the tuple depends on the others. The item we
want to understand is called the response variable or label and the others are called covariates
or predictors.
We might invent a probabilistic model in which we treat the response as a random variable, whose
distribution depends on both the covariates and on unknown parameters. This is called a regres-
sion model. We can use maximum likelihood estimation to estimate the unknown parameters;
this is called fitting the model.

This is all there is to much of machine learning, especially Kaggle-style competitions—the art is
inventing models that fit the data well, and for which the parameters give insight.

Exercise 1.11 (Binomial regression model).
The UK Home Office makes available several datasets of police records, at data.police.uk.
The stop-and-search dataset has been preprocessed to list the number of stops and the number of
those that led to the police finding something suspicious, for each police force and each year.

police_force year stops find

bedfordshire 2017 786 231
cambridgeshire 2016 1691 621
cambridgeshire 2017 581 264

Fit the model Yi ∼ Binom(xi, p) where Yi is the number of ‘find’ incidents in a given police
force and year, xi is the number of stops, and p is the parameter to estimate.

The binomial distribution is a discrete random variable commonly used for counting the number of
Binom is for the
Binomial random
variable: appendix
page 102

successes in a sequence of yes-no trials. If X ∼ Binom(n, p) then n is the number of trials, 0 ≤ p ≤ 1
is the success probability, and the probability mass function is

PrX(r | n, p) =
(
n

r

)
pr(1− p)n−r, r ∈ {0, . . . , n}.

We’ll assume the records in the dataset are independent, since we’re not told otherwise. In maths
notation,

Pr(y1, . . . , yn | p) =
n∏

i=1

(
xi

yi

)
pyi(1− p)xi−yi .

(Covariates are fixed and known so we’re treating them as constants in this equation, not as parame-
ters.) The log likelihood is

log lik(p | y1, . . . , yn) =
∑
i

(
log
(
xi

yi

)
+ yi log p+ (xi − yi) log(1− p)

)
= κ+

(∑
i

yi

)
log p+

(∑
i

xi −
∑
i

yi

)
log(1− p)

where κ is a constant i.e. doesn’t depend on p. The maximum likelihood estimator for p solves

d

dp
log lik(p | y1, . . . , yn) = 0

and the solution is
p̂ =

∑
i yi∑
i xi

.

This is not a very interesting model. The only slightly non-obvious thing it’s told us is “don’t
estimate p separately for each police force and year, then average these estimates; instead estimate
p from the whole aggregated data”. The modelling exercise becomes much more interesting when
we use it to investigate the influence of multiple covariates, e.g. how gender and race interact. See
section 4.1 for a deeper investigation.

data.police.uk
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Example 1.12 (SoŌmax cross-entropy loss funcƟon *).
The ImageNet dataset consists of over 14 million images, each hand-annotated with a label. Here
are some sample rows:

image category

”otter”

”otter”

”cello”

Suppose we’ve built a machine learning algorithm, e.g. a deep convolutional neural network,
which takes an image as input and outputs a vector of real-valued scores

(
s1(x), . . . , sK(x)

)
where x is an image, sk(x) is its score for label k, and K is the number of labels. Suppose that
this algorithm has parameters that we’d like to estimate from the data.

A data scientist’s first instinct is to invent a probability model. The scores are real values,
perhaps not in the range [0, 1], so we can’t use them directly as probabilities. Here’s a handy
trick: define probabilities by

pk(x) =
esk(x)

es1(x) + · · ·+ esK(x)
.

This is just an algebraic gimmick, a way to map a vector in RK to probability vector, and it
doesn’t have any deeper meaning. Any such map would work as long as it’s differentiable. This
particular map is called softmax in machine learning and multinomial logit in statistics.

Now, let’s propose the probability model

P(Yi = y | θ) = py(xi), y ∈ {1, . . . ,K}

where xi is the ith image in the dataset, Yi is a random variable for what the label might have
been, and θ is the vector of parameters that we want to estimate. (We should really write py(xi |θ)
to emphasize that the scoring algorithm depends on the unknown parameters, but the equations
get cumbersome.) A fancy way to write this is

P(Yi = y | θ) = p1(xi)
1y=1p2(xi)

1y=2 · · · pK(xi)
1y=K =

K∏
k=1

pk(xi)
1y=k

where 1{·} stands for the indicator function, 1true = 1 and 1false = 0.
The log likelihood of θ given n image labels (y1, . . . , yn) is

log lik(θ | y1, . . . , yn) =
n∑

i=1

K∑
k=1

1yi=k log pk(xi),

and we should pick θ to maximize this. In machine learning, it’s more common to see it written
as a loss function, L(θ) = − log lik(θ | y1, . . . , yn), and we should pick θ to minimize loss. This
particular loss function is called “softmax cross entropy”.

In this problem there’s no hope of solving for the maximum likelihood estimator using calculus and
algebra, for anything other than the most trivial score functions. For deep neural networks, θ represents
the link weights in the network, and the score function is decidedly non-trivial, and libraries such as
TensorFlow are used to find a numerical solution.

What is deeply mysterious in this example is where the probability model comes from. The
concept of likelihood only makes sense in a world of probability, but all we were given is a dataset, so
we invented a counterfactual multiverse of what might have been. What’s the sense in saying that the
first image in the table above might have had some other label like ”stoat” or ”furniture”? Despite the
philosophical shakiness, this seems to work—it’s the best approach we have so far for training deep
neural networks.
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2. How random variables behave
This section of the course is all about numerical random variables. What makes them particularly
useful is that they can be summed and averaged, which lets us define their expectation. They’re so
useful that we often write ‘random variable’ to mean ‘numerical random variable’, and use other
wording when it’s not numerical.

2.1. Mean and variance

tl;dr. The mean or expectation of a random variable X is

EX =

{∑
x xPrX(x) for a discrete random variable∫

x
xPrX(x) dx for a continuous random variable.

The variance and standard deviation are

VarX = E
(
(X − EX)2

)
, std. dev(X) =

√
VarX.

The conditional expectation given either an event A or a random variable Y is4

E(X |A) =
∑
x

x PrX(x |A) when P(A) > 0

E(X | Y = y) =
∑
x

x PrX(x | Y = y) when PrY (y) > 0

(and if X is a continuous random variables, just replace the sum by an integral).

Here are some useful properties about mean and variance. First, a link between probability and ex-
pectation:

1{·} stands for the
indicator function,
1true = 1 and 1false = 0.
Sometimes it’s written
1[·].

E 1X∈A = 1×P(1X∈A=1) + 0×P(1X∈A=0) = P(X ∈ A). (3)

For all constants a and b, and for any two random variables X and Y ,

E(aX + b) = a(EX) + b

E(X + Y ) = (EX) + (EY ). (4)

These two equations are known as “linearity of expectation”. Also, for all constants a and b,

Var(aX + b) = a2 VarX (5)
std. dev(aX + b) = a std. dev(X).

For any two independent random variables X and Y ,

E(XY ) = (EX)(EY )

Var(X + Y ) = VarX + VarY (6)

std. dev(X + Y ) =
√

std. dev(X)2 + std. dev(Y )2.

WhenX and Y are not independent, it is sometimes useful to measure their dependence by covariance
or correlation,

Cov(X,Y ) = E
(
(X − EX) (Y − EY )

)
, corr(X,Y ) =

Cov(X,Y )

std. dev(X) std. dev(Y )
.

For a function of a random variable Y = h(X), there are two ways to work out its expectation:

EY =
∑
y

y PrY (y) =
∑
x

h(x) PrX(x) (7)

4The definition of E(X | Y = y) is subtle, when Y is a continuous random variable. The event {Y = y} has probability
0 for every y, so the straightforward definition of conditional expectation doesn’t work.
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(with sums replaced by integrals for continuous random variables). The first version is the definition
of expectation, and the second version is often easier to calculate. This equality is called the law of
the unconscious statistician, because it’s easy to interchange the two versions without even realising
one is doing so.

All the properties above also apply to conditional expectation. There is one extra property,
the law of total expectation, analogous to the law of total probability. Again, replace the sum by an

law of total probability:
P(A) =∑

x PrX(x) P(A|X =
x), page 6

expectation for a continuous random variable.

EX =
∑
y

E(X | Y = y) PrY (y) .

CONDITIONING ON A RANDOM VARIABLE *

When we write a conditional expectation given a random variable, E(X | Y ), we mean

“Define h(y) = E(X | Y = y) then return h(Y )”

This is a random variable—it’s a function of Y , and Y is a random variable. It is analogous to how we
Probability conditional
on a random variable:
page 7

defined probability conditional on a random variable With this notation the law of total expectation
can be rewritten as

EX = E
(
E(X | Y )

)
. (8)

Sometimes this is written EX = EY (EX | Y ), to emphasize that the outside expectation is over
values of Y . Combining it with indicator functions, equation (3), gives a neat way of writing the law
of total probability:

P(X ∈ A) = E 1X∈A = EY

(
E 1X∈A | Y

)
= EY P(X ∈ A | Y ).

* * *

Example 2.1 (Centering and scaling).
Let X be a random variable, µ = EX and σ = std. dev(X): then

E
(X − µ

σ

)
=

EX

σ
− µ

σ
= 0 by linearity of expectation

Var
(X − µ

σ

)
=

VarX
σ2

= 1 by the rule for variance, equation (5).

For this reason, (X − µ)/σ is called the centered and scaled version of X .

Exercise 2.2. Show that VarX = E(X2) − (EX)2. Use this to calculate the variance of a
Binom(1, p) random variable.

The first part of the question is straight algebra, starting with the definition of variance:

VarX = E
(
(X − EX)2

)
by definition of variance

= E(X2 − 2Xµ+ µ2) where µ = EX

= E(X2)− 2µEX + µ2 by linearity of expectation
= E(X2)− µ2.

If X ∼ Binom(1, p) then
Binomial distribution:
appendix page 102

X =

{
1 with probability p
0 with probability 1− p

so EX = p. Also X2 = X because it only takes values 0 and 1, thusEX2 = p, so VarX = p−p2 =
p(1− p).
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2.2. A rule of thumb for confidence intervals

tl;dr. Here’s a rule of thumb that’s accurate in a surprisingly wide range of circumstances: a
random variable X can be approximated by

X ≈Normal(µ, σ2) where µ = EX , σ2 = VarX
and so P

(
µ− 1.96σ ≤ X ≤ µ+ 1.96σ

)
≈ 95% . (9)

(This is why variance is a useful measure of variability.)

If X ∼ Normal(µ, σ2) then the confidence interval (9) is exact; and also

aX + b ∼ Normal(aµ+ b, a2σ2) for constants a and b

X + Y ∼ Normal(µ+ ν, σ2 + ρ2) if Y is an independent Normal(ν, ρ2).

The approximate confidence interval is so useful and simple that it can’t possibly be always true—
but what’s remarkable is that it’s often nearly true. We’ll see circumstantial evidence for why the
approximation is so good in section 2.3.

Example 2.3. Let X ∼ Bin(1, 1/2), i.e. X = 0 with probability 1/2 and X = 1 with proba-
bility 1/2. The rule of thumb suggests X ≈ Normal(1/2, 1/4), and a 95% confidence interval
[−0.48, 1.48]. This is clearly rubbish. The rule of thumb doesn’t work very well when all we’re
interested in is a single simple random variable.

Exercise 2.4. I throw a die 100 times and compute the total score. What range of values should
I expect, assuming the rule of thumb holds?

Let X be the outcome of a single throw. We can explicitly calculate its mean and variance:

EX = 1× 1/6 + 2× 1/6 + · · ·+ 6× 1/6 = 7/2,

VarX = (1− 7/2)2 × 1/6 + · · ·+ (6− 7/2)2 × 1/6 = 35/12.

Let Y be the sum of 100 independent copies of X . By the rules for mean and variance of sums of
independent random variables, equations (4) and (6),

EY = 100× 7/2, VarY = 100× 35/12.

Using the normal approximation, Y ≈ Normal(700/2, 3500/12). Applying the rule of thumb, we are
95% confident that Y lies in the range [316, 384].

Example 2.5 (Arbitrary confidence intervals).
Assuming that a random variable X can be approximated by Normal(EX,VarX), find γ such
that

P
(
EX − γ std. dev(X) ≤ X ≤ EX + γ std. dev(X)

)
≈ 99% .

Give γ in terms of the scipy.stats.norm.ppf library routine, which returns Φ−1(x) where Φ is
the cumulative distribution function for a Normal(0, 1) random variable. Explain your answer
carefully.

This question requires us to unravel the thinking behind the rule of thumb, equation (9). The reference
to Φ suggests we have to relate X to a Normal(0, 1) random variable. We’re told

X ≈ Normal(µ, σ2) where µ = EX, σ = std. dev(X).

Thus
aX + b ≈ aNormal(µ, σ2) + b ∼ Normal(aµ+ b, a2σ2)
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and by choosing a = 1/σ and b = −µ/σ we get

X − µ

σ
≈ Normal(0, 1).

Now we have to figure out how to use the ppf function. A quick look at the density function shows us
that the Normal(0, 1) distribution is symmetric about 0, so in order for

P(−γ ≤ Normal(0, 1) ≤ γ)

to be a 99% confidence interval we should pick γ so as to put 0.5% of the probability mass on each of
the tails, i.e.

−γ = ppf(0.005) and γ = ppf(0.995).
Reassuringly both of these equations yield the same value, γ = 2.58. Putting all of this together,

P
(
−γ ≤ X − µ

σ
≤ γ

)
≈ 99%.

All that’s left is to rearrange the inequalities:

(X − µ)/σ ≤ γ ⇐⇒ X ≤ µ+ γσ

(X − µ)/σ ≥ −γ ⇐⇒ X ≥ µ− γσ

thus
P
(
µ− γσ ≤ X ≤ µ+ γσ

)
≈ p for γ = ppf((1 + p)/2).

Exercise 2.6 (StaƟsƟcal mulƟplexing).
For most traffic flows on the Internet, the rate at which the server sends data is controlled by
the TCP algorithm. It aims to detect Internet congestion, and it adjusts the data rate to strike a
balance between ‘use all available capacity’ and ‘don’t cause overload’. It does this by steadily
increasing the sending rate (increasing it by 1 packet per round trip time, every round trip time)
until a packet is dropped, which signifies congestion, whereupon it cuts the sending rate in half.
This produces the characteristic “TCP sawtooth”.

Suppose a network operator wants to build in enough capacity to support 1000 users each
running at 30 kB/sec. How much capacity is needed? In the worst case the sawteeth might all be
aligned, giving a peak rate of 40 MB/sec. (To find this, let xpeak be the peak rate. The trough then
is xtrough = xpeak/2 because of TCP’s congestion rule. The average is x = (xtrough+xpeak)/2 and
this we’re told is 30 kB/sec. Solving for xtrough and xpeak gives xtrough = 2x/3 and xpeak = 4x/3
which is 40 kB/sec.) Intuitively we might guess that perfect alignment is unlikely, and that the
troughs on one sawtooth are likely to cancel out the troughs on another. This is called statistical
multiplexing. How much statistical multiplexing should we expect?

Hint. Consider an arbitrary instant in time, and let X1, . . . , Xn be the sending rate of each
of the n = 1000 flows at this time. Each Xi might take any value between the trough and the
peak, and each value is equally likely, so take Xi to be a Uniform(2x/3, 4x/3) random variable.
Find a 95% confidence interval for X1 + · · ·+Xn.
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2.3. Convergence theorems

tl;dr. Let X1, X2, . . . be independent identically distributed random variables. Let X̄n be the
average of the first n of these,

X̄n =
X1 + · · ·+Xn

n
.

Then

X̄n → µ as n → ∞ (10)

and furthermore X̄n ≈ Normal
(
µ,

σ2

n

)
(11)

whereµ = EX and σ = std. dev(X), andX is the common distribution of theXi. Equation (10)
is called the law of large numbers, and (11) is called the central limit theorem.

The rest of this section makes precise exactly what we mean by → in (10) and by ≈ in (11). It’s (only
just!) beyond the scope of this course to prove the central limit theorem, but we will prove a version
of the law of large numbers.

Before being rigorous, let’s get intuition for where the parameters in (11) come from. In sec-
tion 2.2 we saw a general purpose rule of thumb, X ≈ Normal(EX, VarX) — and also saw that it
can be crummy for a single random variable! If it did apply here then Xi ≈ Normal(µ, σ2) and so,
using the rules in section 2.2 for adding and scaling normal random variables,

X1 + · · ·+Xn ≈ Normal(nµ, nσ2) =⇒ X̄n ≈ Normal
(
µ,

σ2

n

)
.

I find it easier to remember the rule of thumb than to remember exactly where n goes in equation (11).
What’s the relationship between the law of large numbers and the central limit theorem? It looks

like (11) implies (10), and that’s a good way to think about it. There are however some mathematical
niceties which make it worth separating the two: for example, there are some random variables with
σ = ∞ where (11) becomes useless but where (10) still applies.

LAW OF LARGE NUMBERS

We want to prove that X̄n → µ. Let’s calculate the probability that they differ by more than some
amount ε > 0:

P
(
|X̄n − µ| > ε

)
= P

(
(X̄n − µ

)2
ε2

> 1

)
by simple algebra

= E
(
1
[ (X̄n − µ)2

ε2
> 1
])

from page 17, E 1A = P(A)

x

1x>1

x

≤ E
( (X̄n − µ)2

ε2

)
since 1x>1 ≤ x for x ≥ 0

=
1

ε2
Var X̄n by linearity of E and definition of Var

=
1

n2ε2
n VarX by linearity of Var, and independence

= σ2 / nε2

→ 0 as n → ∞.

Thus X̄n approaches µ as n → ∞; and the smaller σ the smaller the error is likely to be. The central
limit theorem additionally lets us find a confidence interval for the error.

This result, that P(|X̄n − µ| > ε) → 0, is known as the weak law of large numbers. There is
related result which says P(X̄n → µ) = 1, called the strong law of large numbers. The strong law
implies the weak law, but is harder to prove.
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CENTRAL LIMIT THEOREM

Consider
√
n(X̄n − µ). It’s easy to use the rules for mean and variance to check that

E
(√

n(X̄n − µ)
)
= 0 , Var

(√
n(X̄n − µ)

)
= σ2.

It can be proven (assuming σ < ∞) that

P
(√

n(X̄n − µ) ≤ x
)
→ P

(
Normal(0, σ2) ≤ x

)
as n → ∞ for all x.

This is the precise meaning of the approximation (11).

CONVERGENCE IN DISTRIBUTION *

Suppose we have a sequence of random variables Y1, Y2, . . . and another random variable Y , and

P(Yn ≤ y) → P(Y ≤ y) for all y where the c.d.f. of Y is continuous.

Then we say that the Yi converge in distribution to Y . The central limit theorem says that
√
n(X̄n−µ)

converges in distribution to Normal(0, σ2).
The weak law of large numbers is also a statement about convergence in distribution: it says

that X̄n converges in distribution to the “constant-valued random variable” µ. In maths,

P(X̄n ≤ x) →

{
0 if x < µ

1 if x > µ
as n → ∞.
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2.4. Monte Carlo integraƟon

tl;dr. Let X be a random variable, and suppose we’re interested in Eh(X) for some function h.
If it’s difficult to calculate exactly, we can approximate it by

Eh(X) ≈ 1

n

n∑
i=1

h(Xi)

where X1, . . . , Xn is a random sample drawn from distribution X . This is called Monte Carlo
integration. As a special case,

P(X ∈ A) = E 1X∈A ≈ 1

n

n∑
i=1

1Xi∈A.

Monte Carlo integration is just a direct application of the limit theorems from section 2.3—so let’s
focus on what it’s used for.

AN APPLICATION

In computer graphics rendering and shading, we can compute the colour of a pixel on the screen by
reasoning about light rays. First figure out the surface point Q that is to be shown at pixel P , by
casting a ray from the camera through P and finding what surface it hits. Then figure out the colour
and shading of Q by adding up all the light rays that might be illuminating it and reflecting out through
P .

Q

P

The surface might be perfectly reflective, or perfectly diffuse, or more generally we can model it with
a specular lobe function BRDF(θ, ϕ), which measures how much light is emitted at angle ϕ when it
comes in at angle θ.

θϕ

When we take into account the intensity of light glancing the surface as a function of angle θ, the total
light reflected at angle ϕ, from a point light source of intensity I , is

I cos(θ)BRDF(θ, ϕ).

If illumination comes from an area light source, then we treat it as a though the total intensity I is
smeared across a set of point light sources:

x0

x1

area light source

ϕ

dQ
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reflected light
at angle ϕ =

∫ x1

x=x0

I

x1 − x0
cos
(
tan−1(d/x)

)
BRDF

(
tan−1(d/x), ϕ

)
dx.

Let’s streamline this expression. Define

h(x) = I cos
(
tan−1(d/x)

)
BRDF

(
tan−1(d/x), ϕ

)
so that the integral we want is ∫ x1

x=x0

1

x1 − x0
h(x) dx .

This is exactly Eh(X) where X ∼ Uniform[x0, x1]. The Monte Carlo procedure says we can approx-
imate it by taking a random sample X1, . . . , Xn from distribution X and computing the average of
h(Xi). In words,

reflected light
at angle ϕ ≈ 1

n

n∑
i=1

light due to a simulated ray coming from
a random point Xi on the light source.

WHY DOES THIS WORK?

He’s some intuition about why this method works, for the case where X is a uniform random variable.
Suppose we’re interested in the integral ∫ b

x=a

1

b− a
h(x) dx .

The method you might have learnt at school is to split the x range into n equally sized pieces, and
approximate the function by a series of rectangles, e.g. taking the height of the rectangle to be the
value of h at the midpoint.

≈ 1

n

n∑
i=1

h(xi), where xi = a+
b− a

n

(
i− 1/2

)
.

But there’s actually nothing special about sampling h at grid points. Why not just pick the sampling
points at random? In other words, pick n independent Uniform[a, b] random variables X1, . . . , Xn,
and approximate

≈ 1

n

n∑
i=1

h(Xi).

Here’s a different intuition, for the case of estimating P(X ∈ A). Imagine throwing darts
randomly at a dartboard5. The distribution of where the dart lands is probably a Normal random
variable, centered near the middle of the dartboard, and with a standard deviation that reflects your
skill at darts. The probability density is shown by shading in the picture.

5The word stochastic, a synonym for random, derives from the Greek word στόχος meaning ‘aim, guess’.
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Now imagine there’s a picture of a weasel painted on the dartboard. What’s the probability that a
randomly thrown dart will hit the weasel? There’s an easy way to estimate this probability: throw
lots of darts, and count what fraction of them hit the weasel. That’s all there is to the Monte Carlo
probability estimate

P(X ∈ A) ≈ 1

n

n∑
i=1

1Xi∈A.

HOW ACCURATE IS IT?

As a sanity check, does the Monte Carlo estimator even have the right expectation? By linearity
of expectation, and using the fact that the Xi are a random sample i.e. independent and identically
distributed,

E
( 1
n

n∑
i=1

h(Xi)
)
=

1

n

∑
i

Eh(Xi) = Eh(X).

We can be more precise. Applying the central limit theorem to Yi = h(Xi),

1

n

n∑
i=1

Yi ≈ Normal
(
µ,

σ2

n

)
where µ = EY = Eh(X) and σ = std. dev(h(X)). By the standard confidence interval for a Normal

Confidence interval for
Normal: page 19random variable, the error of the Monte Carlo estimator is O(σ/

√
n).

* * *

We’re using Monte Carlo to approximate µ. It’s even harder to use maths to calculate σ than it
is to calculate µ, so the error bound O(σ/

√
n) isn’t something we can use directly. But why not just

estimate σ with the Monte Carlo method?—it’s just

σ2 = E(X − µ)2 ≈ 1

n

n∑
i=1

(Xi − µ)2

and we can plug in the Monte Carlo estimate for µ also. In the computer graphics example, we could
keep generating more light rays and keep a running estimate of σ, and stop when it implies the error
is small enough as to be imperceptible.
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2.5. Importance sampling *
ApplicaƟon. In the computer graphics problem of Section 2.4, we studied how to use Monte Carlo
integration to calculate the reflected light seen by a viewer at a certain pixel.

x0

x1

area light source

The answer we want is an integral, and it can be approximated by∫ x1

x=x0

1

x1 − x0
h(x) dx ≈ 1

n

n∑
i=1

light h(Xi) from a simulated ray coming from
a random point Xi on the light source

where h(x) is some complicated formula involving the specular characteritsics of the surface and the
angle of illumination. We found that the approximation error is of the order of σ/

√
n, where σ is the

standard deviation of the answer from a single light ray, σ = std. dev(h(X1)).
This suggests two questions. First, is there a way to change the simulation to reduce σ? Second,

if it’s a highly reflective surface, then there isn’t any need to simulate the entire light source, since only
a few pieces of it will end up reflected into the eye of the viewer: how can we change the simulation
to achieve this? It turns out that these two questions are asking exactly the same thing.

Let’s try tweaking the simulated light rays. Physics tells us that the BRDF function is symmet-
rical. Consider picking a random point Y on the light source, but not uniformly at random: pick it
instead so that angles closer to the center of the specular lobe are more likely. This way we won’t
waste time simulating lots of light rays that don’t reflect much in the direction we care about. But
we’ll need to compensate for this change in distribution. How?

* * *

General procedure. Suppose we wish to approximate Eh(X) using Monte Carlo integration, and
suppose we have a tilted distribution X̃ we’d like to simulate from. (In the ray tracing application, X
is uniformly distributed over the light source and X̃ is some other distribution, it doesn’t matter what,
that aims to produce more useful simulated light rays.) Now consider the random variable

Y = h(X̃)
PrX(X̃)

PrX̃(X̃)
.

This is cunningly designed with a correction factor so that

EY =

∫
x̃

h(x̃)
PrX(x̃)

PrX̃(x̃)
PrX̃(x̃) dx̃ =

∫
x̃

h(x̃) PrX(x̃) dx̃ = Eh(X).

Thus we can use Monte Carlo integration, with a random sample drawn from X̃:

Eh(X) ≈ 1

n

n∑
i=1

h(x̃i)
PrX(x̃i)

PrX̃(x̃i)
. (12)

This is called importance sampling. It doesn’t matter what distribution we choose for X̃ , we always
get Eh(X) thanks to the correction factor.

Now, we have a whole design space of tilted distributions to choose from. We should choose the
distribution of X̃ to minimize VarY . It’s surprisingly easy to design the optimal tilted distribution.
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First, VarY = E(Y − µ)2 = EY 2 − µ2 where µ = EY doesn’t depend on the tilted distribution, so
the only term left to minimize is

E
(
h(X̃)

PrX(X̃)

PrX̃(X̃)

)2

=

∫
x̃

(
h(x̃) PrX(x̃)

PrX̃(x̃)

)2

PrX̃(x̃) dx̃ =

∫
x̃

h(x̃)2 PrX(x̃)2

PrX̃(x̃)
dx̃

and it turns out (using some standard tools from optimization theory) that to minimize this we should
pick a distribution for X̃ with

PrX̃(x̃) ∝ h(x̃)PrX(x̃). (13)

Now the bad news: sampling from this optimal distribution is hard. In fact it’s exactly as hard as
solving the original problem—if we want to use the inversion method, we have to first find the cumu-

The inversion method,
section 1.5, is for
sampling from an
arbitrary distribution
function

lative distribution function by integrating the density h(x̃) PrX(x̃), which is nothing other than finding
Eh(X)!

* * *

Importance sampling is useful as a heuristic, even if we don’t manage to get the perfect tilted
distribution. Equation (13) says “Try to sample from a distribution that tilts the original distribution
of X in favour of values with larger h(x)”, and equation (12) says “No matter how you sample, you’ll
still get the right answer (for large enough n).” If the tilting is good, it will give the right answer for
small n.

The importance sampling heuristic, applied to distributed ray tracing and taking account of
indirect illumination, is “To work out the shading at a point Q, sample light rays by following them
backwards; pick a random incoming angle at each bounce, and heuristically try to pick an angle in
proportion to how much light is expected from that angle.”

This is why specular-to-diffuse lighting is tricky: the question “which angle is likely to give
most illumination?” can’t be answered with only local knowledge at the diffuse surface.6

76

Handing indirect illumination: 2

light

light

ª diffuse to diffuse
u handled by radiosity

n covered in the Part II 
Advanced Graphics 
course

ª specular to diffuse
u handled by no usable 

algorithm
u some research work has 

been done on this but 
uses enormous amounts 
of CPU time

6Slide from IA Introduction to Graphics.
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2.6. The empirical distribuƟon

tl;dr. The empirical distribution of a dataset x1, . . . , xn is

P̂(A) =
1

n

(
how many items there are ∈ A

)
and the empirical cumulative distribution function for a numerical dataset is

F̂ (x) =
1

n

(
how many items there are ≤ x

)
The zen of data science is in seeing datasets and random variables as two sides of the same coin.
Empirical distributions are probability distributions.

• When the true distribution is unknown, we can use the dataset’s empirical distribution
instead. There’s no need to approximate the dataset by fitting a standard random variable,
when we can just resample from the dataset.

• When the true distribution is intractable, we can approximate it by the empirical distribu-
tion of a random sample. Instead of getting bogged down with integrals, we just use Monte
Carlo integration.

RESAMPLING

Suppose we’re given a dataset, and we want to find a distribution that it might have come from. In
sections 1.4 and 1.5 we took the approach “Consider a family of distribution functions Fθ(x) with
some parameter θ, and pick a specific parameter value θ̂ using maximum likelihood; this should make
F̂ (x) ≈ Fθ̂(x).”

When all we have is a dataset, how do we choose which family of distributions to fit? Sometimes
there are sound scientific reasons for choosing a particular family, and our goal is to integrate this
background scientific knowledge with the dataset at hand. If there is no background science, then it’s
daft to use the data to fit a parameterized distribution function when a perfect fit is staring us in the
face, namely the empirical distribution itself! This is a perfectly valid cumulative distribution function
(it starts at 0, and ends at 1, and is increasing) and it fits the data perfectly.

We can sample from the empirical cumulative distribution function using the inversion method
(section 1.5)—and a moment’s thought tells us that this is exactly the same as picking a value at random
from the dataset, each item in the dataset equally likely. This is called resampling.

x

F̂ (x)

U

X = F−1(U)

dataset

When should we use parametric models and when should we use the dataset itself, in the form
of the empirical distribution? There are no general rules.

• A dataset cannot tell us about values beyond the dataset. This has to come from our background
knowledge or intuition. Integrating datasets and background knowledge is an art. We’ll see
many more examples in section 3.

• A parametric distribution saves space: it only needs us to store a handful of parameters, rather
than the full dataset. But this is often a premature optimization. For a small dataset of a few
tens of thousands of values, on a modern computer, you should spend your time thinking about
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modeling and not about optimizing storage. For a large dataset, a model with a handful of
parameters cannot hope to capture the richess of the data.

• Neural networks are parametric models. A neural network trained for simple image classifica-
tion might take 140 million parameters, one for each connection in the network. The human
brain has roughly 1015 connections, and a human lifetime is roughly 2.5×109 seconds. It seems
that making sense of data is more about what you do with it than how you can compress it.

• High-dimensional modeling, i.e. modeling with more parameters than there are samples in the
dataset, is an area of active research.

Example 2.7 (Exact resampling).
Given a dataset x1, . . . , xn, let X∗ be a random variable drawn from the empirical distribution
of the dataset. Show that

EX∗ =
1

n

n∑
i=1

xi VarX∗ =
1

n

n∑
i=1

(xi − x̄)2 where x̄ = EX∗.

This is one of those questions where it’s hard to tell if the answer is so obvious it doesn’t need any
justification, or so subtle it needs careful justification. Let’s be careful.

As noted above, X∗ can be generated by picking a value at random from the dataset, each item
equally likely, i.e. we can generate it byX∗ = xI where I is a uniform random variable on {1, . . . , n}.
By the law of the unconscious statistician, with the function h(i) = xi, Law of the unconscious

statistician: equation (7)
page 17

EX∗ =
N∑
i=1

h(i)P(I = i) =
1

n

∑
i

xi

and VarX∗ = E(X∗ − EX∗)2 can be calculated similarly.

MONTE CARLO APPROXIMATION

Monte Carlo integration is a method for approximating an expectation,

Eh(X) ≈ 1

n

n∑
i=1

h(Xi)

where X1, . . . , Xn is a random sample drawn from distribution X . Another way to write this (for a
discrete random variable X) is ∑

x

PrX(x)h(x) ≈
∑
x

P̂ (x)h(x)

where P̂ is the probability mass function for the empirical distribution.
This way of writing it emphasizes a functional programming view of Monte Carlo integration:

Eh(X) can be thought of as an operation which takes as input a probability distribution and returns
a value,

Ψ : P 7→
∑
x

P (x)h(x).

Assuming the empirical distribution P̂ is close to the true distribution PrX , we expect Ψ(PrX) ≈
Ψ(P̂ ).

In other words, if our job is to perform some operation on a probability distribution but this
operation is too hard, we can take a random sample, get its empirical distribution, and perform the
operation on the empirical distribution rather than on the true distribution. This is the basis for all
sorts of approximation algorithms throughout machine learning and data science. We’ll apply it to
inference problems in section 3.2, and we’ll see an application to robotics and computer vision in
section 6.4.

EMPIRICAL DISTRIBUTION ≈ TRUE DISTRIBUTION

In sections 1.4 and 1.5 we looked at the problem of fitting a probability distribution to a dataset. The
unstated assumption in section 1.5 was that the true cumulative distribution function should be close to
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the empirical version. Now, having learnt about convergence theorems in section 2.3, let’s investigate
this assumption.

Exercise 2.8. Consider a random sample X1, . . . , Xn, independent random variables with com-
mon distributionX , and letF (x) = P(X ≤ x). Let F̂n(x) be the empirical distribution function.
Find a confidence interval for F̂n(x) in terms of F (x).

The definition of F̂n(x) is
F̂n(x) =

1X1≤x + · · ·+ 1Xn≤x

n

which is crying out for the central limit theorem to be applied. The result is

F̂n(x) ≈ Normal
(
µ,

σ2

n

)
where µ = E 1X≤x, σ

2 = Var 1X≤x.

We’ve worked out both of these quantities in section 2.1:

µ = E 1X≤x = P(X ≤ x) = F (x) from equation (3) page 17
σ2 = Var 1X≤x = F (x)

(
1− F (x)

)
from exercise 2.2 page 18.

Thus a 95% confidence interval for F̂n(x) is

P
(
F̂n(x) is in the range F (x)± 1.96

√
F (x)(1− F (x))

n

)
≈ 0.95.

Here is an illustration, 20 random samples of size 50 drawn from the Beta(10, 5) distribution.
Beta distribution:
appendix page 104
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The empirical distribution is a random function, the first example we’ve seen in this course of an
exotic random variable. Section 6 is all about another type of exotic random variable, random infinite
sequences. Such random variables lend themselves to a functional programming style with closures,
for example

Exp random variable:
appendix page 102

1 def rF(n, rng ) :
2 xs = rng(n) #generate a dataset of size n from the specified r.n.g.
3 def F(x ) :
4 return sum( xi <= x for xi in xs) / n
5 return F
6 # rF is a function-valued random variable, i.e. every time you call rF() you get a different function.
7

8 myrng = lambda n : numpy.random. exponential ( s ize=n)
9 #For this distribtion, the true c.d.f. is F (x) = 1− e−x, so F (3) ≈ 0.950213

10

11 F = rF(1000, myrng)
12 F(3) #0.942 (for example)
13 F(3) #0.942 (same value as last time)
14 F(3) #0.942
15

16 F = rF(1000, myrng)
17 F(3) #0.938
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3. Inference
Inference means reaching conclusions on the basis of data and reasoning. In this section of the course,
you will learn how to ask useful questions about uncertainty in data.

Example 3.1. I have a coin, which might be biased. I toss it 10 times and get 9 heads.
What’s the chance that the next toss is heads? Is it 1⁄2 because that’s how coins work? Do we

conclude from the data that this coin is biased? Are we confident enough to make a bet on heads
on odds of 9 to 1? How much more confident would we be if we saw these same frequencies
from a hundred coin tosses?

This course is about probabilistic modelling, so the starting point is to write down a model.
Section 4 will go into how we come up with good models.

We learnt in section 1 about maximum likelihood estimation as a technique for estimating un-
known parameters. We can simply go ahead and use this estimate—in this example, we might simply
say “The probability of heads is 0.9, and the probability of seeing two heads in a row is 0.81.” This
is called plug-in estimation. Or we can look for ways to compute how confident we can be in this
estimate. We’ll look at a variety of tools in the rest of section 3. All of the tools revolve in one way
or another around the likelihood function.

Let’s illustrate what the likelihood function tells us, for this example of coin tosses. The obvious
probabilistic model is

the binomial distribution,
page 102 in the appendix

X ∼ Binom(n, θ) i.e. PrX(x | θ) =
(
n

x

)
θx(1− θ)n−x , x ∈ {0, . . . , n}

where X is the number of heads and θ is an unknown parameter, the probability of heads. We want
to learn about θ using the data. The likelihood function is

log lik(θ |X = x) = log PrX(x | θ) = log
(
n

x

)
+ x log θ + (n− x) log(1− θ)

and section 1.1 claimed that it measures how much evidence there is for a particular parameter value.
Here are some plots.
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x=9 / n=10
x=3 / n=10
x=90 / n=100

The maximum likelihood estimator is the peak of the likelihood plot, θ̂ = x/n. For both 9/10 heads
and for 90/100 heads it is at 0.9, and for 90/100 heads the drop-off away from θ = 0.9 is steeper.
Intuitively, for 9/10 heads we’ll guess θ = 0.9 but we’re not sure, but for 90/100 heads we’re more
certain.

1 def log l ik (θ , x , n) :
2 #code carefully to avoid overflow for large n
3 def log_factorial (k) : return scipy . special .gammaln(k+1)
4 def log_binom(n, k) : return log_factorial (n) − log_factorial (x) − log_factorial (n−x)
5 return log_binom(n, x) + x*numpy. log(θ) + (n−x)*numpy. log(1−θ)
6

7 θ = numpy. linspace (.0001 ,.9999 , 300)
8 with plt . rc_context({ ’ f igure . f i g s i ze ’ : (6 ,2.5)}):
9 f ig , (ax1 ,ax2) = plt . subplots (1 ,2 , sharex=True , sharey=True)
10 ax1 . plot (θ , log l ik (θ , 9 , 10) , label=’x=9 / n=10’ , color=’k ’ )
11 ax1 . plot (θ , log l ik (θ , 3 , 10) , label=’x=3 / n=10’ , color=’k ’ , l i nes ty l e=’dotted ’ )
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12 ax2 . plot (θ , log l ik (θ , 9 , 10) , label=’x=9 / n=10’ , color=’k ’ )
13 ax2 . plot (θ , log l ik (θ , 90, 100), label=’x=90 / n=100’ , color=’k ’ , l i nes ty l e=’dashed ’ )
14 ax1 . set_ylim(−15,0)
15 ax1 . set_ylabel ( ’ log l i k ’ )
16 ax1 . set_xlabel ( ’θ ’ )
17 h1, l1 = ax1 . get_legend_handles_labels ()
18 h2, l2 = ax2 . get_legend_handles_labels ()
19 plt . legend(h1+h2[1 : ] , l1+l2 [1 : ] , loc=2, bbox_to_anchor=(1.1,1), frameon=False)
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3.1. Bayesianism
Bayesian inference
makes heavy use of
conditioning. Review
conditional random
variables on page 2, and
the rules of conditional
distributions on page 6
especially Bayes’ rule for
continuous random
variables.

tl;dr. Suppose we have a probabilistic model PrX(x|θ)whereX is a random variable representing
possible outcomes of an experiment and θ is the unknown parameters in the model. Bayesianism
says we should represent our uncertainty about unknown parameters by using a probability dis-
tribution. We start with a prior distribution with density PrΘ(θ) for θ, then observe data x, then
calculate a posterior distribution with density PrΘ(θ |X = x), by using Bayes’s rule:

PrΘ(θ |X = x) =
PrΘ(θ)PrX(x | θ)∫

ϕ
PrΘ(ϕ) PrX(x | ϕ) dϕ

(with the integral replaced by a sum, if Θ is a discrete random variable). It’s common to write
this as

PrΘ(θ |X = x) ∝ PrΘ(θ)PrX(x | θ)

where the constant of proportionality is whatever is needed to make the left hand side be a density
function, i.e. to integrate to one.
Any conclusions we want to draw about the unknown parameters should simply be written out as
probabilities about (Θ |X = x). Standard readouts are posterior confidence intervals, posterior
point estimates, and posterior predictive probabilities.

Example 3.2.
I have a coin, which might be biased. I toss it n = 10 times and get x = 9 heads. Is the coin
biased? Use the probability model

X ∼ Binom(n, θ) i.e. PrX(x) =

(
n

x

)
θx(1− θ)n−x , x ∈ {0, . . . , n}

where X is the number of heads and θ is the unknown parameter, the probability of heads.

3.1.1. F INDING THE POSTERIOR DISTRIBUTION

Prior distribuƟon. Bayesianism requires us to set down a prior belief about θ. If we don’t have a
prior belief, Bayesianism says, then there are no grounds for us to draw conclusions. Let’s invent out
of thin air a prior distribution

Θ ∼ Uniform[0, 1] i.e. PrΘ(θ) = 1, θ ∈ [0, 1].

There are certain pragmatic choices for prior distributions, which you’ll gain experience of as you
work through Bayesian exercises. These are cases where the posterior distribution ends up belonging
to the same family as the prior distribution, just with different parameters; they are called conjugate
priors.

Bayes update. Applying Bayes’s rule, the posterior distribution has density

PrΘ(θ |X = x) =
1

κ
PrΘ(θ)PrX(x | θ)

=
1

κ

(
n

x

)
θx(1− θ)n−x

=
1

κ′ θ
x(1− θ)n−x (14)

where the normalizing constant is chosen so that the posterior density integrates to one,

κ′ =

∫ 1

ϕ=0

ϕx(1− ϕ)n−x dϕ .

Equation (14) is the density function of the Beta(x + 1, n − x + 1) distribution We don’t even need
Beta distribution:
appendix page 104
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to work out κ′, we just need to recognize the terms involving θ, spot that they’re the same as for the
Beta distribution, and look up on Wikipedia to see κ′ = x!(n− x)!/n! .

Monte Carlo computaƟonalmethods. In nearly every Bayesian calculation outside introductory text-
books, the posterior density is a formula that we can’t do anything with analytically—we can’t even
integrate it to find the normalizing constant. This doesn’t actually matter! The lesson from section 2.6
is that we can just as well work with the empirical distribution, all we need is a sample.

So, how do we sample from the posterior distribution? This is actually a huge field of study.
There is one method in particular called the Gibbs sampler, which you will learn about in Part II
Machine Learning and Bayesian Inference. It is based on Markov chains, the topic of section 6.

3.1.2. READOUTS FROM POSTERIOR DISTRIBUTIONS

The question tells us x = 9 and asks “Is the coin biased?”, which we might interpret as

P(Θ ̸= 1/2 |X = 9)

but this is zero because we took the parameter to have a continuous distribution, and for any continuous
distributions the probability of observing a single exact value is always zero. We need to pose a better
question, e.g.

P(Θ > 1/2 |X = 9)

which in Python is

1 n, x = (10,9)
2 1 − scipy . stats . beta . cdf (0.5 , a=x+1, b=n−x+1) #0.994

Alternatively, the computationally-minded Bayesian could answer this by taking a random sample
from the posterior distribution then using Monte Carlo integration:

3 θsample = numpy.random. beta(a=x+1, b=n−x+1, s ize=10000)
4 numpy.mean(θsample > 0.5) #0.994

Posterior confidence interval. We could also report a confidence interval for (Θ |X = x), i.e. find
values lo and hi such that

P(Θ ∈ [lo, hi] |X = x) = 95% .

An obvious way to do this is to pick lo and hi so that P(Θ ≤ lo |X = x) = 0.025 and P(Θ ≤ hi |X =
x) = 0.975. In Python,

5 lo , hi = scipy . stats . beta . ppf([0.025 , 0.975] , a=x+1, b=n−x+1) # (0.587, 0.977)

Or the Monte Carlo approach:

6 lo , hi = numpy. quantile (θsample , [.025 , 0.975]) # (0.595, 0.977)

Posterior point esƟmates. You might be asked “Given the observed data, what is θ?” You should
sanctimoniously reply “As a Bayesian, I don’t believe that is a meaningful question; all I will tell you
is the posterior distribution of (Θ |X = x).” You might then be told “Give me an estimate or you’re
fired”. In this situation, the Bayesian has a choice.

• Report the value of θ that maximizes PΘ(θ |X = x), i.e. the mode of the posterior distribution.
This is called the maximum a posteriori (MAP) estimate—a fancy name to give this estimate
the facade of rigour. It’s easy to check that if the prior distribution is uniform, then the MAP
estimate is exactly the same as the maximum likelihood estimate. In this case, the posterior
distribution is Beta(x+ 1, n− x+ 1) and the mode is x/n, which is 0.9 in our example.

• Report some straightforward summary of the posterior distribution, such as the mean or median.
In this case, the posterior mean is (x+ 1)/(n+ 2) ≈ 0.833 and the median is
scipy.stats.beta.median(a=x+1,b=n-x+1) ≈ 0.852.

• Maybe there is a natural loss function L(ϕ, θ), which measures the price you pay if you report
the estimate ϕ and the true value is θ. Then you should report θ̂ to minimize the expected
posterior loss,

θ̂ = arg min
ϕ

EL(ϕ,Θ).
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where the expectation is taken over the random variable Θ. With some reasonably simple cal-
culus, one can show that for L(ϕ, θ) = (ϕ − θ)2 the solution is to report the posterior mean,
and for L(ϕ, θ) = |ϕ− θ| the solution is to report the posterior median.

Posterior predicƟve probability. Given the observed data, what is the probability that the next coin
will be heads? One answer is “The probability is a random variable Θ, and I can tell you its posterior
distribution.” Another way to interpret the question is that it’s asking about the probability of a well-
defined event which happens to depend on some random variables, namely the next coin toss itself and
also Θ. To calculate probabilities based on random variables, we can use the law of total probability.
Let X ′ be the outcome of the next coin toss; then

law of total probability:
see section 1.3 page 6

P(X ′ = heads |X = x) =

∫
θ

PrΘ(θ |X = x) P(X ′ = heads |Θ = θ,X = x) dx

=

∫
θ

PrΘ(θ |X = x) θ dx

= E(Θ |X = x) =
x+ 1

n+ 2
≈ 0.833 (the posterior mean).

Or the Monte Carlo approach:

7 numpy.mean(θsample) #0.834

This answer is called the posterior predictive probability. It averages over all the uncertain parameter
estimates using their posterior distributions. We can use this method to answer any question about
future outcomes, e.g. “what is the probability that the nextm coins are heads?” It’s appealling because
we can communicate the answer purely in terms of the observed data, not in terms of parameters that
are only in the mind of the modeller.

Example 3.3 (Nuisance parameters).
Given a random sample from distribution X ∼ Uniform[θ, θ + ϕ], and using the prior distribu-
tions Θ ∼ Exp(λ0) and Φ ∼ Exp(µ0), find the posterior density of ϕ.

In this question, θ is called a nuisance parameter. It’s part of the probability model, but
we’re not interested in its value. In such cases we must first work out the posterior distribution for
all the unknown parameters, because that’s what Bayes’ rule tells us to do. From this joint dis-
tribution we can extract the information we want, for example by marginalizing out the nuisance
parameters.

For working with joint
distributions, see
section 1.3

First, write out the priors and the density from the model:

PrΘ(θ) = λ0e
−λ0θ

PrΦ(ϕ) = µ0e
−µ0ϕ

Pr(x1, . . . , xn | θ, ϕ) =
n∏

i=1

( 1
ϕ
1xi∈[θ,θ+ϕ]

)
=

1

ϕn
1m≥θ1M≤θ+ϕ

where m = mini xi and M = maxi xi. (In this problem the endpoints of the X distribution are
themselves parameters, so it’s a good idea to write out the density in full using indicator functions.)
So the posterior is

PrΘ,Φ

(
θ, ϕ | data

)
=

1

κ
λ0e

−λ0θµ0e
−µ0ϕ

1

ϕn
1θ≤m1θ+ϕ≥M .

The posterior density for ϕ can be found by marginalizing out the nuisance parameter:

PrΦ(ϕ | data) =
∫
θ

PrΘ,Φ(θ, ϕ | data) dθ

=
1

κ

µ0e
−µ0ϕ

ϕn

∫
θ

λ0e
−λ0θ1θ≤m1θ≥M−ϕ dθ

=
1

κ

µ0e
−µ0ϕ

ϕn

(
e−λ0 max(M−ϕ,0) − e−λ0m

)
1ϕ≥M−m.

This doesn’t look like any standard distribution, so we’ll just stop here and not bother working out the
normalizing constant.
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Exercise 3.4. Repeat the analysis of example 3.2 but using as prior Θ ∼ Beta(α, β) for α > 0
and β > 0. Show that the posterior distribution is

(Θ |X = x) ∼ Beta(α+ x, β + n− x) .

* * *

It’s worth distinguishing between Bayes’s rule and Bayesianism. Bayes’s rule is a theorem about
conditional probability,

P(A |B) =
P(A) P(B |A)

P(B)
.

Bayesianism is the doctrine that one should represent uncertainty about unknown parameters by de-
scribing them as random variables. If we accept Bayesianism, then Bayes’s rule crops up naturally.

Bayesianism insists that we set down a prior belief for all unknown parameters before we even
think about incorporating data. But where are we meant to get the prior from, if not data? See the
discussion in section 3.3.3.

In well-chosen models, it shouldn’t matter too much what the prior is. For example, in exer-
cise 3.4, if n is very large then α and β have little influence. If we have too little data then the prior
distribution will have a big impact on our answer. Bayesianism makes it easy to crank a handle and
get out answers—but you should always stop and reflect whether your answers really reflect the data
or whether they just reflect the assumptions you put in.
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3.2. FrequenƟsm

tl;dr. Suppose we have a probabilistic model PrX(x|θ)whereX is a random variable representing
possible outcomes of an experiment and θ is an unknown parameter. Frequentism says that θ is
fixed but unknown, and we should base our thinking on all the ways that the experiment might
have turned out but didn’t.
The frequentist is interested in output procedures such as

1 def confint (x ) :
2 lo = . . . # some function of x
3 hi = . . . # some function of x
4 print (”θ i s in [{} , {}]” . format( lo , hi ))

Running confint(X) will print a true statement or a false statement, depending on the random
variable X , and the frequentist is interested in designing output procedures that prints a false
statement with no more that 5% probability, whatever the value of θ. This is referred to as
bounding the error probability of the procedure.
There is a general-purpose computational method called bootstrap resampling for estimating the
error probability of an output procedure.

The frequentist imagines a “counterfactual multiverse” of all the ways that the experiment might have
turned out. We happen to be in one of these universes, but we don’t know which, so we’ll only take
actions that we know are safe across most of the multiverse.

Example 3.5.
I have a coin, which might be biased. I toss it n = 10 times and get x = 9 heads. Is the coin
biased? Use the probability model

X ∼ Binom(n, θ) i.e. PrX(x) =

(
n

x

)
θx(1− θ)n−x , x ∈ {0, . . . , n}

where X is the number of heads and θ is an unknown parameter, the probability of heads.

3.2.1. CLASSIC ANALYSIS

Anoutput procedure for confidence intervals. Let’s invent a totally arbitrary output procedure, which
returns a confidence interval for θ.

1 n, δ = 10, 0.2
2 def confint (x ) :
3 mle = x / n
4 print (”θ i s in [{} , {}]” . format(mle−δ , mle+δ))

Why this interval? The variable mle is actually the maximum likelihood estimator for θ and so it’s
The maximum likelihood
calculation for Binom is
in section 1.1

reasonable to guess they should be close. And δ is just a tuneable parameter to control the error
probability.

Bounding the error probability. To bound the error probability of confint(X), let’s start by rewriting
it as a straightforward statement about X:

P(confint(X) true) = P(θ ∈ [mle− δ,mle+ δ]) (15)
= P(θ ≥ mle− δ and θ ≤ mle+ δ)

= P(mle ≤ θ + δ and mle ≥ θ − δ)

= P(θ − δ ≤ mle ≤ θ + δ)

= P(n(θ − δ) ≤ X ≤ n(θ + δ))

= cdf
(
n(θ + δ)

)
− cdf

(
n(θ − δ)

)
+ pmf

(
n(θ − δ)

)
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where cdf(x) is P(X ≤ x) and pmf(x) is P(X = x). We can compute a lower bound for this
numerically using scipy.optimize.fmin. This library routine requires a starting guess, and it’s wise to
plot the error function to make sure the starting guess avoids local minima.

5 def probtrue(θ ) :
6 def cdf(x ) : return scipy . stats .binom. cdf(x , n=n, p=θ)
7 def pmf(x ) : return scipy . stats .binom.pmf(x , n=n, p=θ)
8 return cdf(n*(θ+δ)) − cdf(n*(θ−δ)) + pmf(n*(θ−δ))
9 scipy . optimize . fmin(probtrue , .5)
10 #Optimization terminated successfully.
11 #Current function value: 0.773474
12 # Iterations: 12
13 #Function evaluations: 24
14

15 #As a sanity check: run the optimizer multiple times with different starting points
16 res = [ scipy . optimize . fmin(probtrue , random.random() , full_output=1, disp=False)
17 for _ in range(20)]
18 min(p for _,p,*_ in res ) #0.77345

Thus P(confint(X) true) ≥ 77.3%.

InterpretaƟon. We were told x = 9, so we call confint(9) and it prints out ”θ is in [0.7, 1.1]”. Also,
we know that confint prints a true statement at least 77.3% of the time. Can we conclude

P(θ ∈ [0.7, 1.1]) ≥ 77.3% ?

No. The parameter θ is fixed and unknown, and it may be inside the range or it may be outside, so the
probability is either 0 or 1 and we don’t know which. What we should really say is

P(confint(X) true) ≥ 77.3% , confint(x) says θ ∈ [0.7, 1.1].

The probability statement on the left is about a procedure that we could run on any hypothetical dataset,
and the statement on the right is based on the dataset we actually saw. This pair of statements is
commonly abbreviated

“a 77.3% confidence interval for θ is [0.7, 1.1].”

3.2.2. RESAMPLING

The heart of the frequentist’s analysis is “If this trial were run again, what result might I see?” Modern
frequentist analysis asks the same question but in a data-driven and computer-driven way:

If this trial were run again, what is a good way to use the data at hand to synthesize a
result that I might plausibly see?

There are two general strategies. We’ve seen them before, for the simple case of sampling from a
random distribution:

• The parametric approach is (i) specify a probability model with unknown parameters, (ii) fit the
parameters using maximum likelihood, (iii) sample from the fitted distribution (section 1.4–1.5)

• The non-parametric approach is simply to sample from the empirical distribution, which is
equivalent to picking a value at random from the observed dataset (section 2.6)

These two strategies apply to richer problems, as illustrated in the next two examples.

Example 3.6 (Non-parametric resampling).
I collected a dataset x1, . . . , xn and I found the sample mean x̄. If I repeat the exercise and
collect further datasets, how much variability should I expect to see in the sample mean?

The best-fitting distribution is the dataset itself, and the best we can do is assume that subsequent
datasets will be drawn from the same distribution. In other words, the next time I collect data, I’ll
expect to see something like X̄∗

n, the sample mean of n random values drawn from the empirical distri-
bution. This is a random variable. It’s impractical to do an exact calculations about the distribution
of X̄∗

n because there are so many possible values that X̄∗
n might take—but it’s straightforward to use

Monte Carlo integration instead, to find e.g. P(X̄∗
n ≥ x) or to draw a histogram.
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1 xs = [13 , 5 , 2 , . . . ] # the dataset
2 def sim_mean() :
3 n = len(xs)
4 X = random. choices (xs , k=n) # k = number of samples to draw
5 return sum(X) / n
6

7 mc_samples = [sim_mean() for i in range(100000)]
8 matplotlib . pyplot . h ist (mc_samples)

Example 3.7 (Parametric resampling).
I collected a dataset x1, . . . , xn, and I found that the maximum value was m. If I repeat the ex-
ercise and collect further datasets, how much variability should I expect to see in the maximum?
Resampling from the empirical distribution is unable to give an answer > m, but intuitively I
feel that a new dataset might have larger values.

The real question here is: where does my intuition ‘larger values are possible’ come from, and how
can I translate it into maths? Perhaps my intuition comes from seeing a roughly straight line on a
log-plot of the empirical distribution, as we saw in the weblog dataset in section 1.5. If this is the case,
then I might construct a new semi-parametric distribution function, which starts with the empirical
data and switches over at some point to a straight line, whose slope and intercept parameters are fitted
from the data. Sampling from this semi-empirical distribution could potentially produce values > m.

5 10 15 20 25

−3

−2

−1
trust the data

trust the parameters

log2 x

log10 P(X > x)

3.2.3. THE BOOTSTRAP

This is the least rigorous maths I’ve ever come across.7

Here is a general-purpose computational method, which removes any need for clever maths or exhaus-
tive optimization for bounding the error probability.

1. Start by writing out the probability you’re interested in. Make sure it’s a genuine probability,
i.e. that there is a random variable inside.

2. Replace any unknown parameters by their maximum likelihood estimates given the data. Re-
place any random variables by resampled versions. This rewritten expression is approximately
equal to the probability from step 1.

3. Use the Monte Carlo method to estimate the probability of the expression in step 2.

This is called bootstrap resampling. ‘Bootstrap’ refers to the phrase ‘pull yourself up by your boot-
straps’, in the sense that this method can give us probability answers without our having to even think
up a model.

Let’s apply it to the problem at hand, computing P(confint(X) true) for the confint function
defined in section 3.2.1. As in (15) we want to compute

P
(
θ ∈ [mle− δ,mle+ δ]

)
, where mle = X/n. (16)

This has a random variable inside, namely X , so it’s a genuine probability as required by step 1.
Step 2 is to replace terms. The maximum likelihood estimator (given the data) is θ̂ = x/n, so

replace θ by x/n in (16). And mle is a random variable, mle = X/n, so replace it by a resampled

7Anonymous student feedback from 2017/2018
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version. A reasonable resampling approach in this case is to letX∗ be the number of heads in 10 values
drawn at random from the observed sample, i.e. from 9 heads and 1 tail, which isX∗ ∼ Binom(n, x/n).
Putting all this together, we have obtained the expression

P
(
x/n ∈ [X∗/n− δ, X∗/n+ δ]

)
where X∗ ∼ Binom(n, x/n).

Step 3 is to use the Monte Carlo method to estimate this probability:

1 n ,x ,δ = 10, 9 , 0.2
2 Xstar = numpy.random. binomial(n , x/n , s ize=10000)
3 numpy.mean((x/n>= Xstar/n − δ) & (x/n<= Xstar/n + δ))
4 # returns: 0.931

Caveat programmator. Bootstrap resampling is a universal approximation technique. If you invent
an unhelpful probability statement in step 1, or if you use a dodgy resampling method for step 2, you
might end up with a useless answer. You always need to do a sanity check in your head and ask
yourself “For the dataset and question at hand, is there any step in the approach I’ve taken that will
likely give me nonsensical answers?” A data scientist keeps this question at the back of her mind,
always. Meanwhile, it’s a matter of research in theoretical statistics to find out which probability
statements and resampling methods work robustly for which types of question.

One particular type of resampling is especially important in machine learning: cross validation.
We’ll see it in section 3.3.2, and discuss guidelines for making sure it works robustly.

Exercise 3.8. The classic analysis concluded that P(confint(X) true) ≥ 77.3% for any value
of θ. The bootstrap resampling method concluded that this probability is ≈ 93.1%. Does this
indicate that the bootstrap resampling method is a bad approximation?

Hint: Plot probtrue(θ). What is the value at θ = 0.9?
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3.3. Model selecƟon

tl;dr. When there are several models that we could fit to the data, how do we choose one? This
is a profoundly subtle question, and different disciplines have taken different approaches.

All models are false, but some are useful.8

This epigram, by the statistician George Box, begs the question: what are we going to use the
models for? We’ll work through three standard approaches (Bayesian, hypothesis testing, and
cross validation), using a toy dataset.

Einstein said “Everything should be made as simple as possible, but not simpler.”9 Science sees a
model as an explanation for the data, and scientists have a gut instinct that simple models are likely
to be closer to the truth and to generalize better to new scenarios. Engineers on the other hand see a
model as a piece of machinery that will be deployed, often with the job of making predictions about
new data; the best model for them is the one that makes the best predictions.

Shouldn’t the best explanation lead to the best predictions? And if a model makes better pre-
dictions doesn’t that mean it’s the better explanation? No, and this photograph10 of goats in a tree
illustrates why.

Photographer’s caption:
“These are the trees that grow
the argane nuts that are ground
into argane oil. They climb
the trees to eat the nuts.”

AI caption by Microsoft
Azure: “A group of giraffes
standing next to a tree”.

This AI likely never saw goats in trees in its training dataset (though allegedly it saw an overabundance
of giraffes), and so it’s perfectly reasonable for it to infer the rule “if there’s an animal in a tree it’s
not a goat”. This rule, or something like it, could well improve its prediction scores on the training
dataset. But the rule isn’t a good explanation, because it’s not simple enough to generalize to new
scenarios like argane trees.

In this section we’ll examine explanation versus prediction for a toy example. It’s taken from “To
explain or predict?” by Galit Schmueli11, who explains at length how different academic disciplines
see model selection. See also the discussion by Brian Ripley12.

Example 3.9. As a data scientist, you have been given a dataset shmueli13 with three columns, y,
x1, and x2. You believe the underlying model is either

Model A : Yi ∼ Normal
(
α+ β1x1,i + β2x2,i, σ

2
)

8G. E. P. Box. “Robustness in the Strategy of Scientific Model Building”. In: Robustness in Statistics. Vol. 1. May 1979,
p. 40. url: http://www.dtic.mil/docs/citations/ADA070213

9Actual not-so-simple quotation: “It can scarcely be denied that the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of
experience.” Albert Einstein. “On the Method of Theoretical Physics”. In: Philosophy of Science 1.2 (1934), pp. 163–169.
url: http://www.jstor.org/stable/184387

10Photo by Fred Dunn, flickr.com/photos/gratapictures/17208409348/, CC BY-NC. This example is taken from
aiweirdness.com, a blog by Janelle Shane.

11Galit Shmueli. “To Explain or to Predict?” In: Statistical Science (2010). url: https://doi.org/10.1214/10-STS330.
12Brian Ripley. Selecting amongst large classes of models. Lecture for a symposium in honour of John Nelder’s 80th birthday,

Imperial College. Mar. 2004. url: http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf.

http://www.dtic.mil/docs/citations/ADA070213
http://www.jstor.org/stable/184387
flickr.com/photos/gratapictures/17208409348/
aiweirdness.com
https://doi.org/10.1214/10-STS330
http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf
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or

Model B : Yi ∼ Normal
(
α+ βx1,i, σ

2
)

Which of these should you choose?
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A logician might say “Model B is a special case of Model A, so Model A is obviously better.”
A scientist might say “Use Model B unless the data is clearly in favour of A.” An engineer might say
“Try them both and use whichever makes better predictions.”

We’ll work through three approaches, hypthothesis testing (scientist), cross validation (engi-
neer), and Bayesian (Zen guru). All of them use same basic ingredient—the likelihood function—but
they each give it a different spin.

It’s worth noting that the computer code for each approach is short, just a few lines of data
science plus some lines of bookkeeping. It’s a hallmark of good data science style to have lots of deep
thinking and explanation, then concise code.

13Available at https://teachingfiles.blob.core.windows.net/founds/model_selection_sample.csv. I created
this dataset from model A, with parameters Y ∼ Normal(5 + 3x1 + 0.1x2, 1).

https://teachingfiles.blob.core.windows.net/founds/model_selection_sample.csv
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3.3.1. HYPOTHESIS TESTING AND P-VALUES

In science and policy making, it is often useful to frame questions the following way. “My default
model is H0, which I’ll stick with unless the evidence says otherwise. I’m planning a data-gathering
exercise, and based on the data Y that I gather I might stick with H0 or I might reject it.” Hypothesis
is another word for model, and null hypothesis means default model. In programming terms, the data
scientist has to define a model-testing output procedure testH0(y) which prints either ”reject H0” or
”don’t reject H0”. This is how a frequentist sees the world—it’s all about defining output procedures,
then finding their error probability. Here is a common procedure for implementing testH0.

1. Define a function test_statistic(y). It can be whatever function of the data we like. Just make
sure it’s a function only of the data—don’t let it use any unknown parameters, because they’re
unknown! We aim for a function that is likely to be small if the null hypothesis is true, and large
if it’s false.

2. Assuming H0 is true14, find the distribution of T = test_statistic(Y ). A good way to do this
is with resampling.

3. From the actual data we saw, compute t = test_statistic(y). Mark t on the histogram of T ,
and measure p = P(T ≥ t).

4. If p ≤ 5%, print ”reject H0” otherwise print ”don’t reject H0”. (The magic number 5% was
given as an illustration15 in 1925, and it stuck ever since.)

In this procedure, p is called the p-value or significance level, and it measures the probability of seeing
results as extreme as we actually saw, assuming that the null hypothesis is true. With some simple but
careful thinking, we can see that this procedure’s error probability is ≤ 5%, i.e. in less than one case
in twenty it will report ”reject H0” when H0 is actually true.

In the dataset for example 3.9, perhaps x2 is the dosage of a drug and Y is the patient response. A
reasonable default is “the drug is ineffective”—we don’t want to start prescribing it, with cost and
side effects, unless the data tells us it is effective. So we’ll take model B to be the null hypothesis.

Step 1 is to invent a test statistic. Intuitively, assuming model B is true, then if we try fitting
model A we’ll likely see a small value for the maximum likelihood estimator β̂2. On the other hand, if
model B is false, we’d likely see a larger value. So let’s use this as a test statistic.

1 def test_stat ist ic (df ) :
2 _, _, β2, _ = mle_A(df . y , df . x1 , df . x2) #max.lik estimators from model A
3 return numpy. abs(β2)

For step 2 we’ll use parametric resampling, with parameters obtained from the assumption that H0 is
see section 3.2.2 for
parametric resamplingtrue.
randint(low,high,size)
returns a list of size
elements taken randomly,
with replacement, from
{low, . . . , high − 1}

1 α , β , σ = mle_B(shmueli . y , shmueli . x1 , shmueli . x2)
2 def parametric_resample () :
3 i = numpy.random. randint (low=0, high=len (shmueli ) , s ize=len (shmueli ))
4 res = shmueli . loc [ i , [ ’x1 ’ , ’x2 ’ ] ]
5 res [ ’y ’ ] = numpy.random.normal( loc=α + β*res . x1 , scale=σ)
6 return res
7

8 Tstar = [ test_stat ist ic (parametric_resample()) for _ in range(10000)]
9 t = test_stat ist ic (shmueli) #0.406
10 p = sum(Tstar >= t)/ len (Tstar) #0.602
11

12 plt . h ist (Tstar , bins=60, alpha=.3)
13 plt . axvline (x=test_stat ist ic (shmueli ) , l i nes ty l e=’dotted ’ , color=’ .3 ’ )

14If H0 includes unknown parameters, then the distribution of T depends on unknown parameters, so we can’t actually find
its distribution. The technically correct thing to do is to define p = maxθ∈H0

P(T ≥ t | θ), i.e. take the worst case over all
possible parameters in the model, as we did in section 3.2.1. Resampling ignores this issue.

15R. A. Fisher. Statistical methods for research workers. 1925.
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The p-value is 60.2%, so we print ”don’t reject H0”. The histogram of Tstar shows us that the test
statistic is entirely in line with what we’d expect to see if the null hypthesis (model B) is true.

The alternaƟve hypothesis. It’s bizarre that there’s nothing in the frequentist testing procedure that
depends on the alternative hypothesis. If someone asks you “Pick one of these hypotheses: either
a glass of wine a day is good for you, or the moon is made of green cheese” surely you’d want very
compelling evidence for rejecting the wine hypothesis! It’s because of qualms about this that we make
the test procedure print out ”reject H0” rather than ”accept the alternative”.

There is one exception. If you’re trying to decide between two models and you don’t have any
idea about what test_statistic should be, a good choice is

test_statistic(Y ) = lik(model=A | Y = y)

lik(model=B | Y = y)

where the likelihood of a model is found by maximizing over all parameters in the model,

lik(model=m | Y = y) = max
θ

lik(θ | Y = y, model=m).

If model B is false then the denominator is likely to be small so the test statistic will be large. The
model-testing procedure using this statistic is called the likelihood ratio test.

MulƟple tesƟng. If your testing procedure is “Keep inventing different tests until you find one that
prints ”reject H0” then report only this test”, then your error probability is 100% and you will be an
academic disgrace once you’re found out16—remember that the p < 0.05 criterion has a one in twenty
error probability. The inimitable Randall Munroe puts it best (page 46).

16Beth Mole. Big nutrition research scandal sees 6 more retractions, purging popular diet tips. Ed. by arstechnica.com.
[Online; posted 20-September-2018]. Sept. 2018. url: https : / / arstechnica . com / science / 2018 / 09 / six - new -
retractions-for-now-disgraced-researcher-purges-common-diet-tips/.

https://arstechnica.com/science/2018/09/six-new-retractions-for-now-disgraced-researcher-purges-common-diet-tips/
https://arstechnica.com/science/2018/09/six-new-retractions-for-now-disgraced-researcher-purges-common-diet-tips/
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Exercise 3.10. The Viking 1 Orbiter spacecraft took this photograph17 of the surface of Mars
on 25 July 1976. NASA scientists attribute the appearance of a face to purely natural processes.
Others say that the probability of producing such a face-like artefact purely by chance is infinites-
imal, like monkeys at typewriters producing Shakespeare, and that we should therefore reject the
null hypothesis “There is no intelligent life on Mars”. Is this correct frequentist reasoning?

17NASA/JPL. Catalog number PIA01141, https://photojournal.jpl.nasa.gov/catalog/pia01141

https://photojournal.jpl.nasa.gov/catalog/pia01141
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xkcd by Randall Munroe, https://xkcd.com/882/

https://xkcd.com/882/
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3.3.2. CROSS VALIDATION AND PERPLEXITY *

In engineering we just want to build systems that will work well when they’re deployed, so we want
models that work well on new data. Suppose we’ve fitted the two models A and B (estimated their
parameters, e.g. using maximum likelihood estimation), and now we want to decide which of the two
models to deploy. A reasonable rule is to pick whichever model has the higher log likelihood when
applied to new data,

score = E log lik(fitted model | new obs = Y ′) = E log PrY (Y ′ | fitted model)

where Y ′ is a hypothetical new observation. (This is frequentism, averaging over a multiverse of what
might be.) If we have a way to obtain a sample y′1, . . . , y′m of new data, we can approximate the score
using Monte Carlo integration,

score ≈ 1

m

m∑
i=1

log lik(model | new obs = y′i).

If all we have is the dataset we’re given, we can split it into two pieces, a training subset and a validation
subset, then use the former to fit parameters and the latter to evaluate the score. This is called holdout
cross-validation.

training validation

A better approach is to split the dataset into into K parts. For each k ∈ {1, . . . ,K} take out part k
and fit the model on the rest of the data, then compute the score on part k; and report the average score
across all k. This smooths out problems from unlucky choice of validation subset. It is called K-fold
cross-validation.

k

Sometimes the model has hyperparameters, i.e. parameters that can’t be estimated within the model
itself, such as the prior distribution in a Bayesian model. Training now involves both fitting parameters
and choosing hyperparameters—and choosing a hyperparameter is the same type of job as selecting
a model, so we can do it with cross validation. Remember to use a separate holdout validation subset,
to evaluate the score of the overall training procedure.

training with c.v. validation

Here is a cross validation comparison of the two models in exercise 3.9, using 5-fold18 cross vali-
dation. We’ll fit the models using straightforward maximum likelihood estimation, so there are no
hyperparameters to worry about.

1 def log l ik (α , β1, β2, σ , df ) :
2 # same function works for both models; just set β2 = 0 for model B
3 n = len(df) #df is a dataframe of validation records
4 ey = α + β1*df . x1 + β2*df . x2
5 return −n*numpy. log(σ) − sum((df . y−ey)**2)/(2*σ**2)
6

7 parts = sklearn .model_selection .KFold(n_splits=5)
8 scoresA , scoresB = [ ] , [ ]
9 for i t ra in , i t e s t in parts . sp l i t (numpy. arange( len (shmueli ) )) :

18Why 5? You often see recommendations for K = 5 or K = 10. The choice is a compromise between having enough
data in the training set to get good parameter estimates (for which we want K large) and having enough data in the validation
set to get a good estimate of the score (for which we want K small), all of this constrained by the overall size of the dataset.
See Trevor Hastie, RObert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and
prediction. 2nd. Springer, 2009. url: https://web.stanford.edu/~hastie/Papers/ESLII.pdf section 7.10 for a
discussion.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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10 # itrain and itest are integer vectors — indexes into the dataset
11 (α , β1, β2, σ) = mle_A(shmueli . i l oc [ i t ra in ])
12 scoresA .append( l i k (α ,β1,β2,σ , shmueli . i l oc [ i t e s t ] ))
13 (α , β , σ) = mle_B(shmueli . i l oc [ i t ra in ])
14 scoresB .append( l i k (α ,β ,0 ,σ , shmueli . i l oc [ i t e s t ] ))
15 numpy.mean(scoresA) , numpy.mean(scoresB) # (-5.9940, -5.7491)
16

17 #We see model B is has higher score. Fit it to the entire dataset, then deploy!
18 (α , β , σ) = mle_B(shmueli)

Perplexity andother scores. The quantity e−score is called perplexity, by machine learning researchers
in the field of natural language processing. The typical setting is that we want a random variable for
generating words: it should make the likelihood high for words that the data shows are common, and
low for words that are uncommon. (It’s more interesting to measure perplexity for sentences than for
independent words, but this has to wait until after we’ve studied Markov chains in section 6.)

Why does the score function use log lik rather than just lik? In natural language processing,
this is just a convention—supported by suggestive links to information theory and data compression.
In regression modelling, where the data consists of predictor variables and response variables, many

see section 1.6 for the
terminology: regression,
predictor, and response

machine learning systems don’t even use likelihood at all. Other choices are

for numerical responses : score = E
(
Y ′ − predicted value(X ′)

)2
for classification problems : score = 1Y ′=most likely label(X’)

where Y ′ and X ′ are the response variable and predictor variables for a new observation. If there is
a natural loss function to use in your application, use it! In these notes I have emphasized the use of
likelihood because it ties together regression models and perplexity scores, and because it is a unifying
idea behind all of inference.

* * *

Data hygiene rules. We want models that work well on new data, so we defined the score function
as an expectation over a hypothetical new observation, and approximated it using a validation subset.
The golden rule is

The validation set should reflect the type of new data we want our model to do well on.

Here is elaboration of the golden rule.

• It’s vital to keep the training subset and the validation subset separate. Otherwise the fitting
procedure can sneakily learn characteristics of the validation subset, and the score we compute
won’t tell us what to expect for genuinely new data.

• Pay attention to the unit of prediction. For example, suppose we’re trying to predict the trips
that a person will make, and we have a dataset of trips. Do we want to predict “new trips by the
current userbase”? If so, put some trips by every user in both the training set and the validation
set. Or do we want to predict “new trips by new users”? If so, make sure that a given person’s
trips are either all in the training subset or all in the validation subset—otherwise the fitting
procedure might sneakily learn to identify a person based on side characteristics, and use this
to deduce likely trips.

• If we want our model to do well uniformly across population subgroups, make sure those sub-
groups are evenly represented in the validation data. For example, here’s a simple model for
predicting someone’s sexuality from their Facebook likes: “always say they are straight”. This
model has roughly 90% accuracy on the overall population! If we want a model that worked
well on people of all sexualities, we should represent them equally in the validation set. This
is called stratification. (A scientist might say: if we built a proper model in the first place, it
would automatically generalize well to new population mixes, and this sort of stratification is a
poor substitute.)

• Watch out for trends over time (called secular trends). Cross validation uses each part of the
dataset as a stand-in for a hypothetical new observation; but in time-ordered datasets maybe we
shouldn’t use a slice of the past as a drop-in replacement for the future. This is also an issue
when you combine datasets from different sources.
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3.3.3. BAYESIAN MODEL WEIGHTING *

For a true Bayesian, “which model is correct?” is just another uncertainty, and it should be treated
exactly the same as any other uncertain parameter.

Let M be a discrete random variable taking values in {A,B} indicating which model is correct,
with prior distribution PrM (m). Write θ for vector of unknown parameters (concatenating the param-
eters from A and B), and assume we have set down prior distributions for them. Applying Bayesian
update, the posterior distribution on all the parameters is

Pr(m, θ | Y = y) ∝ PrM (m)PrΘ(θ) PrY (y | θ, model=m)

where y denotes the entire column in the dataset. Perhaps all we care about is the posterior probability
of each of the models, in which case we’ll treat θ as a nuisance variable and integrate it out:

PrM (m | Y = y) ∝ PrM (m)

∫
θ

PrΘ(θ)PrY (y | θ, model=m) dθ

= PrM (m) ev(m | Y = y).

where ev(m |Y = y) is defined by this integral, and referred to as the evidence for model m. In words,
we start with a prior belief PrM (m) about which model is true, and we update that belief in the light
of the data, according to the evidence for each model.

The true Bayesian would never say “Use Model A rather than Model B”, they would only say
“In the light of the data, and given prior beliefs, here are the updated weights to use for each of the
models.” Their predictions about new observations would be based on posterior predictive probability,

see page 35 for Bayesian
posterior predictive
probability

averaging over all unknown parameters including M . This is called Bayesian model averaging.

To compute evidence in example 3.9, we’ll start by inventing out of thin air the prior belief that 1/σ2 ∼
Γ(0.1, 0.1) and that all other parameters are Normal(0, 52). Engineers like to use 1/σ2 rather than σ
or σ2; they call it the ‘precision’. Let θ be a tuple consisting of all these parameters. The evidence is an
integral over θ. Let’s write it as an expectation, and then use Monte Carlo integration to approximate
it. The evidence is

ev(m | Y = y) =

∫
θ

PrΘ(θ)hm(θ) = Ehm(Θ)

where hm is the probability density for the model,

hA(θ) = PrY (y | θ, model=A) =
n∏

i=1

1√
2πσ2

e−(yi−ei)
2/2σ2

, where ei = α+ β1x1,i + β2x2,i

and similarly for model B.

1 #Generate random values from the prior distribution
2 N = 100000
3 αs = numpy.random.normal( loc=0, scale=5, s ize=N)
4 β1s = numpy.random.normal( loc=0, scale=5, s ize=N)
5 β2s = numpy.random.normal( loc=0, scale=5, s ize=N)
6 σs = 1/numpy. sqrt (numpy.random.gamma(shape=0.1, scale=1/0.1, s ize=N))
7

8 #Compute PY for each sampled parameters, then average to get the evidence
9 def P(α , β1, β2, σ ) :
10 n = len(shmueli)
11 e = α + β1*shmueli . x1 + β2*shmueli . x2
12 l l =−n*numpy. log(σ) − sum((y−e)**2)/(2*(σ**2))
13 return numpy. exp( l l )
14 pA = numpy. array ( [P(α , β1, β2, σ) for α ,β1,β2,σ in zip (αs ,β1s ,β2s ,σs ) ] )
15 pB = numpy. array ( [P(α , β , 0 , σ) for α ,β ,σ in zip (αs ,β1s ,σs ) ])
16 evA, evB = numpy.mean(pA) , numpy.mean(pB)
17

18 # It’s only evidence ratios that matter, so we might as well normalize:
19 evA, evB = evA/(evA+evB) , evB/(evA+evB)
20 evA, evB # (0.00503, 0.99496)

* * *
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Model selection includes choosing which prior to use. (Where did the 5 and 0.1 come from in
the priors used in the example above?) Bayesian methods can’t help: strict Bayesianism insists that
we invent a prior before we even look at the data. We can weasel out by declaring the parameters of
the prior distribution to be hyperparameters, which is a fancy way of saying “parameter that I have no
prior for”, and use non-Bayesian model selection such as cross-validation to pick values for them.

cross-validation: see
page 47 Brian Ripley, an eminent data scientist, says “I think Bayesians are rarely Bayesian in their

model choices”19.

19Brian Ripley. Selecting amongst large classes of models. Lecture for a symposium in honour of John Nelder’s 80th birthday,
Imperial College. Mar. 2004. url: http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf.

http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf
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4. CraŌing a model
4.1. QuanƟfying a quesƟon

tl;dr. The unknown parameters in a probabilistic model have two roles. First, they make the
model expressive: we should put in enough parameters so that, by tuning them, we can make the
model produce the full range of output patterns that we think are plausible. Second, when we
fit the model and inspect the estimated parameters, we learn which of those patterns are actually
present in the dataset.
When we invent a model, how should we choose its parameters? Here are two important design
guidelines.

• Use parameters that correspond to the questions we want to ask and the quantities we want
to measure. Be mindful of whether it’s even possible to measure these quantities from our
data. This comes under the heading of identifiability.

• Usually we’ll run maximum likelihood estimation, using a numerical optimization library.
Choose a parameterization that makes it easy for the library routines to succeed. This
comes under the heading of natural parameters.

A model with well-crafted parameters is like a beautiful science equation, easier to understand and
more subtle than endless tabulations. We also have tools, both Bayesian and frequentist, for reasoning

Bayesian confidence
intervals page 34.
Frequentist confidence
intervals page 37.

about how confident we should be in our parameter estimates. Model parameterization is one of the
best tools we have for asking questions about a dataset.

Don’t think of a model as a claim about what’s true—any interesting dataset almost certainly
has so much richness that any simple parametric model we invent is wrong—but a wrong model can
still be useful. There are nevertheless bad models! If we pick useless parameters, we’ll get useless
answers.

Example 4.1.
The UK Home Office makes available several datasets of police records, at data.police.uk.
The dataset police is a log of stop-and-search incidents. Here is a sample of rows.

police force operation date-time lat lng gender age ethnicity
object of search outcome

Hampshire NA 2014-07-31T23:20:00 50.93 -1.38 Male 25–34 Asian
controlled drugs nothing found

Hampshire NA 2014-07-31T23:30:00 50.91 -1.43 Male 34+ White
controlled drugs suspect summonsed

Hampshire NA 2014-07-31T23:45:00 51.00 -1.49 Male 10–17 White
controlled drugs nothing found

Hampshire NA 2014-08-01T00:40:00 59.91 -1.40 Male 34+ White
stolen goods nothing found

Hampshire NA 2014-08-01T02:05:00 50.88 -1.32 Male 10–17 White
article for use in theft nothing found

Is there a racial bias in police decisions to stop-and-search? If so, is it direct racial bias, or might
it be indirect bias induced by gender bias?

The total number of stops in this dataset is
Asian Black Mixed Other White

num. stops 79,492 163,856 350 18,480 483,472
Without knowing context, e.g. population breakdowns in the UK, or typical demographics of people
in public spaces, this table is useless. Instead, let’s look at the success rates for stop-and-searches.
Label each row either find or nothing depending on the outcome of the search. The percentage of
stop-and-searches that result in find is

Asian Black Mixed Other White
% find 30.0 31.8 60.6 33.1 32.6

If the police decision to stop-and-search someone is based purely on signs of criminality, then the

data.police.uk
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probability of finding criminality should be equal in different ethnic groups. But %find is lower for
Asian suspects, i.e. the police are stopping relatively more non-criminal Asian suspects, which sug-
gests bias.

But it’s unlikely that police behaviour is governed by only one feature in the data. For example,
what if the police decision to stop someone is influenced by the suspect’s gender as well as ethnicity?
The gender breakdown over all police stop-and-searches is different in different ethnic groups:

Asian Black Mixed Other White
% Male 96.9 95.2 93.7 93.5 89.4

What if there are cultural differences that lead to different %Male on the streets; and what if police are
relatively more likely to stop Male suspects than Female, regardless of ethnicity and chance of finding
something? Then those ethnicities with higher %Male on the streets would end up with lower %find.
In other words, might the lower %find among Asian suspects be indirect racial bias attributable to
direct gender bias, rather than direct racial bias?

1 i f os . path . ex ists ( ’ stop−and−search . csv ’ ) :
2 print (” f i l e already downloaded”)
3 else :
4 !wget ”https :// teachingf i les . blob . core .windows. net/founds/stop−and−search . csv”
5 police = pandas . read_csv( ’ stop−and−search . csv ’ )
6

7 #Count number of stop records by ethnicity
8 police . groupby( ’Officer−defined ethnicity ’ ) . apply( len )
9

10 #Define outcome, and cross-tabulate ethnicity vs outcome
11 police [ ’outcome ’ ] = numpy.where( police [ ’Outcome’]==’Nothing found − no further action ’ , \
12 ’nothing ’ , ’ f ind ’ )
13 x = police . groupby([ ’Officer−defined ethnicity ’ , ’outcome ’ ] ) . apply( len )
14 x . unstack()
15

16 #Convert to percentages
17 (x / x .sum( leve l=’Officer−defined ethnicity ’ ) * 100).unstack()
18

19 #Cross-tabulate gender vs ethnicity, among all stop-and-search records
20 x = police . groupby([ ’Officer−defined ethnicity ’ , ’Gender ’ ] ) . apply( len )
21 (x / x .sum( leve l=’Officer−defined ethnicity ’ )*100).unstack( f i l l_value=0)
22

23 #%find, broken down by ethnicity and gender
24 df = police . groupby([ ’Officer−defined ethnicity ’ , ’Gender ’ , ’outcome ’ ]) \
25 . apply( len ) . unstack( f i l l_value=0)
26 x = df . find / (df . f ind + df . nothing)
27 (x * 100).unstack()
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4.1.1. REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

Before we bring in gender, let’s make sure we can solve maximum likelihood estimation for the sim-
plest possible model of ethnic bias,

P(Yi = find) = βei (17)

where ei is the ethnicity covariate in row i of the dataset, and β is a vector of probabilities, one per
ethnic group. To estimate β, write out the log likelihood

log lik(β | y) =
∑
i

{
logβei if yi = find
log(1− βei) if yi = nothing

and maximize it. Such a simple model is easy enough to solve with algebra and calculus, but it’s more
useful to be able to solve it by computer. Reassuringly it matches the table above.

1 #Some entries have ethnicity numpyp.nan, meaning the value is missing in the dataset.
2 #We’ll exclude these records, otherwise the definition of e would fail.
3 ok = ~ pandas . i snu l l ( police [ ’Officer−defined ethnicity ’ ] ))
4

5 #Prepare vectors of y (boolean) and e (integer index)
6 y = police . loc [ok , ’outcome ’ ] == ’ find ’
7 ethnicity_levels = [ ’Asian ’ , ’Black ’ , ’Mixed ’ , ’Other ’ , ’White ’ ]
8 ethnicity_code = {k: i for i ,k in enumerate( ethnicity_levels )}
9 e = numpy. array ( [ ethnicity_code [v ] for v in police . loc [ok , ’Officer−defined ethnicity ’ ] ] )
10

11 def log l ik (β , y , e ) :
12 ξ = β [ e ] #get a vector [βe1 , βe2 , . . . ]

13 return numpy.sum(numpy. log(numpy.where(y , ξ , 1−ξ )))
14

15 init ial_guess = numpy. array ([0.5 , 0.5 , 0.5 , 0.5 , 0.5])
16 mle = scipy . optimize . fmin(lambda β : −l og l ik (β ,y , e) , init ial_guess )
17  RuntimeWarning: invalid value encountered in log
18

19 pandas . Series (mle , index=ethnicity_levels )

Asian Black Mixed Other White
0.300 0.318 0.606 0.331 0.327

The warning is a sign of a real problem, which we’ll address in section 4.1.3.
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4.1.2. EXPRESSIVITY, IDENTIF IABIL ITY, AND CONTRASTS

To make the model more expressive, let’s make it take account of both ethnicity and gender simulta-
neously, by

P(Yi = find) = βei + γgi (18)
where ei is the ethnicity covariate in row i of the dataset and gi is the gender covariate. This model can
accommodate multiple explanations for what’s going on in the data, via different parameter choices:

• If it is indeed gender that is the dominant influence, and if different ethnic groups experience
different P(find) only because of their different gender breakdowns, then the model can acco-
modate this via βe = const for all e.

• If there is no gender bias, and the difference in P(find) is down to racial bias, then the model
can accommodate this via γg = const for all g, and we can read off the racial bias in β.

1 ok = . . . #only keep rows where both ethnicity and gender are available
2 y , e , g = . . . # similar to before
3 def log l ik (θ , y , e , g) :
4 β , γ = θ [ : 5 ] , θ [ 5 : ]
5 ξ = β [ e ] + γ [g ]
6 return numpy.sum(numpy. log(numpy.where(y , ξ , 1−ξ )))
7 init ial_guess = numpy. array ([0.5 ,0.5 ,0.5 ,0.5 ,0.5 , 0.2 ,−0.2 ,0])
8 mle = scipy . optimize . fmin(lambda θ : −l og l ik (θ ,y , e ,g) , init ial_guess )
9  Warning: Maximum number of function evaluations has been exceeded.
10 β , γ = mle [ :5 ] , mle [ 5 : ]
11

12 #Print out a table of P(find | e, g) by adding βe and γg
13 x = β [numpy. newaxis , : ] + γ [ : , numpy. newaxis ]
14 pandas .DataFrame(numpy. round(x ,2) , index=gender_levels , columns=ethnicity_levels )

Asian Black Mixed Other White
Female 0.301 0.318 0.606 0.332 0.329
Male 0.303 0.320 0.608 0.334 0.330
Other 0.225 0.242 0.530 0.257 0.253

You might or might not see the warning, depending on how the optimizer runs. Or you might find
that the answer you get is sensitive to initial_guess. Or you might find, when you try to compute a
confidence interval for one of the parameters, that it is surprisingly wide. These are all symptoms of
non-identifiability of the parameters. (You might also see the warning from section 4.1.1, but that’s a
separate issue.)

The problem is that if we have one maximum likelihood solution (β, γ), then any other solution
β̃ = β + δ, γ̃ = γ − δ will give exactly the same fitted model, P(find) = β + γ = β̃ + γ̃. Is
non-identifiability a problem? It certainly is if it stops the optimizer from working! Some optimizers
get confused when there’s a continuum of optima: they are unable to converge on a single answer, so
they keep searching, hence the warning message.

But the real issue with non-identifiability is that we have to be careful which questions we ask.
We can’t ask for example “What is βAsian?” since the answer we get depends on δ, which is arbitrary. It
is nonetheless meaningful to ask e.g. “What is βAsian−βWhite?”, since the difference doesn’t depend on
δ. Differences of this sort are called contrasts. Non-identifiability also manifests itself in confidence
intervals: we’ll get a wide confidence interval for βAsian no matter how much data there is, and a
narrower interval for βAsian − βWhite.

A common trick is to rewrite the model with ‘reduced’ parameters that don’t suffer from non-
identifiability, for example

PrY (find | e, g) = α′ + β′
e + γ′

g , where we’ll require β′
Asian = γ′

Female = 0. (19)

It doesn’t make any difference which reference levels we choose to set to 0; here I chose them alpha-
betically. When we unwrap this model,

PrY (find | e=Asian g=Female) = α′

PrY (find | e=Asian g=Male) = α′ + γ′
Male

PrY (find | e=Black g=Female) = α′ + β′
Black

PrY (find | e=Black g=Male) = α′ + β′
Black + γ′

male
. . .



4.1 Quantifying a question 55

This is exactly as expressive as our original model, PrY (find) = βe + γg, since we can get exactly the
same values for PrY (find) by using the reduced parameters

α′ = βAsian + γFemale

γ′
Male = γMale − γFemale

β′
Black = βBlack − βAsian

β′
Mixed = βMixed − βAsian

. . .

This rewriting also makes it clear that the parameters of the reduced model tell us about differences
between groups, i.e. about contrasts. For example, β′

Black measures the difference in PrY between
Black and Asian ethnicities.

* * *

We’ll learn more about non-identifiability through studying linear algebra in section 5.3–5.4.

Exercise 4.2 (Constructs).
A construct is a concept constructed in the mind of the data scientist, for example ‘skill level’20.
This is as opposed to a quantity like location which, even if it isn’t known, could conceivably be
measured directly.

Three chess players play each other. In a tournament, A won 7 matches against B and lost
3, A won 9 matches against C and lost 1, and B won 6 matches against C and lost 4. We wish
to ascribe a skill level to each player, such that the higher the skill difference the more likely it
is that the higher-skilled player wins a match. Let µA, µB , and µC be skill levels, and consider
this model: if match i is between players p1(i) and p2(i) then the probability that p1(i) wins is
eξi/(1 + eξi) where ξi = µp1(i) − µp2(i).

(a) Find the log likelihood of (µA, µB, µC)

(b) Show that these parameters are not identifiable, and give an equivalent ‘reduced’ parame-
terization that is identifiable.

(c) Compute the maximum likelihood estimators numerically.

20Microsoft’s Xbox Live uses an invented construct called TrueSkill for ‘skill of a gamer’. It is documented at https:
//www.microsoft.com/en-us/research/project/trueskill-ranking-system and is the subject of an engaging and
programmer-friendly blog post http://www.moserware.com/2010/03/computing-your-skill.html. The original paper:
Ralf Herbrich, Tom Minka, and Thore Graepel. “TrueSkill™: A Bayesian Skill Rating System”. In: NIPS. 2006. url: http:
//papers.nips.cc/paper/3079-trueskilltm-a-bayesian-skill-rating-system.pdf.

https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
https://www.microsoft.com/en-us/research/project/trueskill-ranking-system
http://www.moserware.com/2010/03/computing-your-skill.html
http://papers.nips.cc/paper/3079-trueskilltm-a-bayesian-skill-rating-system.pdf
http://papers.nips.cc/paper/3079-trueskilltm-a-bayesian-skill-rating-system.pdf
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4.1.3. NATURAL PARAMETERS

The model on page 53, P(Yi = find) = βei , has a problem. When we ran the optimzer it warned us

 RuntimeWarning: invalid value encountered in log
and if we insert a print(β) statement in the loglik function, we see that the optimizer is trying β values
that are < 0 or > 1. This isn’t surprising, since there’s nowhere in the code that we told it to restrict
itself to valid probabilities.

When we compute maximum likelihood, we had better make sure that the model makes sense—that it
only looks for probabilities in the range [0, 1]. We can ensure this using what I call natural parameters:
tweak the model so that it takes arbitrary real-valued parameters and transforms them to legitimate
probabilities. Instead of trying to fit a model like (19),

P(Yi = find) = α+ βei + γgi

let’s fit
P(Yi = find) = eξi

1 + eξi
where ξi = α+ βei + γgi . (20)

This is just an algebraic gimmick that maps any real number ξ ∈ (−∞,∞) to a value eξ/(1 + eξ) in
the range [0, 1]. The two models (19) and (20) are not equivalent, i.e. there’s no way to rewrite one to
obtain the other, as there was for (18) and (19). But what we’re really after here is to disentangle the
effects of ethnicity and of gender—and our new model lets us do this, so it’s a useful.

When we unwrap (20),

PrY (find | e=Asian g=Female) = eα / (1 + eα)

PrY (find | e=Asian g=Male) = eα+γmale / (1 + eα+γmale)

PrY (find | e=Black g=Female) = eα+βBlack / (1 + eα+βBlack)

PrY (find | e=Black g=Male) = eα+βBlack+γMale / (1 + eα+βBlack+γMale)

. . .

The particular algebraic gimmick we used here is known as logit or softmax, and we saw it before in
section 1.6. It lets us use a general-purpose optimization routine, and it won’t stray into disallowed
parts of the parameter space, because there are none. Generally speaking, optimization routines are
happiest with (i) unconstrained problems, i.e. where there are no bounds on the allowable parameter
values, (ii) differentiable functions, (iii) functions that have non-zero gradient everywhere except at
optima—so don’t try a model like PrY (find) = max(0,min(1, α+ βe + γg)), which is flat over many
parts of the parameter space.

* * *

IntersecƟonality. We often see medical reports like “a Mediterranean diet halves your risk of heart
attack”. These usually have a natural-parameter model behind them, for example

P(heart attack) =
eξ+µd

1 + eξ+µd

where µ is a parameter for the effect of “on Mediterranean diet”, the covariate d is 1 if you follow that
diet and 0 otherwise, and ξ is made up of parameters relating to other features such as age and gender
and weight. Writing it out in more detail,

P(heart attack | no diet) =
eξ

1 + eξ
, P(heart attack | Med. diet) =

eξ+µ

1 + eξ+µ
.

This sort of study is usually done in populations where the risk of heart attack is fairly small, so the
numerators are ≈ 0 thus the denominators are ≈ 1, so

P(heart attack | no diet) ≈ eξ , P(heart attack | Med. diet) ≈ eµ eξ .

We deduce from the headline that the study found the maximum likelihood estimator to be µ = log 1/2.
The medical report won’t say what the risk of heart attack was cut from or what it was cut to, since
those numbers depend on ξ which depends on a person’s age and gender and weight and so on. The
model says “Whatever your underlying risk, your risk would be roughly 50% lower if you were on a
Mediterranean diet”.

What about intersectionality: what if the effect of a Mediterranean diet is different in differ-
ent populations? What if police have a gender bias but it’s different in different ethnic groups? In
section 5.2.1 we’ll see examples of how parametric models can be used to ask this sort of question.
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4.1.4. LOGISTIC REGRESSION

Our final model,

P(Yi = find) = eξi

1 + eξi
i.e. P(Yi = y) =

eξi1y=find

1 + eξi
, ξi = α+ βei + γgi

is called a logistic regression. It’s logistic because it uses the logit transform for parameters, and it’s
a regression because it has a response variable (Yi) predicted by covariates (ei, gi).

Logistic regression models are in widespread use, for example for estimating the probability
that a web user will click on a certain ad. It’s up to the data scientist to find good features to put into
ξ, for example age and browsing history and purchase history and keywords in emails and location
and everything else that a tech company might know about you, plus flashiness and screen size and
keywords and everything else that distinguishes the ad.

1 #Only keep records where both ethniticy and gender are available
2 ok = ~ (pandas . i snu l l ( police [ ’Officer−defined ethnicity ’ ] ) | pandas . i snu l l ( police [ ’Gender ’ ] ))
3

4 #Prepare vectors of y (boolean) and e (integer index) and g (integer index)
5 y = police . loc [ok , ’outcome ’ ] == ’ find ’
6 ethnicity_levels = [ ’Asian ’ , ’Black ’ , ’Mixed ’ , ’Other ’ , ’White ’ ]
7 ethnicity_code = {k: i for i ,k in enumerate( ethnicity_levels )}
8 e = numpy. array ( [ ethnicity_code [v ] for v in police . loc [ok , ’Officer−defined ethnicity ’ ] ] )
9 gender_levels = [ ’Female ’ , ’Male ’ , ’Other ’ ]
10 gender_code = {k: i for i ,k in enumerate(gender_levels)}
11 g = numpy. array ( [gender_code [v ] for v in police . loc [ok , ’Gender ’ ] ] )
12

13 def unwrap_pars(θ ) :
14 α = θ [0 ]
15 β = { ’Asian ’ : 0 , ’Black ’ : θ [1 ] , ’Mixed ’ : θ [2 ] , ’Other ’ : θ [3 ] , ’White ’ : θ [4]}
16 β = numpy. array ( [β [k ] for k in ethnicity_levels ])
17 γ = { ’Female ’ : 0 , ’Male ’ : θ [5 ] , ’Other ’ : θ [6]}
18 γ = numpy. array ( [γ [k ] for k in gender_levels ])
19 return (α , β , γ)
20

21 def log l ik (θ , y , e , g) :
22 α , β , γ = unwrap_pars(θ)
23 ξ = α + β [ e ] + γ [g ]
24 # log lik =

∑
i

(
ξi1yi − log(1 + eξi)

)
25 return numpy.sum(ξ [ y ]) − numpy.sum(numpy. log(1+numpy. exp(ξ )))
26

27 init ial_guess = numpy. array ([0 , 0 ,0 ,0 ,0 , 0 ,0])
28 mle = scipy . optimize . fmin(lambda x : −l og l ik (x , y , e ,g) , x0=initial_guess , maxiter21=5000)
29

30 #Print out a table of P(find | e, g)
31 α , β , γ = unwrap_pars(mle)
32 ξ = α + β [numpy. newaxis , : ] + γ [ : ,numpy. newaxis ]
33 x = numpy. exp(ξ) / (1 + numpy. exp(ξ ))
34 pandas .DataFrame(numpy. round(x ,3) , index=gender_levels , columns=ethnicity_levels )

Asian Black Mixed Other White
Female 0.297 0.315 0.460 0.332 0.326
Male 0.302 0.320 0.465 0.337 0.331
Other 0.239 0.254 0.387 0.269 0.264

21I cheated here by setting maxiter=5000. Without it, the code produced

 Warning: Maximum number of function evaluations has been exceeded.

We saw this warning before and said it was due to non-identifiability of parameters. This time it arises because of a ‘hard-to-
identify’ parameter, namely βMixed. There are so few cases of e=Mixed in the dataset that the log likelihood function is fairly
flat as βMixed varies. See the discussion in section 5.4.1.

It’s a fact of machine learning life that model training often requires babysitting, one part of which is helping the machine
to realize when it’s found a good enough estimate, so that it doesn’t hunt around fruitlessly optimizing something that makes
little difference.
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4.2. AccounƟng for uncertainty *
Donald Rumsfeld, the former US Secretary of Defense, famously said22

Reports that say that something hasn’t happened are always interesting to me, because
as we know, there are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say we know there are some things we do not know.
But there are also unknown unknowns—the ones we don’t know we don’t know.

Bayesian calculations quantify uncertainty about parameters, and frequentist calculations quantify
uncertainty about samples, which are both ‘known unknowns’. Pragmatically, in data science, there
are many sources of uncertainty, and it’s useful to be able to mix them. And Rumsfeld’s unknown
unknowns? That’s when you have the wrong models.

Example 4.3 (Probability as an API).
In the frequentist approach to the coin question, I work out that [0, .8] is a 34% confidence in-
terval, and [0, .9] is a 74% confidence interval. I pass this information on to a Bayesian data
scientist, who treats it like a distribution function, and uses it as a prior distribution for her next
analysis. This doesn’t make sense, but it gets the job done: I’ve expressed my uncertainty about
the parameter, and she has incorporated uncertainty into her model. We are in effect using the
language of probability as a communications API.

Sometimes there is prior data, e.g. someone has conducted a study of “typical bias in
coins used in data science textbook illustrations”. A Bayesian data scientist might translate those
observed frequencies directly into a prior distribution.

Example 4.4 (Mixed effects modeling).
I am analyzing data from a randomized controlled clinical trial, with some subjects taking active
medication and some subjects on placebo. In this trial, each subject was assessed on ten visits
to the clinic; the condition of patient i on visit j is Xi,j . I wish to know if there is a systematic
difference between the two types of subject.

It’s common that the measurements from a single individual are clustered together, so it’s
not useful to model all the Xi,j as independent. Instead, I’ll model them using a per-subject con-
struct. Let patient i have a ‘wellness score’ Θi ∼ Normal(µti , ρ

2) where ti ∈ {active, placebo},
and let Xi,j ∼ Normal(Θi, σ

2) be independent conditional on Θi. (The wellness score is a
‘construct’ in the sense of example 4.2 on page 55.) This model allows an individual subjects’s
measurements to be clustered tightly together (if σ is small), and it also allows for a systematic
difference between the two types of subject (if µactive ̸= µplacebo).

In this model, Θi is a parameter for Xi,j , and we are treating Θi as a random variable,
which is what Bayesians do. But we can at the same time use maximum likelihood estimation
and bootstrap resampling for µ and ρ and σ, like a frequentist. This is called mixed effects
modelling. The Θi are called random effects and the other parameters are called fixed effects.

The final example is from work by Alan Turing and Irving Good on the Enigma machine23. For
each message, the German operator would choose a trigraph (sequences of three letters) from a book,
the Kenngruppenbuch, which contained all possible trigraphs. The trigraph was used to initialize

22U.S. Department of Defense news briefing, 12 February 2002, about the failure to find weapons of mass destruction in Iraq
23I.J. Good. “Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma”. In: Journal

of Statistical Computation and Simulation (2000). url: http://dx.doi.org/10.1080/00949650008812016.

http://dx.doi.org/10.1080/00949650008812016
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the wheel positions of the machine, after which the message could be encrypted. Each operator had
his own copy of the Kenngruppenbuch, and marked every trigraph that he used and did not re-use
it, though it might still be used by other operators. In order to tell the receiver which trigraph was
being used, the operator encoded the trigraph using one of nine secret ‘digraph tables’, with a rule for
which table to use on which day; the digraph tables were refreshed once a year or so. The operator
would transmit this encoded version of the trigraph, and the receiver would use the digraph table to
recover the trigraph. Every day, Bletchley Park had to guess which digraph table was in use that
day. Turing devised a method for this, which relied on knowing the distribution of trigraphs. He
found, for example, that trigraphs at the top of a page were more likely to be chosen. One step in the
calculation was to estimate the probability that a previously unseen trigraph had been chosen. Turing
never published his statistical work; it was left to Good to develop the ideas and publish them. The
next example shows the general technique but applied instead to ecology.

Example 4.5 (Empirical Bayesianism).
I am catching butterflies. Each butterfly species i has frequency θi, so the probability that the
next butterfly I catch belongs to species i is θi/

∑
j θj . What is the probability that the next

butterfly I catch is of a species I haven’t seen before?
Let Xi be the number of butterflies I have seen so far of species i. Let’s model Xi ∼

Poisson(θi). The Poisson random variable is a common modeling choice for discrete counts; its
mean is EXi = θi and its density is P(Xi = x) = θxi e

−θi/x!. If we knew the θi, and we knew
the total number of species n, then it would be easy to work out the probability of interest:

P
(

next butterfly
is new species

)
=

n∑
i=1

θi1Xi=0

/ n∑
i=1

θi. (21)

But if we don’t know the θi and we don’t know n, what can we do?
Let’s adopt a Bayesian approach and treat the θi as random variables drawn independently

from some common distribution, say with density function g(θ), and let Θ be a typical value,
Pr(Θ = θ) = g(θ), and let X ∼ Poisson(Θ) be a typical count. Then the numerator of (21) is

E
( n∑

i=1

θi1Xi=0

)
= n E

(
Θ1X=0

)
= n E

[
E
(
Θ1X=0 |Θ

)]
law of total expectation, (8) page 18

= n E
(
Θe−Θ

)
= n

∫ ∞

θ=0

θe−θg(θ) dθ.

This integral involves g and n, which we still don’t know. But there is a very clever trick:

E
( n∑

i=1

1Xi=1

)
= n E

(
1X=1

)
= nE

[
E(1X=1 |Θ)

]
= n E

(
P(X = 1 |Θ)

)
= n E

(
Θe−Θ

)
which suggests we approximate the numerator in (21) by

∑
i 1Xi=1, i.e. the number of species

for which we have seen exactly one butterfly. Using similar maths, we can approximate the
denominator in (21) by the total number of samples we’ve seen,

∑
i Xi. Therefore,

P
(

next butterfly
is new species

)
≈ number of species we’ve seen once

total number of butterflies seen so far
.

What is remarkable in this example is that we used a genuine Bayesian model but without know-
ing the prior—and we don’t actually need to know the prior, because we can extract everything that
matters about it from observed frequencies in the data. Large datasets of parallel situations ‘describe
their own priors’.

Butterfly counting, and Turing and Good’s work, are examples of empirical Bayesianism. Ex-
tensions of the method are in use in linguistics (e.g. to estimate Shakespeare’s total vocabulary, based
on the texts we have of his) and in ecology (to estimate species diversity, based on a sample). For
a grand survey of how data science has been shaped by the interaction of Bayesian and frequentist
thinking, and by computing resources, see Efron and Hastie24. They say

24Bradley Efron and Trevor Hastie. Computer age statistical inference: algorithms, evidence, and data science. CUP, 2016.
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A good definition of a statistical argument is one in which many small pieces of evidence,
often contradictory, are combined to produce an overall conclusion. [...] Direct evidence,
interpreted by frequentist methods, was the dominant mode of statistical application in the
twentieth century, being strongly connected to the idea of scientific objectivity. Bayesian
inference provides a theoretical basis for incorporating indirect evidence [...] Empirical
Bayes removes the Bayes scaffolding. In place of a reassuring prior, the statistician must
put his or her faith in the relevance of the “other” cases in a large data set to the case of
direct interest.

url: https://web.stanford.edu/~hastie/CASI/.

https://web.stanford.edu/~hastie/CASI/
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5. Feature spaces
In data science, a feature is any measurable property of the objects being studied. A linear model is
a model with unknown parameters in which the parameters are weighted by features and combined
linearly.

Section 5.1 starts with a very simple linear model example, to show how to implement them in
practice, and to flesh out the uselessly abstract definitions above. In the following sections we’ll look
at extensions:

• Linear models are expressive, and we can use them to ask all sorts of questions about a dataset
by choosing appropriate features. We’ll look at examples in section 5.2. Linear models should
be your go-to models for all sorts of data science and machine learning problems, the second
thing you try (after simple tabulations) to get a sense of the data you’re working with.

• A simple way to estimate the parameters is using least squares estimation. There are fast algo-
rithms for doing this, which come from the mathematics of linear algebra. The mathematics
also gives insight into how linear models work, especially questions of parameter identifiability.
Section 5.3 contains a review of the relevant linear algebra.

• There is a probabilistic interpretation of least squares estimation: for a regression model with
Normally distributed response variables, least squares estimation is the same as maximum like-
lihood estimation. This means we can use all the inference tools developed in section 3 to
compute confidence intervals, compare models, etc. Section 5.4 describes this link.

• A wider class of probabilistic models, inluding logistic regression as seen in section 4.1.4, can
be seen as generalized linear models. Section 5.5 discusses this. Linear models are the building
block for many other machine learning techniques, some of which you’ll study in Part II Ma-
chine Learning and Bayesian Inference: support vector machines, perceptrons, and deep neural
networks.
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5.1. Fiƫng a linear model

tl;dr. A linear model can be written as

y = β1e1 + · · ·+ βKeK + ε

where y = (y1, y2, . . . ) is the vector of responses with yi the value for record i in the dataset,
e1, . . . , eK are feature vectors with ek = (ek,1, ek,2, . . . )where ek,i is the value of the kth feature
for record i, βk is the parameter that weights the kth feature, and ε = (ε1, ε2, . . . ) is a vector of
residuals, also called error or noise.
Least squares estimation means picking the parameters β to minimize the mean square error∑

i ε
2
i . Use sklearn.linear_model.LinearRegression() to do this.

Example 5.1.
The Iris dataset was collected by the botanist Edgar Anderson and popularized25 by Ronald Fisher
in 1936. Fisher has been described as a “genius who almost single-handedly created the foun-
dations for modern statistical science”. The dataset consists of 50 samples from each of three
species of iris, each with four measurements.

Petal length Petal width Sepal length Sepal width species
1.0 0.2 4.6 3.6 setosa
5.0 1.9 6.3 2.5 virginica
5.8 1.6 7.2 3.0 virginica
1.7 0.5 5.1 3.3 setosa
4.2 1.2 5.7 3.0 versicolor
. . .

Let’s investigate how petal length depends on sepal length. Here is a plot:
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It suggests a curve. Let’s fit a quadratic curve, using the linear model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2. (22)

Linear does NOT mean ‘straight line’. It refers to linear algebra—adding vectors, and multiplying
vectors by scalars. In vector form, the model saysPetal.Length1Petal.Length2

...

 ≈ α

11...
+ β

Sepal.Length1Sepal.Length2
...

+ γ

(Sepal.Length1)
2

(Sepal.Length2)2
...

 .

25It’s tempting for computer scientists and mathematicians to think that data science is about algorithms and calculating with
distributions and so on, but shared datasets are arguably more important. C.P. Scott, the former editor of The Guardian, said
“Comment is free, but facts are sacred”.

Modern advances in neural networks and deep learning were propelled by two shared datasets: the MNIST database of
handwritten digits, and the ImageNet database of labelled photos. The story of ImageNet and of Fei-Fei Li, the researcher who
collected it, is told in The data that transformed AI research—and possibly the world, https://qz.com/1034972/the-data-
that-changed-the-direction-of-ai-research-and-possibly-the-world/.

In addition to shared datasets, it’s also useful to have a shared challenge, what David Donoho calls a common task framework.
See David Donoho. 50 years of Data Science. Presentation at the Tukey centennial workshop. 2015. url: http://courses.
csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
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In scientific computing, the coding style is also in terms of vectors:

1 one , x , y = numpy. ones( len ( i r i s )) , i r i s [ ’Sepal .Length ’ ] , i r i s [ ’Petal . Length ’ ]
2 model = sklearn . linear_model . LinearRegression( fit_intercept=False)
3 #Specify the three feature vectors [one, x, x**2] and the response vector y
4 model . f i t (numpy.column_stack( [one , x , x**2]) , y [ : , numpy. newaxis ])
5 ((α ,β ,γ ) ,) = model . coef_ #unpack a 1× 3 array of parameters

(-17.447, 5.392, -0.296)

In fact the sklearn model fitting function always includes a one vector, unless we explicitly tell it
otherwise with fit_intercept=False. Another way to write this code is

6 model2 = sklearn . linear_model . LinearRegression ()
7 model2 . f i t (numpy.column_stack( [x , x**2]) , y [ : , numpy. newaxis ])
8 (α ,) ,((β ,γ ) ,) = model2 . intercept_ , model2 . coef_

What does this fit look like? We could explicitly evaluate α + βx + γx2 for a range of x values and
plot. Or use model.predict(), to relieve us from re-typing the model formula.

9 newx = numpy. linspace (4.2 , 8.2 , 20)
10 ξ = model2 . predict (numpy.column_stack([newx,newx**2]))
11

12 f ig , ax = plt . subplots ()
13 ax . plot (newx, ξ , color=’0.5 ’ , zorder=−1, linewidth=1, l ines ty l e=’dashed ’ )
14 ax . scatter ( i r i s [ ’Sepal .Length ’ ] , i r i s [ ’Petal .Length ’ ] , alpha=.3)
15 ax . set_ylim(0 ,7.5)
16 ax . set_ylabel ( ’Petal .Length ’ )
17 ax . set_xlabel ( ’Sepal .Length ’ )
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Terminology. We’d describe model (22) as having two features, Sepal.Length, and (Sepal.Length)2.
The rows in this dataset have other attributes, and they can be transformed to create an infinite variety
of features, but we’ll only use the word feature for data attributes that are being used in a model. We
call Petal.Length the response or label in this model, not a feature.

Why two features, and not one, or three? From the perspective of the person preparing the
dataset, there is only one feature, Sepal.Length. From the perspective of the person computing α,
β, and γ, there are two data features that have to be accounted for, and it’s irrelevant that they came
from the same column in the dataset. From the perspective of a stickler for definitions, the definition
of ‘linear model’ says that parameters are weighted by features, so there is really a third feature, the
constant feature one with parameter α. Don’t get uptight about defining the word ‘feature’, just write
out your models explicitly, and there will be no confusion.

* * *

The model is linear because it combines the unknown parameters α, β and γ in a linear formula.
There’s no reason to think this is in any way a ‘true’ model, and we could equally well have proposed
a non-linear model e.g.

Petal.Length ≈ α− βe−γSepal.Length.

Linear models are just easier to work with, so they’re a better place to start.
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5.2. Features
Here is a gallery of cunning ways to use features to ask questions about a dataset.

5.2.1. ONE-HOT CODING

One-hot coding is used to turn an enum feature (also called categorical or factor) into a collection of
binary features, so it can be used in a linear model. Here’s an example.

The Iris data is made up of three species. Maybe there’s a straight-line fit between petal length
and sepal length, but with different slopes and intercepts for each species.
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setosa
versicolor
virginica

One way to write this is

Petal.Length ≈ αspecies + βspeciesSepal.Length.

Here’s the same equation, but written as a linear model:

Petal.Length ≈ α1s1 + α2s2 + α3s3
+ β1(s1 ⊗ Sepal.Length) + β2(s2 ⊗ Sepal.Length) + β3(s3 ⊗ Sepal.Length)

In this equation, each sk is a binary vector marking out which rows belong to the kth species, for
example s3 = 1[Species=virginica]. This is called one-hot coding of the Species vector. Also, ⊗

1x also written 1[x] is
the indicator function,
1true = 1 and 1false = 0

means elementwise multiplication.

1 species_levels = numpy. unique( i r i s [ ’ Species ’ ] )
2 x , y = i r i s [ ’Sepal .Length ’ ] , i r i s [ ’Petal . Length ’ ]
3 s1 , s2 , s3 = ( i r i s [ ’ Species ’]==s for s in species_levels )
4 model = sklearn . linear_model . LinearRegression( fit_intercept=False)
5 model . f i t (numpy.column_stack([ s1 , s2 , s3 , s1*x , s2*x , s3*x ]) , y [ : ,numpy. newaxis ])

We’ve seen one-hot coding before. In section 2.1 we used it to encode the event {X ∈ A} as
a numerical random variable 1X∈A, which allowed us to compute the expectation E 1X∈A = P(X ∈
A).

5.2.2. PERIODIC AND SECULAR TRENDS

Example 5.2.
The UK Met Office makes available historic data26 from 37 stations around the UK. Each station
has monthly records for mean daily maximum temperature tmax, mean daily minimum tempera-
ture tmin, days of air frost af, total rainfall rain, and total sunshine duration sun. Coverage varies;
the longest records are from Oxford and from Armagh, going back to 1853.
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month tmax tmin af rain sun station lat lng alt_m
1963 Sep 14.7 5.9 0 126.4 127.7 Eskdalemuir 55.311 -3.206 242
1955 Aug – – – 35.1 194.7 Shawbury 52.794 -2.663 72
1937 May 15.3 8.4 0 59.8 184.8 Lowestoft 52.483 1.727 18
2007 Aug 20.6 11.8 0 40.3 204.6 Waddington 53.175 -0.522 68
1925 July 21.8 12.6 0 23.2 – Sheffield 53.381 -1.490 131
. . .

Are temperatures increasing? It’s tricky to read this directly off a raw data plot, because of the
annual cycle and because of noise. A crude solution is to simply average over the 12 months of each
year, and plot this average over time. This isn’t ideal, because averaging is lossy i.e. we’d be throwing
away data; and because a missing value for one month will cause the entire year to be missing.

A cleverer solution is to use features to model the effects we’re trying to capture. There are two
effects, an annual cycle, and a (hypothetical) increasing trend, which we can describe by the model

temp ≈ α+ β sin(2πt+ θ) + γt

where t is the date in years, and α, β, γ, and θ are unknown parameters. Here is the data and the
fitted model for Cambridge station (measured at the National Institute of Agricultural Botany, between
Churchill and Girton colleges). The plot shows the mean temperature temp = (tmin+ tmax)/2.
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The model is linear in α and β and γ and not in θ—but there is a cunning trick from A-level
trigonometry that lets us rewrite it as a linear model. The trick is

sin(A+B) = sinA cosB + cosA sinB

and so our model can be rewritten

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt.

1 climate = pandas . read_csv( ’ https :// teachingf i les . blob . core .windows. net/founds/climate . csv ’ )
2 df = climate . loc [( climate . station==’Cambridge ’ ) & (climate . yyyy>=1985)]
3 t = df . yyyy + (df .mm−1)/12
4 temp = (df . tmin + df .tmax)/2
5 model = sklearn . linear_model . LinearRegression ()
6 X = numpy.column_stack([numpy. sin(2*numpy. pi*t ) , numpy. cos(2*numpy. pi*t ) , t ] )
7 model . f i t (X, temp[ : , numpy. newaxis ])
8 (α ,) ,((β1,β2,γ ) ,) = (model . intercept_ , model . coef_)

Intercepts. Why is α so extreme? It is the temperature in the year 1 BC (there was no year 0 AD),
based on linearly extrapolating the rate γ. It’s daft to trust that the model will predict well for such a
wild extrapolation! If we rewrite the model in the equivalent form

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t-2000)

then α will report the temperature for year 2000.

5.2.3. NON-LINEAR RESPONSE

We’ve already seen that we can use polynomial features to capture smooth curves. Higher degree
polynomials have more parameters to estimate, so they’re more expressive and can fit the data better,
but it’s unwise to rely on them especially outside the range where we have data. In the iris dataset
from page 5.1,

Petal.Length ≈ α+ β1 Sepal.Length+ β2 (Sepal.Length)2 + · · ·+ βK (Sepal.Length)K

26https://www.metoffice.gov.uk/public/weather/climate-historic

https://www.metoffice.gov.uk/public/weather/climate-historic
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A different approach is to use parameters for anchor points in an arbitrary curve. In this next model
the arbitrary curve is a step function with fixed x-axis breaks, and least squares estimation finds the
height at each step.

⌊x⌋ is x rounded down
to the nearest integer Petal.Length ≈ β4 1

[
⌊Sepal.Length⌋ == 4

]
+ · · ·+ β7 1

[
⌊Sepal.Length⌋ == 7

]
.
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This model is more honest because it is upfront about being an arbitrary fit to the data, incapable of
extrapolating outside the data range. This example isn’t interesting (we could just as well have fitted
each integer bin separately), but it’s very useful when combined with other features. More guidance
on curve fitting on page 69.

Exercise 5.3. For the climate data in section 5.2.2 we proposed the model

temp ≈ α+ β sin(2πt+ θ) + γt

in which the +γt term asserts that temperature is increasing at a constant rate. To test this, create
a non-numerical feature out of t by

1 decade = ’decade_ ’ + str (numpy. f loor ( t/10).astype(numpy. int )) + ’0s ’

(which has values like ’decade_1980s’, ’decade_1990s’ etc.) and fit the model

temp ≈ α+ β sin(2πt+ θ) + γdecade .

Write this as a linear model. How might we use it to investigate whether temperatures are in-
deed increasing at a constant rate? What are the advantages and disadvantages of this model, as
opposed to fitting

temp ≈ γ + β sin(2πt+ θ)

separately for each decade?

5.2.4. DISCOVERING FEATURES

It’s often illuminating to plot the residual vector, to find out if we have missed any features worth en-
the residuals are the error
term in a linear model coding. Here’s an example. Suppose we take the climate dataset for two weather stations, Cambridge

and Braemar in the Scottish highlands, and for both stations together we fit

temp = α+ β sin(2πt+ θ) + ε

where ε is the error term. Here is a scatter plot showing ε as a function of t and station. We can see
immediately that there’s a systematic difference between the two stations (suggesting we should add
a +δstation term to the model) and also a hint of a general trend over time (suggesting we do indeed
need the +γt term).
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1 climate = pandas . read_csv( ’ https :// teachingf i les . blob . core .windows. net/founds/climate . csv ’ )
2 ok = (climate . station . i s i n ( [ ’Cambridge ’ , ’Braemar ’ ] )) & (climate . yyyy>=1985) \
3 & ~pandas . i snu l l (climate . tmin+climate .tmax)
4 df = climate . loc [ok ] . copy()
5

6 df . t = df . yyyy + (df .mm−1)/12
7 df .temp = (df . tmin + df .tmax)/2
8 model = sklearn . linear_model . LinearRegression ()
9 X = numpy.column_stack([numpy. sin(2*numpy. pi*df . t ) , numpy. cos(2*numpy. pi*df . t ) ] )
10 model . f i t (X, df .temp)
11 df . pred = model . predict (X) # This would raise SettingWithCopy warning, without copy()
above
12

13 with plt . rc_context({ ’ f igure . f i g s i ze ’ : (15 ,1.7)}):
14 for station in numpy. unique(df . station ) :
15 i = df . station == station
16 plt . scatter (df . t . loc [ i ] , (df .temp − df . pred ) . loc [ i ] , label=station , s=15, alpha=0.5)
17 plt . axhline (0 , color=’0.6 ’ , zorder=−1)
18 plt . xlim(1983, 2021)
19 leg = plt . legend(ncol=2, frameon=False , bbox_to_anchor=(0.5, 1) , loc=’ lower center ’ )
20 for lh in leg . legendHandles :
21 lh . set_alpha(1)
22 plt . ylabel ( ’ res iduals ’ )

* * *

We design features for several purposes:

• Features to extract a particular summary from the data, e.g. the linear trend in the climate data
• ‘Black box’ features that capture enough detail for us to be able to make good predictions or

extrapolations—we don’t have to understand such features, we just want them to work well
• Features that turn arbitrary objects like tweets or sentence fragments into numbers that can

be put into quantitative models, e.g. distributional semantics which you will study in Part II
Natural Language Processing, and term frequency models for documents which you will study
in Part II Information Retrieval.

The more features we add, the better the fit i.e. the smaller the residual we can achieve. But
models with too many features tend to be bad at generalizing to new data (see the polynomial fits in
section 5.2.3). It’s an art to design sets of features that are expressive enough to capture the meaningul
variation in the data, while being parsimonious enough to generalize well. Here are two strategies that
are sometimes helpful. You will learn more about them in futher courses on machine learning and
data science.

Dimension reducƟon. Start with a long list of possible features {e1, . . . , eK}. Construct two new
features f1 and f2, each of them a linear combination of the raw features. The goal is to construct
them so that

Y ≈ α+ β1f1 + β2f2

has errors that are as small as possible. For this it helps to have geometrical intuition about feature
spaces, which needs linear algebra—see section 5.4. This procedure gives us two features f1 and
f2 that capture as much information as they can about Y , i.e. it has discovered a two-dimensional
embedding of the dataset’s K dimensions. We can show the data on a scatter plot of f1 against f2, and
it’s likely to reveal useful clusters. The general term for finding lower-dimensional representations of
data is dimension reduction.
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Feature selecƟon. Start with a long list of possible features. Pick m, a number of features to use,
and find the best fitting model subject to the constraint that it’s only allowed to use m of the possible
features. This is called feature selection.
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xkcd by Randall Munroe, https://xkcd.com/2048/

https://xkcd.com/2048/
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5.3. Linear mathemaƟcs
This picture illustrates all the concepts from vector spaces and linear mathematics that we’ll need for
this course:

• Linearly independent basis vectors e1 and e2
• The set of linear combinations of those vectors, also known as the subspace spanned by those

vectors, is S =
{
λ1e1 + λ2e2 : −∞ < λ1, λ2 < ∞

}
• Another vector x can be projected onto the subspace, by finding the point x̃ = λ̂1e1 + λ̂2e2 in
S that is closest to x

• The residual x− x̃ is orthogonal to the basis vectors

For linear models in data science all we need is vectors in simple Euclidean space, Rn where n is the
number of records in the dataset. A linear model like the Iris model on page 62 is a vector equationPetal.Length1Petal.Length2

...

 ≈ α

11...
+ β

Sepal.Length1Sepal.Length2
...

+ γ

(Sepal.Length1)
2

(Sepal.Length2)2
...

 .

But it’s good for the soul to define linear algebra abstractly and mathematically so that the concepts can
be applied to more general settings, as you will see in Part II Digital Signal Processing and Computer
Vision (Fourier transforms and wavelets, where vectors represent functions) and Quantum Computing
(where vectors represent quantum states).

• Let V be a set whose elements are called vectors, denoted by Roman letters27 u, v, w, etc.
• Let F be a field whose elements are called scalars, denoted by Greek letters λ, µ, etc. For our

purposes, take F to be either the real numbers or the complex numbers.
• Let there be a binary operation V × V → V , called addition, written v + w.
• Let there be a binary operation F × V → V , called scalar multiplication, written λv.
• Let there be a binary operation V × V → F , called inner product, written v · w.

27In introductory geometry it’s common to use bold symbols for vectors, e.g. v+ 0 = v and 1v = v. This notation makes it
clear that 0 is a vector and 1 is a scalar. The bold notation is less common in more advanced applications, so you have to rely
on type inference to spot that 0 is a vector and 1 is a scalar.
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5.3.1. DEFINITIONS AND USEFUL PROPERTIES *

Vector space. V is called a vector space over F if the following properties hold:

1. Associativity: (u+ v) + w = u+ (v + w) for all vectors u, v, w.
2. Commutativity: u+ v = v + u for all vectors u, v
3. Zero vector: there is a vector 0 such that v + 0 = v for all vectors v
4. Inverse: for every vector v there is a vector denoted −v such that v + (−v) = 0

5. λ(v + w) = λv + λw for every scalar λ and vectors v, w
6. (λ+ µ)v = λv + µv and (λµ)v = λ(µv) for all scalars λ, µ and vector v
7. 1v = v for every vector v, where 1 is the unit scalar (i.e. 1λ = λ for every scalar λ).

Linear combinaƟons and bases. Let v1, . . . , vn be vectors in a vector space and λ1, . . . , λn be scalars.
Then the vector λ1v1 + · · ·+ λnvn is called a linear combination of v1, . . . , vn. The set of all linear
combinations

S =
{
λ1v1 + · · ·+ λnvn : λi ∈ F for all i

}
is called the span of {v1, . . . , vn}, and the vectors vi are said to span S. Clearly S ⊆ V , and it is not
hard to check that S is also a vector space. It is called a subspace of V .

Vectors v1, . . . , vn in a vector space are said to be linearly independent if

λ1v1 + · · ·+ λnvn = 0 =⇒ λ1 = · · · = λn = 0.

If this is not the case, then they are said to be linearly dependent.
If there is a finite set of vectors e1, . . . , en that span a vector space V , and they are linearly

independent, then they are called a basis for V . It can be shown that any two bases for a vector space
must have the same number of elements; this number is called the dimension of the vector space.

Given a basis {e1, . . . , en} of a vector space, it can be proved that any vector x can be uniquely
written as

x = λ1e1 + · · ·+ λnen for some scalars λ1, . . . , λn.

The n-tuple (λ1, . . . , λn) is called the coordinates of x with respect to the given basis. If we pick a
different basis we’ll get different coordinates, but of course the vectorx itself is still the same regardless
of the basis.

Inner products and orthogonality. Consider a vector space V over the field of real numbers. It is
said to be an inner product space if the inner product satisfies these properties:

8. v · v ≥ 0 for all vectors v, and v · v = 0 if and only if v = 0

9. (λu+ µv) · w = λ(u · w) + µ(v · w) for all vectors u, v, w and scalars λ, µ
10. v · w = w · v for all vectors v and w

An inner product space over the field of complex numbers is defined similarly, except that condition 10
is replaced by v · w = w · v where λ is the complex conjugate of the complex number λ. Also, the
first part of condition 8 should be interpreted as Im(v · v) = 0 and Re(v · v) ≥ 0.

Two vectors v and w in an inner product space are said to be orthogonal if v · w = 0. A set of
vectors (which may be finite or infinite) is said to be an orthogonal system if every pair of vectors in
the set is orthogonal and in addition none of them is equal to 0.

The Euclidean norm for an inner product space is

∥v∥ =
√
v · v.

A vector v with ∥v∥ = 1 is called a unit vector. An orthogonal system is said to be an orthonormal
system if every vector in it is a unit vector.

Useful properƟes. Here are some useful properties that can be proved from the abstract definitions.
They are mostly obvious when we’re working with finite dimensional Euclidean space. For abstract
vector spaces, they must be proved directly from the defining properties 1–10. The proofs are just
careful definition-pushing, but it’s reassuring to know that it can be done.

11. 0v = 0, for every vector v in a vector space.
12. (−λ)v = −(λv), for every vector v in a vector space and every scalar λ.
13. (λv) · w = λ(v · w), for all scalars λ and vectors v, w in an inner product space.
14. 0 · v = 0, for every vector v in an inner product space.
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15. For all n and all scalars λ1, . . . , λn and vectors v1, . . . , vn, w in an inner product space,( n∑
i=1

λivi

)
· w =

n∑
i=1

λi(vi · w).

16. If {e1, . . . , en} is an orthonormal system in an inner product space, then for every vector x in
the span of {e1, . . . , en}, the coordinates of x are given by

x =

n∑
i=1

(x · ei) ei.

17. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all vectors u, v; this is known as the triangle inequality.

Exercise 5.4. Prove useful property 11

In this equation, the left hand side must be referring to the scalar 0 ∈ F and the right hand side to the
vector 0 ∈ V , where V is the vector space over field F , because otherwise the equation doesn’t make
sense—the abstract definitions don’t define multiplication of vectors, and scalar multiplication yields
a vector.

In both the real numbers and the complex numbers (and indeed in any field F ), 0 = 0 + 0. So,
by property 6,

0v = (0 + 0)v = 0v + 0v.

By property 4, there is some vector −(0v) such that 0v +
(
−(0v)

)
= 0. Adding this to each side of

the equation,
0v +

(
−(0v)

)
=
(
0v + 0v

)
+
(
−(0v)

)
and so, using property 1,

0 = 0v +
(
0v + (−(0v))

)
= 0v + 0.

Finally, by property 3,
0 = 0v.

Exercise 5.5. Prove useful property 12

Property 6 says that
λv + (−λ)v =

(
λ+ (−λ)

)
v.

In both the real numbers and the complex numbers (and indeed in any field F ), λ + (−λ) = 0 ∈ F ,
thus

λv + (−λ)v = 0v

which we showed in the previous exercise to be equal to 0 ∈ V . So (−λ)v satisfies property 4 and it
is therefore −(λv).

Exercise 5.6. Prove useful property 13

(λv) · w =
(
(λ+ 0)v

)
· w since λ = λ+ 0 ∈ F

= (λv + 0v) · w by property 6
= λ(v · w) + 0(v · w) by property 9
= λ(v · w) since 0µ = 0 ∈ F.
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5.3.2. ORTHOGONAL PROJECTION AND LEAST SQUARES

The ProjecƟon Theorem. Let V be an inner product space, let {e1, . . . , en} be a finite collection
of vectors, and let S be the subspace spanned by these vectors. Given a vector x ∈ V , there is a
unique vector x̃ that is closest to x, i.e. that solves28

min
x′∈S

∥x− x′∥2.

Furthermore, x− x̃ is orthogonal to S, i.e.

(x− x̃) · y = 0 for all y ∈ S.

The vector x̃ is called the orthogonal projection of x onto S, and x− x̃ is called the residual.

If the ei are linearly independent, i.e. if they form a basis for S, then we can find the coordinates
of x̃ with respect to the ei, and the coordinates are unique. If the ei are linearly dependent, then
there are multiple ways to write x̃ as a linear combination of the ei.

Example 5.7 (Closest point via calculus).
Let e1 = [1, 1, 0], let e2 = [1, 0,−1], and let x = [1, 2, 3]. Find the closest point to x in the span
of {e1, e2}. Show that the residual is orthogonal to S.

Just write out the optimization problem we want to solve:

min
λ1,λ2

∥∥x− (λ1e1 + λ2e2)
∥∥2.

We can compute the solution numerically:

1 e1 ,e2 ,x = np. array ([1 ,1 ,0]) , np. array ([1 ,0 ,−1]) , np. array ([1 ,2 ,3])
2 λ1 ,λ2 = scipy . optimize . fmin(lambda λ : np. l ina lg .norm(x−λ[0]*e1−λ[1]*e2 ) , [0 ,0])
3 λ1*e1 + λ2*e2 #outputs: array([ 0.33332018, 2.66666169, 2.33334151])

Or we can try algebra. Expanding the definition of ∥·∥, we want to minimize

x·x− 2
(
λ1 x·e1 + λ2 x·e2

)
+
(
λ2
1 e1 ·e1 + 2λ1λ2 e1 ·e2 + λ2

2 e2 ·e2
)
.

Differentiating with respect to λ1 and λ2 and setting the derivatives equal to 0,

∂

∂λ1
= 0 : − 2x·e1 + 2λ1 e1 ·e1 + 2λ2 e1 ·e2 = 0

∂

∂λ2
= 0 : − 2x·e2 + 2λ1 e1 ·e2 + 2λ2 e2 ·e2 = 0

(23)

or equivalently

λ1 e1 ·e1 + λ2 e1 ·e2 = x·e1
λ1 e1 ·e2 + λ2 e2 ·e2 = x·e2.

We can compute the solution to these equations:

1 e1 = numpy. array ([1 ,1 ,0])
2 e2 = numpy. array([1 ,0 ,−1])
3 x = numpy. array ([1 ,2 ,3])
4 λ1 ,λ2 = numpy. l ina lg . solve ( [ [ e1@e1 , e1@e2 ] , [ e1@e2 , e2@e2 ] ] , [x@e1 , x@e2 ] )
5 λ1*e1 + λ2*e2 # array([ 0.33333333, 2.66666667, 2.33333333])

28Mathematicians prefer to write inf rather than min in equations like this, where the minimum is being taken over an infinite
set and it hasn’t yet been established that the minimum is attained.
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For geometrical insight, rearrange equations (23) to get(
x− (λ1e1 + λ2e2)

)
· e1 = 0(

x− (λ1e1 + λ2e2)
)
· e2 = 0

In other words, the residual is orthogonal to e1 and to e2, and hence it’s orthogonal to every linear
combination of e1 and e2.

Example 5.8 (Closest point via explicit projecƟon).
Let x = [1, 2, 3], and let x̃ be the projection onto the subspace spanned by e1 = [1, 1, 0] and
e2 = [1, 0,−1]. Create an orthonormal basis out of {e1, e2}, and thence find the coordinates of
x̃ with respect to the basis {e1, e2}.

Hint: first use Useful Property 16 on page 72 to get the coordinates of x̃ in the orthonormal
basis.

First create the orthonormal basis. Start by setting f1 to be a unit vector in the same direction as e1:

f1 =
e1
∥e1∥

.

Next, construct f2 by subtracting the part that’s parallel to f1:

e1

e2

(e2 ·f1)f1

f′2

f ′
2 = e2 − (e2 ·f1)f1, f2 =

f ′
2

∥f ′
2∥

.

This construction ensures that f ′
2 ·f1 = 0 therefore f2 ·f1 = 0, and it also ensures that both f1 and f2

are unit vectors. We’ve written f1 and f2 as linear combinations of e1 and e2, and it’s easy to check that
e1 and e2 can be written as linear combinations of f1 and f2, thus span{e1, e2} = span{f1, f2} = S.
Thus, {f1, f2} is an orthonormal basis for S.

Useful Property 16 now tells us exactly what the coordinates are for x̃:

x̃ = (x̃·f1)f1 + (x̃·f2)f2.

Furthermore, the Projection Theorem tells us that the residual is orthogonal to S = span{f1, f2},
which means (x− x̃) · f1 = (x− x̃) · f2 = 0, thus

x̃ = (x·f1)f1 + (x·f2)f2.

which with some algebra can be rewritten in terms of e1 and e2. In numpy,

6 f1 = e1 / numpy. l ina lg .norm(e1)
7 f ′2 = e2 − (e2@f1) * f1
8 f2 = f ′2 / numpy. l ina lg .norm( f ′2)
9

10 # x̃ in original coordinate system
11 (x@f1)* f1 + (x@f2)* f2 # array([ 0.33333333, 2.66666667, 2.33333333])
12

13 # x̃ in terms of e1 and e2
14 g1 = numpy. array ([1 ,0]) / numpy. l ina lg .norm(e1)
15 g2 = numpy. array([−(e2@f1)/numpy. l ina lg .norm(e1 ) , 1]) / numpy. l ina lg .norm( f ′2)
16 (λ1 ,λ2) = (x@f1)*g1 + (x@f2)*g2
17 λ1*e1 + λ2*e2 # array([ 0.33333333, 2.66666667, 2.33333333])

* * *

Colinearity andmatrix rank. In Euclidean space, if we have a collection of vectors and we stack them
to form a matrix, then the rank of the matrix is the dimension of the space spanned by those vectors.
In Python, use numpy.linalg.matrix_rank(numpy.column_stack([e1,e2])).

In this example, we projected onto basis vectors e1 and e2 that were linearly independent. What
happens if we project onto a collection of linearly dependent vectors, e.g. if e2 = αe1? The Projection
Theorem doesn’t assume linear independence, so the overall result still holds: there is still a unique
projection x̃. The explicit projection method would still work, but it would give f ′

2 = 0, so we’d just
discard that vector from the orthonormal basis. Equations (23) would still be correct, but they would
have multiple solutions for λ1 and λ2.
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5.3.3. ADVANCED APPLICATION: FOURIER ANALYSIS *

In this course on data science, the only vector space we’re interested in is a simple finite-dimensional
Euclidean space over the real numbers. Before returning to data science, and to illustrate that there’s
some merit in defining vector spaces abstractly, here’s an advanced application—a step on the way to
Fourier analysis.

Inner product space. LetV consist of all continuous complex-valued functions on the interval [−π, π].
Define addition of functions in the obvious way, define multiplication by a complex number in the
obvious way, and define the inner product to be

f · g =
1

π

∫ π

−π

f(τ)g(τ) dτ.

It is easy to check that properties 1–7 are satisfied, i.e. that this is a vector space over the field of
complex numbers. Using some standard results about integration one can also show that properties 8–
10 are also satisfied, therefore this is an inner product space. (A typical result: if f is a continuous
function, then it is integrable over a finite interval.)

Orthonormal system. Every vector in V is a continuous function. Consider the vectors

{e1, e2, . . . } =

{
1√
2
, cos(τ), sin(τ), cos(2τ), sin(2τ), cos(3τ), . . .

}
.

(The first element 1/
√
2 is a way of writing the constant function f(τ) = 1/

√
2.) With some A-level

trigonometry and calculus, it can be shown that ei · ej = 0 if i ̸= j, and ei · ei = 1 for every i, i.e.
that this set is an orthonormal system.

Fourier series. This orthonormal system spans the subspace of V consisting of ‘well-behaved’ func-
tions, and such functions can be written in coordinate form as

f =
∞∑
i=1

(f · ei) ei (24)

or equivalently

f(τ) =
a0
2

+

∞∑
i=1

(
ai cos(iτ) + bi sin(iτ)

)
where

a0 =
1

π

∫ π

−π

f(τ) dτ,

ai =
1

π

∫ π

−π

f(τ) cos(iτ) dτ for i ≥ 1

bi =
1

π

∫ π

−π

f(τ) sin(iτ) dτ for i ≥ 1.

This is known as the Fourier series for f . There are however some technical caveats associated with
infinite series—Useful Property 16 only applies to finite bases, but equation (24) is an infinite series
corresponding to an infinite orthornormal system, and this is why we need the restriction ‘well-behaved
functions’. In Part II Computer Vision and Digital Signal Processing you will learn more about Fourier
analysis and other related ways to decompose functions.
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5.4. Linear regression and least squares

tl;dr. A linear regression is a probabilistic model of the form

Y ∼ Normal(β1e1 + · · ·+ βKeK , σ2) (25)

where e1, . . . , eK are covariates, Y is the random response, and σ and β1, . . . , βK are unknown
parameters. Maximum likelihood estimation for this model is equivalent to least squares estima-
tion for the corresponding linear model.
In a linear regression model, we can use all the inference tools from section 3: find confi-
dence intervals for the parameters, test hypotheses, etc. (For inference based on resampling, use
parametric resampling: first estimate the unknown parameters, then generate new observations
from (25).)

To demonstrate the link between linear regression and linear models, it’s easier to work through an
illustration rather than to write out abstract equations.

For the Iris dataset on page 62, we investigated how petal length depends on sepal length. Con-
sider the linear regression model

Petal.Lengthi ∼ Normal
(
α+ β Sepal.Lengthi + γ (Sepal.Lengthi)2, σ2

)
(26)

where i ∈ {1, . . . , n} indexes the rows of the dataset, and each Petal.Lengthi is an independent
random variable, and Sepal.Lengthi is being treated as a a covariate i.e. a non-random value.

Let’s find the maximum likelihood estimators. For brevity, let yi = Petal.Lengthi, let ei =
Sepal.Lengthi, and let fi = (Sepal.Lengthi)2. Then the density function for a single observation is

Pr(yi | α, β, γ, σ) =
1√
2πσ2

e−
(
yi−(α+βei+γfi)

)2/
2σ2

and the log likelihood of the entire dataset is

log lik(α, β, γ, σ | y) = −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(
yi − (α+ βei + γfi)

)2
.

We can maximize this in two steps. The first step is to maximize the last term, i.e. find α̂, β̂, and γ̂
that solve

min
α,β,γ

∥∥y − (α1 + βe+ γf)
∥∥2.

In this equation we have switched to vector notation, and 1 means the vector [1, 1, . . . , 1]. This is
nothing other than least squares estimation for the linear model

Petal.Length ≈ α+ βSepal.Length+ γ(Sepal.Length2).

The second step is to find σ to maximize what’s left, i.e. to solve

max
σ>0

{
−n

2
log
(
2πσ2

)
− 1

2σ2

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2}.

This is a trivial one-parameter optimization problem, once we know α̂, β̂, and γ̂, and the solution is

σ̂ =

√
1

n

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2. (27)
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5.4.1. NON-IDENTIF IABIL ITY AND CONFOUNDED FEATURES *

tl;dr. The linear subspace spanned by the feacture vectors is referred to as the feature space.
Let y be the response vector, and let ỹ be the projection of y onto the feature space. Maximum
likelihood estimation is equivalent to expressing ỹ as a linear combination of feature vectors.

• If the feature vectors are linearly independent, then the Projection Theorem says the coor-
dinates of ỹ in feature space are unique, thus there is a unique solution for the maximum
likelihood estimators.

• If the feature vectors are linearly independent, then there are multiple ways to write ỹ as a
linear combination of the feature vectors, thus the maximum likelihood estimators are not
unique. We say the parameters are non-identifiable.

Even when feature vectors are linearly independent, if they are closely correlated then the param-
eters will be hard to identify—for example, confidence intervals will be wide.
Features that are linearly dependent or closely correlated are said to be confounded.

Example 5.9 (DetecƟng non-idenƟfiability).
For the police dataset on page 51, consider the model

1[outcome=find] ≈ βe + γg.

where e is the ethnicity of the suspect and g is the gender. Are the parameters identifiable?

(Previously, in section 4.1, we proposed a proper probabilistic model based on the same parame-
ters, Pr(output=find) = βe+γg, whereas now we’re treating 1[output=find] as a numerical response.
It’s a hack to treat a binary response as a real number with an implied Normal distribution. However,
(i) the question only asks about parameter identifiability, which is a question about the feature vec-
tors not the response, and (ii) the hack can still give us interesting answers about the distribution of
response.)

Write the model as a linear model using one-hot coding:
one-hot coding:
section 5.2.1 page 64

1[outcome=find] ≈
∑

i∈ethnicities

βi1[e = i] +
∑

j∈genders

γj1[g = j].

Consider the matrix whose columns are made up of these eight feature vectors (five ethnicity levels,
three gender levels). If the columns are linearly independent, then the rank of the matrix will be 8,
otherwise it will be < 8.

matrix rank, page 74

1 #Only keep rows where ethnicity and gender aren’t missing
2 ethnicity_levels = [ ’Asian ’ , ’Black ’ , ’Mixed ’ , ’Other ’ , ’White ’ ]
3 gender_levels = [ ’Male ’ , ’Female ’ , ’Other ’ ]
4 df = police . loc [ police [ ’Officer−defined ethnicity ’ ] . i s i n ( ethnicity_levels ) \
5 & police [ ’Gender ’ ] . i s i n (gender_levels ) ]
6

7 e = [ df [ ’Officer−defined ethnicity ’]==i for i in ethnicity_levels ]
8 g = [ df [ ’Gender ’]==j for j in gender_levels ]
9 X = numpy.column_stack(e + g). astype( int )
10 numpy. l ina lg .matrix_rank(X) # returns: 7

The features are linearly dependent, therefore the parameters are non-identifiable.

Data science is all about noise and uncertainty, whereas linear independence is a strict clean
mathematical definition, so we shouldn’t pay too much attention to strict linear independence. Here
is an example with features that are linearly independent but closely correlated, which makes it hard
to identify the parameters.
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Example 5.10 (Correlated features).
Let the ground truth be as follows: let e and f be two features of length 20 differing only in
one coordinate, e = [1, 1, . . . , 1] and f = [0, 1, 1, . . . , 1], and suppose we generate a vector y
consisting of 20 values from Normal(0.5ei+1.5fi, 1), i = 1, . . . , 20. How well can we recover
the coefficients 0.5 and 1.5, given that e and f are nearly identical?

Pretend we don’t know the ground truth, and fit the model

Yi ∼ Normal(αei + βfi, σ
2).

Since e and f are linearly independent, we will get a unique solution when we solve for the maximum
likelihood estimators α̂ and β̂. To see some context, let’s plot the log likelihood after optimizing out the
nuisance parameter σ. (When we maximize out nuisance parameters, what’s left is called the profile
log likelihood.)

profile log lik(α, β | y) = max
σ>0

log lik(α, β, σ | y)

and the solution for σ is similar to equation (27) on page 76. Here is a numerical experiment.

1 #Simulate data with these confounded features
2 e = numpy. ones(20)
3 f = numpy. ones(20)
4 f [0 ] = 0
5 y = numpy.random.normal(0.5*e + 1.5*f , 1)
6

7 #What are the parameter estimates?
8 model = sklearn . linear_model . LinearRegression( fit_intercept=False)
9 model . f i t (numpy.column_stack([ e , f ] ) , y [ : ,numpy. newaxis ])
10 ((α ,β ) ,) = model . coef_ #on this random trial, (0.197, 1.782)
11

12 def prof i le_logl ik (α , β ) :
13 n = len (y)
14 s = numpy. l ina lg .norm(α*e + β*f − y) # this gives

√∑
ε2i where ε = residuals

15 σ = s / numpy. sqrt (n)
16 return −n*numpy. log(σ) −n/2*numpy. log(2*numpy. pi ) − s**2/(2*σ**2)
17

18 #Create 2d arrays, one with each α value, one with each β value, one with profile log likelihood
19 α ,β = numpy. linspace(−10,10,200), numpy. linspace(−10,10,200)
20 A,B = numpy.meshgrid(α ,β)
21 p l l = numpy. vectorize ( prof i le_logl ik )(A,B)
22 plt . imshow( pl l , extent=(α [0 ] ,α[−1],β [0 ] ,β [−1]) , or igin=’ lower ’ , cmap=plt .get_cmap( ’hot ’ ))
23 plt . colorbar ()
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The plot shows a peak at the point of maximum likelihood, and it also shows a long ‘ridge’ of high
likelihood where α + β is roughly constant. Likelihood measures how much evidence there is for an
estimate; the plot is telling us that α and β are likely to be on the ridge, but there isn’t much evidence
to distinguish one point on the ridge from another. In other words we can be very confident about the
value of α + β (ground truth 2, our estimate 1.979, our error 0.021), but not very confident about
either of them individually (our α error was 0.302, our β error was 0.282). If we compute confidence
intervals, we’ll see the same story.
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5.4.2. GAUSS’S INVENTION OF LEAST SQUARES *

There is a link between linear regression and least squares estimation, but it’s not just “Oh, how nice,
after we’ve done least squares estimation we can express our answer as a probability model.” Arguably,
the probability model has primacy. (i) In many situations, random quantities can be approximated by

Normal approximation:
section 2.1 page 17a Normal distribution. (ii) Likelihood is a fundamental measure of evidence for all sorts of inference
Inference based on
likelihood: all of
section 3

procedures. (iii) Maximum likelihood estimation for Normal random variables is equivalent to least
squares estimation. (iv) Therefore, least squares estimation is a reasonable thing to do, and not just a
totally heuristic kludge.

Least squares estimation was invented by Carl Friedrich Gauss, the ‘prince of mathematicians’,
who also invented the Gaussian distribution—referred to in these notes as the Normal distribution.
Here is Gauss’s account29 of how the idea of least squares came to him. Up to that time,

. . . in every case in which it was necessary to deduce the orbits of heavenly bodies from
observations, there existed advantages not to be despised, suggesting, or at any rate per-
mitting, the application of special methods; of which advantages the chief one was, that by
means of hypothetical assumptions an approximate knowledge of some elements could be
obtained before the computation of the elliptic elements was commenced. Notwithstand-
ing this, it seems somewhat strange that the general problem—To determine the orbit of a
heavenly body, without any hypothetical assumption, from observations not embracing a
great period of time, and not allowing the selection with a view to the application of spe-
cial methods,—was almost wholly neglected up to the beginning of the present century;
or at least, not treated by any one in a manner worthy its importance; since it assuredly
commended itself to mathematicians by its difficulty and elegance, even if its great util-
ity in practice were not apparent. An opinion had universally prevailed that a complete
determination from observations embracing a short interval of time was impossible—an
ill-founded opinion—for it is now clearly shown that the orbit of a heavenly body may
be determined quite nearly from good observations embracing only a few days; and this
without any hypothetical assumption.
Some idea occurred to me in the month of September of the year 1801, engaged at the time
on a very different subject, which seemed to point to the solution of the great problem of
which I have spoken. Under such circumstances we not unfrequently, for fear of being too
much led away by an attractive investigation, suffer the associations of ideas, which more
attentively considered, might have proved most fruitful in results, to be lost from neglect.
And the same fate might have befallen these conceptions, had they not happily occurred
at the most propitious moment for their preservation and encouragement that could have
been selected. For just about this time the report of the new planet, discovered on the first
day of January of that year with the telescope at Palermo, was the subject of universal con-
versation; and soon afterwards the observations made by the distinguished astronomer
Piazzi from the above date to the eleventh of February were published. Nowhere in the
annals of astronomy do we meet with so great an opportunity, and a greater one could
hardly be imagined, for showing most strikingly, the value of this problem, than in this
crisis and urgent necessity, when all hope of discovering in the heavens this planetary
atom, among innumerable small stars after the lapse of nearly a year, rested solely upon
a sufficiently approximate knowledge of its orbit to be based upon these very few observa-
tions. Could I ever have found a more seasonable opportunity to test the practical value
of my conceptions, than now in employing them for the determination of the orbit of the
planet Ceres, which during the forty-one days had described a geocentric arc of only three

29Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientum. 1809. English trans-
lation: Charles Henry Davis. Theory of the motion of the heavenly bodies moving about the sun in conic sections. 1857. url:
https://quod.lib.umich.edu/m/moa/AGG8895.0001.001/15?rgn=full+text;view=image.

https://quod.lib.umich.edu/m/moa/AGG8895.0001.001/15?rgn=full+text;view=image
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degrees, and after the lapse of a year must be looked for in a region of the heavens very
remote from that in which it was last seen? This first application of the method was made
in the month of October, 1801, and the first clear night, when the planet was sought for
(by de Zach, December 7, 1801) as directed by the numbers deduced from it, restored the
fugitive to observation. Three other new planets, subsequently discovered, furnished new
opportunities for examining and verifying the efficiency and generality of the method.
Several astronomers wished me to publish the methods employed in these calculations im-
mediately after the second discovery of Ceres; but many things—other occupations, the
desire of treating the subject more fully at some subsequent period, and, especially, the
hope that a further prosecution of this investigation would raise various parts of the solu-
tion to a greater degree of generality, simplicity, and elegance,—prevented my complying
at the time with these friendly solicitations. I was not disappointed in this expectation,
and I have no cause to regret the delay. For the methods first employed have undergone
so many and such great changes, that scarcely any trace of resemblance remain between
the method in which the orbit of Ceres was first computed, and the form given in this
work. Although it would be foreign to my purpose, to narrate in detail all the steps by
which these investigations have been gradually perfected, still, in several instances, par-
ticularly when the problem was one of more importance than usual, I have thought that
the earlier methods ought not to be wholly suppressed. But in this work, besides the so-
lution of the principal problems, I have given many things which, during the long time I
have been engaged upon the motions of the heavenly bodies in conic sections, struck me
as worthy of attention, either on account of their analytical elegance, or more especially
on account of their practical utility.
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5.5. Generalized linear models *

tl;dr. Consider a probabilistic regression model of the form

PrY (y | e1, . . . , eK) = g(y, ξ) where ξ = β1e1 + · · ·+ βKeK

where Y is the response, e1, . . . , eK are covariates, and β1, . . . , βK are unknown parameters. In
other words, the response depends on the covariates only via a linear combination of parameters,
weighted by covariates. This is called a generalized linear model.
For such models, we can reason about identifiability and confounding with the same tools as for
linear regression. For many such models, there are efficient algorithms for maximum likelihood
estimation.

Here’s an example, the police dataset on page 51. In section 4.1.4 we studied the logistic regression

PrY (find | e, g) =
eξ

1 + eξ
i.e. PrY (y | e, g) =

eξ1y=find

1 + eξ
, ξ = α+ βe + γg

where y ∈ {find, nothing} is the response variable, e is the ethnicity covariate, and g is the gender
covariate. The formula for ξ can be written as a linear model using one-hot coding, and the model is a
generalized linear model because PrY depends on the parameters only via ξ. On page 77 we saw how
to reason about identifiability of the parameters. It matches our ad hoc reasoning in section 4.1.2.

Fast algorithms for estimation in such models is a topic for a more specialized course.
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6. Random processes
Science is often concerned with the laws that describe how a system changes over time, such as New-
ton’s laws of motion. When we use probabilistic laws to describe how the system changes, the system
is called a random or stochastic process. In Part II, you will come across random process models in
several courses:

• in Computer Systems Modelling they are used to describe discrete event simulations of commu-
nications networks

• in Machine Learning and Bayesian Inference they are used for numerically computing posterior
distributions

• in Data Science Principles and Practice they are extended to become recurrent neural networks,
useful for language modelling

• in Information Theory they are used to describe noisy communications channels, and also the
data streams sent over such channels

Example 6.1.
The Russian mathematician Andrei Markov (1856–1922) invented a new type of random process,
now given his name, and his first application was to model Pushkin’s poem Eugeny Onegin. He
suggested the following method for generating a stream of text C = (C0, C1, C2, . . . ) where
each Cn is an alphabetic character:

1 alphabet = [ ’a ’ , ’b ’ , . . . ] #all possible characters incl. punctuation
2 next_char_prob = {( ’a ’ , ’a ’ ) : [ 0 ,0 , .1 , . . . ] , ( ’a ’ , ’b ’ ) : [ . 5 ,0 , . . . ] }
3 c = [ ’o ’ , ’n ’ ] #arbitrary starting string of length 2
4

5 while True :
6 p = next_char_prob [( c[−2],c[−1])] # lookup based on the last two elements
7 nextchar = random. choice(alphabet , weights=p)
8 c .append(nextchar)

In this code, next_char_prob is a dictionary where each value p=next_char_prob[...] is a vector
of probabilities, and where p[i] is the probability that the next character is alphabet[i].

We can measure next_char_prob for a piece of literature by looking at all trigrams i.e.
sequences of three characters. Markov tabulated m-grams for several works by famous Russian
authors, and suggested that the next_char_prob table might be used to identify an author.

Here is some Shakespeare generated in this method. The source is all of Shakespear’s
plays, with stage directions omitted, and converted to lowercase.

once. sen thery lost like kin ancry on; at froan, is ther page: good haves have emst
upp’d ne kining, whows th lostruck-ace. ’llycur wer; hat behit mord. misbur greake,
weave o’er, thousing i se to; ang shal spird

Here is some text generated with 5-grams rather than trigrams.

once is pleasurely. though the the with them with comes in hand. good. give and
she story tongue. what it light, would in him much, behold of busin! how of ever to
yearling with then, for he more riots annot know well.

We’ll develop Markov’s model in sections 6.1–6.3 & 6.5. The goal in these sections is to un-
derstand the behaviour of the random process, given its parameters.

Exercise 6.2. Technically, a random variable is a function that can give different answers. In
Markov’s example,C is a random variable taking values in the space of infinite sequences. Define
a function rc which produces an infinite sequence, evaluated on demand. It should work like this:

1 c = rc ()
2 c [ :10] # returns e.g. ”once. sen ”
3 c [ :15] # returns ”once. sen thery”, i.e. from the same sequence as before
4 c = rc ()
5 c [ :10] # returns a new sequence
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Example 6.3 (De-noising GPS).
Suppose we want to write an app to detect if the user is cycling, running, or driving, and which
records or assists the user as appropriate. The GPS readings might look something like this
(showing one sample per second).

In [39]:

In [ ]:

+
−

Leaflet (http://leafletjs.com)

map = folium.Map(location=wps[270].latlon, zoom_start=18, tiles='cartodbpositron')
folium.PolyLine([wp.latlon for wp in wps2], color='#DC2348', opacity=.4).add_to(map)
for wp in wps2[180:300]:
    folium.CircleMarker(location=wp.latlon, color='crimson', fill=True, radius=1.5).
display(map)

A typical machine learning task is to estimate the user’s true path and mode of transport, given
these readings. The true path is very likely smoother than the readings—at one sample per
second, the user is probably cycling, which gives us an idea of how smooth the true path is. We
might treat this as a random process with two layers of randomness: the true location evolves as
a random process (using randomness to model the user’s changes in direction and speed and so
on), and the observed data is random (using randomness to model GPS noise). Given more data
we might also want to learn the user’s typical parameters—acceleration profile, etc.

We’ll look at a simpler version of this problem in section 6.4. The goal in that section is to make
inferences about unknown quantities given data.



6.1 Markov chains 85

6.1. Markov chains

tl;dr. A Markov chain is a sequence (X0, X1, X2, . . . ) where each Xn+1 is a discrete random
variable, generated randomly based on only on Xn. The state space is the set of values from
which the Xn are drawn.
If the probability distribution does not depend on n, i.e. if there is some matrix P such that

P(Xn+1 = y |Xn = x) = Pxy

we say it is a time-homogeneous Markov chain with transition matrix P .

Example 6.4 (Markov model for Cambridge weather).
The winter weather in Cambridge varies from grey (g) to drizzle (d) to rain (r). Suppose that the
weather changes from day to day according to a time-homogenous Markov chain. We can show
it either with the transition matrix, or with the corresponding state space diagram.

r

d g

0.2

0.6
0.20.3

0.7

0.5
0.5

P =


r d g

r 0.2 0.6 0.2
d 0.3 0 0.7
g 0 0.5 0.5



When you write out a Markov state space diagram or transition matrix, double-check that every
row sums to 1, i.e. that the total probability of all edges out of a node is equal to 1.

Formal mathemaƟcal definiƟon. For the purposes of calculating with Markov chains, it’s helpful to
turn the waffly phrase “generated randomly based only on Xn” into a formal mathematical equation,

P(Xn+1 = xn+1 |X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 |Xn = xn)

for all x0, . . . , xn+1. (28)

(To be precise, the equation must hold for all x0, . . . , xn+1 such that P(X0 = x0, . . . , Xn = xn) >
0, since otherwise the conditional probability isn’t defined.) This equation says “Whatever the past
history, all that matters for the purposes of deciding the next state is the current state.” Or “The next

conditional
independence is defined
on page 6

state is independent of the past, conditional on the current state.” This is referred to as memorylessness.

MEMORY LENGTH

In the Shakespeare example on page 83, the next character was chosen based on the previous two
characters, which at first glance looks like it doesn’t satisfy equation (28). The trick is to define X
appropriately: in this case we should define Xn = (Cn, Cn+1). Then, the text generation rule can be
rewritten as

1 x = [( ’o ’ , ’n ’ ) ] #arbitrary value for x[0]
2 c = x [0]
3

4 while True :
5 lastx = x[−1]
6 nextchar = random. choice(alphabet , next_char_prob [ lastx ])
7 nextx = ( lastx [−1], nextchar)
8 x .append(nextx)
9 c .append(nextchar)
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This way of writing the code makes it clear that X is a time-homogeneous Markov chain. The actual
text C is a byproduct of X .

The rule “pick the next character based on the preceding m”, produces better-looking results
for larger m—but the larger m is, the more storage space we need for the lookup table, and the fewer
(m+1)-grams we have with which to estimate frequencies. If m gets even larger, the algorithm can’t
do much more than regurgitate the input text on which it was trained. Neural networks can be used
to get around these limitations: they can learn how much information from preceding elements in the
sequence should be incorporated into the state of the Markov chain, and they’re not limited to fixed-
m state descriptor. Here is an example of Shakespeare generated using a neural network rather than
trigram frequencies30.

PANDARUS:
Alas, I think he shall be come approached and the day When little srain would be attain’d
into being never fed, And who is but a chain and subjects of his death, I should not sleep.
Second Senator:
They are away this miseries, produced upon my soul, Breaking and strongly should be
buried, when I perish The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.

* * *

In IA Discrete Mathematics you learnt about finite automata. What is the relationship to Markov
chains?

• Finite automata and Markov chains both have a set of possible states, and a lookup table /
transition relation that describes progression from one state to the next.

• Finite automata are for describing algorithms that accept input, so the lookup table specifies
‘what happens next, based on the current state and the given input symbol?’ Markov chains are
for describing systems that evolve by themselves, without input.

• Non-deterministic finite automata allow there to be several transitions out of a state, but they do
not specify the probability of each transition, since they are intended to model ‘what are all the
things that might happen?’ Markov chains do specify the transition probabilities, since they are
intended to model ‘what are the things that typically happen?’

• Markov chains are allowed to have an infinite state space, e.g. the space of all integers. (They
can even be defined with uncountable state spaces in which case Xn is a continuous random
variable; the definition needs to be modified to refer to transition density functions rather than
transition probabilities.)

The word chain means that the sequence (Xn)n≥0 is indexed by an integer n. There are re-
lated definitions for continuous-time processes, and these will be used in Part II Computer Systems
Modelling, but we will not study them further in this course.

30Andrej Karpathy, The unreasonable effectiveness of recurrent neural networks, May 2015, http://karpathy.github.
io/2015/05/21/rnn-effectiveness/. He writes “There’s something magical about Recurrent Neural Networks (RNNs) ...
We’ll train RNNs to generate text character by character and ponder the question ‘how is that even possible?’ ”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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6.2. CalculaƟons based on memorylessness
Markov calculations
make heavy use of
conditioning. Review the
rules of conditional
distributions on page 6,
especially the conditional
forms of the laws.

tl;dr. Very many probabilistic models with dependencies (including Markov chains) can be rep-
resented by a causal diagram, a directed acyclic graph whose nodes are random variables and
where the edges show which variables are used to generate which other variables. A Markov
chain has a very simple causal diagram:

X0 → X1 → X2 → X3 → . . .

Suppose we want to calculate a probability such as P(X3 = x |X0 = y). The general strategy
for problems like this is:

1. Draw the causal diagram.
2. In the probability expression that we want to calculate, identify the random variables whose

distributions we want to derive (in this case X3). Pick out some useful ancestor variables
in the causal diagram, somewhere between the variables we’re given and the variables we
want to calculate; these are called latent variables (in this case we might choose X2 and
X1, and it’s an art to pick out the most useful).

3. Incorporate the latent variables into the probability expression, typically by conditioning
on them using the conditional form of the law of total probability.

4. Rewrite any probabilities to have the form ‘probability of a child node, conditional on its
parents’.

5. Solve!

Example 6.5 (MulƟ-step transiƟon probabiliƟes).
Consider the Markov model for Cambridge weather on page 85. If it’s grey today, what’s the
chance it will be grey three days from today?

The question is asking us to calculate

P(X3 = g |X0 = g). (29)

Step 1 says to draw a causal diagram. The underlying mechanism of a Markov chain is ‘choose the
next state based on the current state’, so the causal diagram is

X0 → X1 → X2 → X3 → . . .

For step 2: We want to calculate something about the distribution of X3, and we’re given X0, so X1

and X2 are the latent variables we might use. Let’s use both of them. Step 3 says to put these values
into (29) by conditioning, giving

P(X3 = g |X0 = g) =∑
x1, x2

P(X3 = g |X2 = x2, X1 = x1, X0 = g) P(X2 = x2, X1 = x1 |X0 = g).

Step 4 says to rewrite this with terms that have a child node on the left and its parents on the right.
For the first term, the Markov property tells us that it simplifies to the form we want:

P(X3 = g |X2 = x2, X1 = x1, X0 = g) = P(X3 = g |X2 = x2).

For the second term, shift the random variables around using the definition of conditional probability
(conditional form), to put the child node on the left:

P(X2 = x2, X1 = x1 |X0 = g) = P(X2 = x2 |X1 = x1, X0 = g) P(X1 = x1, X0 = g).

Another application of the Markov property gives us what we want:

expression (29) =
∑
x1,x2

P(X3 = g |X2 = x2)P(X2 = x2 |X1 = x1)P(X1 = x1 |X0 = g).
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Now we can solve it. Rewriting it in terms of the transition matrix, it is

=
∑
x1,x2

Pgx1Px1x2Px2g

= [P 3]gg when written in matrix form.

1 P = np. array ( [ [0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5 ] ] )
2 assert a l l (P.sum(axis=1) == 1) #check row sums are all equal to 1
3 (P @ P @ P)[2 ,2] #compute P 3 then pick out element at [2,2]
4 np. l ina lg .matrix_power(P, 3)[2 ,2] #another way to compute P 3

5 # returns the answer: 0.505

Example 6.6 (Extended Markov property).
Let X be a Markov chain. The Markov property, equation (28), says that if we know the present
state Xn then the past (X0, . . . , Xn−1) gives us no extra information about the next step Xn+1.
Prove that the same holds true further into the future, i.e. for any (x0, . . . , xn+m),

P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0)

= P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn).

Prove also that if the chain is time-homogenous then this is equal to

P(Xm = xn+m, . . . , X1 = xn+1 |X0 = xn).

Example 6.7 (Hiƫng probabiliƟes).
A web surfer starts at page α, and from each page picks an outgoing link at random from that
page. What is the chance they hit ω before returning to α?

ϵ

α

β

δ

ω

γ

Let Xn be the page that the web surfer is on after n clicks, X0 = α, and write X for the entire process
X = (Xn)n≥0. We want to calculate

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
. (30)

This is open-ended—X could first hit those two destinations at any n ≥ 1—so there’s no clean way
for us to condition on the entire path, as we did in Example 6.5. Instead, let’s condition just on X1.
Using the law of total probability (conditional form),

(30) =
∑
x1

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1, X0 = α

)
P
(
X1 = x1 |X0 = α

)
.

The second part is just Pαx1 . For the first part, the extended Markov property (example 6.6) says that
conditional on X1 the future is independent of X0, thus

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1, X0 = α

)
= P

(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1

)
.
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The final trick is to ‘reset the clock’. It doesn’t make any difference whether we start measuring time
from n = 0 or from n = 1 thus, as in example 6.6,

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1

)
= P

(
X hits ω at some n ≥ 0
before hitting α

∣∣∣∣ X0 = x0

)
.

To streamline the notation, let’s define πx to be this hitting probability,

πx = P
(
X hits ω at some n ≥ 0
before hitting α

∣∣∣∣ X0 = x

)
.

We’ve shown that (30), the probability we want to calculate, is equal to
∑

x Pαxπx. We still need to
find πx. By repeating the entire conditioning argument we’ve just been through, it’s easy to show

πx =
∑
y

Pxyπy for x /∈ {α, ω}, and πα = 0 , πω = 1.

In Python we’ll let π be a 6-dimensional vector with elements in [0, 1], solve the equations with matri-
ces, then extract

∑
x Pαxπx = [Pπ]α.

1 import numpy as np
2 #States are in the order [α,β,γ,δ,ϵ,ω]
3 #Set up an adjacency matrix for the graph, and scale it so rows sum to 1
4 P = np. array ([[0 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,1 ,1 ,0] , [1 ,0 ,0 ,0 ,0 ,1] ,
5 [0 ,1 ,0 ,0 ,0 ,1] , [1 ,0 ,0 ,0 ,0 ,0] , [0 ,0 ,1 ,0 ,1 ,0]])
6 P = P / P.sum(axis=1)[: , np. newaxis ]
7 assert a l l (P.sum(axis=1) == 1)
8

9 #We want to solve Pπ = π i.e. (P − I)π = 0, except for πα and πω

10 #Bundle all the equations together in a matrix, and solve with np.linalg.lstsq
11 A = P − np. eye(6)
12 A[0 , : ] = [1 ,0 ,0 ,0 ,0 ,0]
13 A[5 , : ] = [0 ,0 ,0 ,0 ,0 ,1]
14 b = np. zeros (6)
15 b[5] = 1
16 π = np. l ina lg . l stsq (A, b)[0] # [0, 0.333, 0.5, 0.667, 0, 1]
17

18 #Return the hitting probability we wanted to calculate
19 (P @ π ) [0] #0.417

There is a general theorem behind this example. You can find this and other results about hitting times
etc. in standard textbooks on Markov chains31—though often it’s just as much work to translate your
problem into a theorem-ready version as it is to just solve it from first principles. Also, there will
be many applications, especially in machine learning applied to Markov chains, where there aren’t
ready-made theorems.

Theorem (hiƫng probability). Let A be a subset of a Markov chain’s state space. The hitting proba-
bility from x is

P
(
ever hit A | start at x

)
.

The hitting probabilities solve

πx =
∑
y

Pxyπy for all x ̸∈ A , πx = 1 for all x ∈ A .

Sometimes this system of equations has multiple solutions. In that case, the hitting probability from
x is the minimum of πx over all solutions π ≥ 0.
For example 6.7, first delete the edges out of α and put a single link from α to itself. Let the original
transition matrix be P , and call this modified matrix P ′. Applying the theorem to P ′ with A = {ω},
we get a solution π′

x = P(ever hit ω | start at x). This is the same as the probability of hitting ω before
α in the original Markov chain. The rest of the solution is as before.

31J. R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
1997. url: http://www.statslab.cam.ac.uk/~james/Markov/.

http://www.statslab.cam.ac.uk/~james/Markov/
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6.3. ApplicaƟon: double-spend in bitcoin *

tl;dr. Satoshi Nakamoto’s bitcoin paper contains a calculation about double-spend attacks. It’s
a nice illustration of how one finds a Markov chain embedded in a practical problem, and uses
memorylessness for the calculations.

Bitcoin is a decentralized electronic cash system, introduced by Satoshi Nakamoto in 200832. It has
been a wild success, arguably because of the ingenious way it balances incentives33. An important
part, and a focus of Nakamoto’s original paper, was how to solve the ‘double spend’ problem in a
decentralized system. To understand what this problem is, and how Bitcoin solves it, let’s start with
some background.

Bitcoin is a system for storing and verify transaction records, which are depicted as ∗ in the
diagram. A transaction record might be e.g. Tx1 =“Alice transfers coin 314 to Bob”, cryptographi-
cally signed. Transaction records are assembled into blocks B0, B1, . . . , and each block additionally
includes two values: the hash of the previous block, and a nonce which solves a computationally
demanding inequality.
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n0, a nonce that solves hash(0, B0.records, n0) < threshold,
h0 = hash(0, B0.records),
n1, a nonce that solves hash(h0, B1.records, n1) < threshold,
h1 = hash(h0, B1.records),
. . .

In the simplest world, there might be a central bank which publishes blocks, say one block every
10 minutes. If Alice wants to pay Bob, she asks the bank to record Tx1, the bank verifies that previous
blocks confirm that Alice owns the coin, Bob waits until the bank publishes a new block containg Tx1,
and then he posts the widget to Alice. The nonces and hashes are unnecessary, in a centralized system
where the bank’s blocks are fully public.

Bitcoin is a decentralized system with roughly 10,000 nodes34, each of which keeps a copy
of the entire blockchain. When Alice wants to record the transaction, she sends it to one of these
nodes, which broadcasts it to the rest of the network; it takes roughly 5.1 seconds to reach 50% of
the nodes. Other machines work to mine blocks, i.e. to find a nonce with a suitable hash. The time
between blocks depends on the threshold; Nakamoto specified an algorithm to dynamically adapt the
threshold so that a new block is mined every 10 minutes on average, regardless of the number of
miners. Roughly 3.1 × 1022 hashes must be tested to find a block, and each block contains around
1500 transactions. When a block has been mined, the nodes broadcast it to each other, and it takes
roughly 580ms to reach 50% of the nodes.
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32Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. url: https://bitcoin.org/bitcoin.pdf.
33Simon Barber et al. “Bitter to Better : How to Make Bitcoin a Better Currency”. In: Financial Cryptography—FC 2012.

Vol. 7397. Lecture Notes in Computer Science. 2012, pp. 399–414. url: http://www.cs.stanford.edu/~xb/fc12/.
34Bitcoin statistics are from September 2018. Current statistics can be found at https://dsn.tm.kit.edu/bitcoin/,

https://bitcoinwisdom.com/bitcoin/difficulty, blockchain.info/charts/n-transactions-per-block.

https://bitcoin.org/bitcoin.pdf
http://www.cs.stanford.edu/~xb/fc12/
https://dsn.tm.kit.edu/bitcoin/
https://bitcoinwisdom.com/bitcoin/difficulty
blockchain.info/charts/n-transactions-per-block
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What we’ve described so far allows money to be double-spent. Suppose Alice broadcasts Tx1
“Alice transfers coin 314 to Bob”, Bob sees this, and sends Alice the widget. Suppose Alice also creates
a new transaction Tx2 “Alice transfers coin 314 to Alicia” (her alter-ego), mines a block containing Tx2,
and broadcasts it. Now Alice has the widget, and if Alice’s block gets spread widely then everyone
accepts that Alicia owns the money.

The Bitcoin strategy to prevent double-spend attacks is for nodes to use the rule “If there are
two possible chains, discard the shorter”, and for Bob to use the rule “Wait for 6 blocks (1 containing
Tx1, then 5 more chained after it)” before sending Alice the widget. To double-spend, Alice would
need to create an alternative history with Tx2 rather than Tx1, and get it accepted by the rest of the
nodes. The chance of a successful double-spend attack should be small, assuming Alice doesn’t own
too much of the worldwide block mining power. What is the chance of this? And why did Nakamoto
come up with “wait for 6 blocks”?

Nakamoto’s calculation was as follows. Assume that Alice controls a fraction p of the worldwide
block mining power. Let At be the number of blocks that Alice has mined at time t after her attempted
double-spend, and let Nt be the number of blocks mined by everyone else, so they start35 at A0 =
N0 = 0. At any point in time, the probability that the next block comes from Alice is p, and the
probability it comes from someone else is 1− p. When Bob sees Nt = 6 he delivers the widget, and
from then it’s a race between Alice and the rest of the network: if As > Ns at any subsequent time s,
then Alice’s chain will be accepted and her attack succeeds. What is the probability of this?

6

Nt

At

Bob
delivers

attack
succeeds

We want to calculate the probability of the event {Alice double-spends}. A general strategy for
calculating complicated probabilities is to break them down into pieces by conditioning on how the
event might have happened, using the law of total probability. In this case there’s a shift at the instant

law of total probability:
page 6Bob delivers—that’s when the race starts—so we’ll condition on the state at this instant.

P

(Alice
double-
spends

)
=
∑
a

P
(At = a when

Bob delivers

)
P

(Alice
double-
spends

∣∣∣∣∣ At = a when
Bob delivers

)
. (31)

The first term is easy: it comes from the sort of combinatorial probability you studied in IA Maths
for NST. There are

(
a+5
a

)
ways to arrange a of Alice’s blocks and 6 other blocks and terminate with a

non-Alice block, and so

P
(At = a when

Bob delivers

)
=

(
a+ 5

a

)
pa(1− p)6.

The second term is harder. It’s a race between Alice and the rest of the network. If a > 6 then she
wins the race straight away; otherwise her lead starts at a − 6 ≤ 0 and it may go up or down, and
we want to know if it ever hits 1. Every time a block is mined, either it’s Alice’s block and her lead
increases by 1, and this happens with probability p; or otherwise her lead decreases by 1, and this
happens with probability 1−p. So her lead evolves like a Markov chain—formally speaking, we’ll let
Xn be her lead when the nth block has been mined after Bob delivered the widget. The initial state is
X0 = a− 6 and the state space diagram is

x x+ 1x− 1 1

p

1− p

. . .

35What if Alice prepares some malicious blocks in advance, and only launches her attack when she has enough blocks stored?
This is a problem, called the selfish miner attack. See for example Yonatan Sompolinsky and Aviv Zohar. “Bitcoin’s Security
Model Revisited”. In: CoRR (2016). url: http://arxiv.org/abs/1605.09193.

http://arxiv.org/abs/1605.09193
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In terms of this Markov chain, the probability we want to calculate—the probability that Alice double-
spends given that At = a when Bob delivered—is

P
(
Xn hits 1 |X0 = a− 6

)
.

Again we’ll break this down into simpler events using the law of total probability. Let’s condition on
X1 as we did in example 6.7. For every x < 1,

P
(
Xn hits 1 |X0 = x

)
=
∑
x1

P(X1 = x1 |X0 = x) P
(
Xn hits 1 |X1 = x1, X0 = x

)
(32)

= pP
(
Xn hits 1 |X1 = x+ 1, X0 = x

)
+ (1− p)P

(
Xn hits 1 |X1 = x− 1, X0 = x

)
= pP

(
Xn hits 1 |X1 = x+ 1

)
+ (1− p)P

(
Xn hits 1 |X1 = x− 1

)
(33)

= pP
(
Xn hits 1 |X0 = x+ 1

)
+ (1− p)P

(
Xn hits 1 |X0 = x− 1

)
Equation (32) is the law of total probability, and the next equation simply fills in the only two possibili-
ties for x1. Equation (33) uses memorylessness, to say that conditional onX1 the future is independent
of X0. The final equation uses time homogeneity, to say that we can ‘reset the clock’ and it doesn’t
make any difference whether we start measuring time from n = 0 or n = 1. Let’s write this out as a
cleaner equation:

πx = p πx+1 + (1− p)πx−1 for x < 1 , πx = 1 for x ≥ 1

where πx = P(Xn hits 1 | X0 = x). Now we’re down to a pure maths recurrence equation, with
solution36

πx =

{(
p

1−p

)1−x for x < 1

1 for x ≥ 1
if p < 1/2,

πx = 1 if p ≥ 1/2.

Putting everything together,

P

(Alice
double-
spends

)
=

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

( p

1− p

)6−a+1
+
∑
a≥7

(
a+ 5

a

)
pa(1− p)6

=
∑

a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

( p

1− p

)6−a+1
+

(
1−

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

)
.

Here are some numbers, showing the probability that Alice successfully double-spends, depending on
the proportion p that of block mining power that she controls, and the number of confirmations that
Bob waits for. This is the data that Nakamoto used to choose the rule “wait for 6 confirmations”.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
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Bob waits for
3 blocks
6 blocks
12 blocks
24 blocks

* * *

36The techniques for solving recurrence relations from scratch are very close to those for solving ODEs, which you learned
about in IA Maths for NST. For now, you should satisfy yourself that the equations given do indeed solve the recurrence equation.
The difference between the p < 1/2 and p ≥ 1/2 cases is down to boundary conditions.
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CondiƟoning. To find P(event), we can condition on how the event happens. It takes skill to spot
good ways of conditioning. We applied it here in two ways. Equation (31) conditioned on the state of
the system at the instant that Bob delivered the widget, on the grounds that the system enters a new
‘race’ phase at that instant. And, in the race phase, equation (32) conditioned on who mined the next
block. For Markov chains, you often see conditioning on either the previous state or the subsequent
state, because this is a good fit for the underlying causal diagram.

causal diagram: see
section 6.2

Memorylessness. The most important step in the calculation was using the memoryless property,
equation (33). It expresses the idea “What happens in the future depends only on where you are now,
not on how you got here.” Why is this true for bitcoin? The way the bitcoin hash calculation works,
finding a nonce is like winning the lottery: if you haven’t won one so far, it doesn’t mean you’re more
likely to win next time. If we’re at state A − N = x + 1, it’s immaterial whether we reached there
from A−N = x or from A−N = x+ 2, the future looks exactly the same either way.

There are very many non-Markov processes, but they’re often much harder to analyse. Even
in the bitcoin problem, we can question whether it truly is memoryless. If for example the number
of mining machines was slowly varying, then the fact “A − N used to be x before it became x + 1”
gives a slight hint that Alice might have a slightly higher number of miners than she started with,
which would impact our estimate of what happens in the future. To make the problem memoryless,
we assumed that Alice controls precisely p of the worldwide mining power, and that p doesn’t change.

Embedded chain. The underlying system (At, Nt) evolves in real (continuous) time, but all we chose
to look at is the instants where it jumps. This is called finding an embedded Markov chain. The word
chain here means “discrete sequence of events”.
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6.4. Inference with Markov chains *

tl;dr. Calculations based on memorylessness, of the sort we’ve seen in sections 6.2–6.3, can be
applied to machine learning for systems with hidden state. The new ingredient is Bayes’ rule.

It’s easier to work through an illustration than to write out abstract equations. Here is a simplified
model of de-noising GPS readings.

Example 6.8 (Bayesian analysis of Hidden Markov model).
Consider a moving object. Let Xn be its location at timestep n, and assume that Xn is a time-
homogenous Markov chain. Let Yn be a noisy observation at timestep n, and assume that condi-
tional on Xn it is independent of everything else. The causal diagram is

X0 X1 X2 X3 · · ·

Y0 Y1 Y2 Y3

Write P for the transition matrix and E for the noise matrix,

Pxx′ = P(Xn+1 = x′ |Xn = x) , Exy = P(Yn = y |Xn = x).

Given observations (y0, . . . , yn), and assuming we know the distribution of the initial state, find
the distribution of Xn.

Let’s approach this inductively. We want to find the distribution of (Xn | y0, . . . , yn), so let’s start at
n = 0 and build up. It’ll help to have some compact notation: let

πn(x) = PrXn(x | y0, . . . , yn).

Finding π0 is a straightforward application of Bayes’ rule:

π0(x0) = PrX0(x0 | Y0 = y0)

∝ PrX0(x0)PrY0(y0 |X0 = x0)

= PrX0(x0)Ex0y0 .

Next for n = 1. We want to find PrX1(x1 | Y0 = y0, Y1 = y1). Following the general strategy laid
out in section 6.2, we want to rewrite the probability to have the form ‘probability of a child node
conditional on its parents’, i.e. we want Y1 on the left and X1 on the right. This invites another
application of Bayes’ rule:

This is the conditional
form of Bayes’ rule,
page 6 π1(x1) = PrX1(x1 | Y0 = y0, Y1 = y1)

∝ PrX1(x1 | Y0 = y0)PrY1(y1 |X1 = x1, Y0 = y0)

= PrX1(x1 | Y0 = y0)Ex1y1 . (34)

For the second term we’ll again aim for ‘probability of a child node conditional on its parents’, i.e.
we want to introduce X0, which we can achieve by the law of total probability:

This is the conditional
form of the law of total
probability, page 6 PrX1(x1 | Y0 = y0) =

∑
x0

PrX0(x0 | Y0 = y0) PrX1(x1 |X0 = x0, Y0 = y0)

=
∑
x0

π0(x0)Px0x1 by memorylessness. (35)

Putting (34) and (35) together,

π1(x1) ∝
∑
x0

π0(x0)Px0x1Ex1y1 .

The same reasoning works for any n, giving

πn+1(x) ∝
∑
x′

πn(x
′)Px′xExy. (36)

We can’t go any further analytically. We’ve reduced the problem to something that has exactly the same
form as a regular Bayesian calculation, and the next step is to find a computational approximation.
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PARTICLE FILTERS *

Particle filters are a numerical tool for solving a Bayesian update equation like (36). We could in
Empirical distributions
and Monte Carlo
approximation: see
page 28. Importance
sampling: see page 26.

principle store πn(x) with a fine mesh over x values and use numerical integration to get πn+1(x),
but that is O(n2) where n is the number of points in the mesh. The alternative, inspired by Monte
Carlo integration and importance sampling, is to take a sample of values (‘particles’) drawn from the
distribution πn and use the empirical distribution as a stand-in for the true distribution. Each particle
follows a random trajectory generated by P , and each particle is given a weight which is updated
according to E. This takes O(n).

Here is an illustration37. It shows a cluster of particles representing the current belief about
a person’s position inside a building, and a line showing the path that the person actually followed.
The observations are gyroscope and compass and accelerometer, and the state includes position and
velocity. Integrating multiple types of observation in this way is called sensor fusion.

37Julian Straub. “Pedestrian Indoor Localization And Tracking Using A Particle Filter Combined with a Learning Acces-
sibility Map”. Bachelor thesis. Technische Universität München, 2010. url: http://people.csail.mit.edu/jstraub/
pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-
Accessibility-Map/. The author now works at Oculus.

http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
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6.5. Limit theorems and equilibrium

tl;dr. When analysing Markov chains, it’s often useful to be able to ask about their long-run
average behaviour. We’ll study

• how to classify a Markov chain: irreducible, and aperiodic
• the stationary distribution, and how to calculate it both directly and using detailed balance
• three theorems: the existence of a unique stationary distribution, ergodicity, and limiting

behaviour

When analysing Markov chains, it’s often useful to be able to ask about their long-run average be-
haviour. We asked the same question in section 2.3 about sums of independent random variables.
Markov chains however have a richer range of possible behaviours, and it turns out there are three sep-
arate ways to ask ‘what is average behaviour?’ To reduce the mathematical overhead we will restrict
attention in this section to time-homogeneous Markov chains with a finite state space (though most of
the results also hold for infinite state spaces). We will illustrate with two examples, the Markov chain
for Cambridge weather from page 85, and a pathological case.
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6.5.1. STATIONARY BEHAVIOUR AND IRREDUCIBIL ITY

DefiniƟon. A Markov chain is said to be stationary if its distribution does not change over time, i.e.
if there is a vector π such that P(Xn = x) = πx for all n. Conversely, if π is a probability distribution
such that

P(X0 = x) = πx for all x =⇒ P(Xn = x) = πx for all x and n

then π is called a stationary distribution or equilibrium distribution.
The word ‘stationary’ does not mean that the Markov chain has somehow stopped—a Markov

chain is defined to go on forever, always stepping randomly from state to state. It is the distribution
that is stationary i.e. unchanging.

If π is a stationary distribution, and we pick the Markov chain’s initial state X0 randomly ac-
cording to π, then X1 will have distribution π and so will X2 and so on, i.e. the chain itself will be
stationary. If we pick the initial state in some other way, it’s typically not the case that X1, X2 etc.
have distribution π— but it turns out that stationary distributions are still useful for understanding the
long-run behaviour of the chain, as we will see in the rest of Section 6.5

Finding a staƟonary distribuƟon. We can find a stationary distribution using the same sort of cal-
culations based on memorylessness that we used in section 6.2. If X is a stationary Markov chain
then

P(Xn = x) =
∑
y

P(Xn = x |Xn−1 = y) P(Xn−1 = y) for all x, n

hence a stationary distribution π must satisfy

πx =
∑
y

πyPyx for all x (37)

where P is the transition matrix.
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Exercise 6.9 (CompuƟng the staƟonary distribuƟon).
Find the stationary distribution of Cambridge weather.

Writing out in longhand the equations from (37),

πr = 0.2πr + 0.3πd

πd = 0.6πr + 0.5πg

πg = 0.2πr + 0.7πd + 0.5πg.

Although there are three equations and three unknowns, when we try to solve them we find there is not
a unique solution: if the vector π is a solution then so is κπ for any constant κ. To pin π down we
need an extra equation, an equation that comes from the fact that π is a probability distribution:∑

x

πx = 1.

Rather than solve all these simultaneous equations with algebra, we can turn them into matrix notation
and then ask the computer to solve them. Equation (37) becomes π = πP , or equivalently (P −

In numpy, if π is a
one-dimensional array
then it can be used either
as a row vector or a
column vector. In πP it
is treated as a row vector,
and in (P − I)⊤π it is
treated as a column
vector.

I)⊤π = 0. The normalizing equation is 1⊤π = 1. In Python,

1 P = np. array ( [ [0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5 ] ] )
2 A = np. concatenate (((P − np. eye (3)). transpose () , [ [1 ,1 ,1 ] ] ))
3 π = np. l ina lg . l stsq (A, [0 ,0 ,0 , 1]) [0 ]

Exercise 6.10 (CompuƟng the staƟonary distribuƟons).
Show that the pathological Markov chain has multiple stationary distributions. Find them all.

We can compute a stationary distribution for the pathological Markov chain using exactly the same
method, but there is a problem: equation (37) has multiple solutions, even after imposing the extra
equation

∑
x πx = 1. If we just write out all the equations longhand,

πα = 0

πβ = 0.4πα + πγ

πγ = πβ

πδ = 0.6πα + 0.5πζ

πϵ = πδ + 0.5πζ

πζ = πϵ

πα + πβ + πγ + πδ + πϵ + πζ = 1

and solve these equations simultaneously, we discover that the general solution is

[πα, πβ , πγ , πδ, πϵ, πζ ] = a
[
0, 1/2, 1/2, 0, 0, 0

]
+ (1− a)

[
0, 0, 0, 1/5, 2/5, 2/5

]
(38)

for any real value a (though only a ∈ [0, 1] will yield a legitimate probability distribution). In Python,
if we look carefully at the output of np.linalg.lstsq() and read the documentation, we see it telling us
that the linear equation does not have a unique solution; there are further np.linalg tools that can
extract the general form of the solution.

Equation (38) actually has a nice intuitive explanation. The Markov chain could be spending
all its time in states {β, γ} with stationary distribution [1/2, 1/2], or it could be spending all its time in
states {δ, ϵ, ζ} with stationary distribution [1/5, 2/5, 2/5].

Theorem (uniqueness of staƟonary distribuƟon). Consider a Markov chain with transition matrix P
and a finite state space. The Markov chain is called irreducible if it is possible to get from any state
to any other. If the Markov chain is irreducible, then there is a unique stationary distribution, and it is
the unique solution π to

π = πP, π⊤1 = 1. (39)
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Example 6.11. The Cambridge weather Markov chain can get from any state to any other state;
to get from g to r takes two steps, and all the others can be achieved in one step. Therefore it is
irreducible, therefore it has a unique stationary distribution.

The pathological Markov chain is not irreducible, because it is impossible to get from β
to α.

6.5.2. DETAILED BALANCE

Often, when we want to find the stationary distribution, there’s nothing for it but to use np.linalg
and solve a matrix equation. In some special cases the Markov chain has a form that lets us find the
stationary distribution with very little algebra. This seems like a curiosity, not worth mentioning in a
data science course—except that there is a clever trick for generating random variables from general
Bayesian posterior distributions that relies on exactly this special case. The clever trick is called Gibbs
sampling, and it is taught in Part II Machine Learning and Bayesian Inference.

Theorem (detailed balance). Let X be a Markov chain with transition matrix P . If there is a vector
π such that

πxPx y = πyPy x for all states x and y (40)

then π solves π = πP . Equation (40) is called the detailed balance condition. This theorem is trivial
to prove: just write out (37) and substitute in (40).

If the chain is irreducible, then the theorem of Section 6.5.1 tells us that there is a unique
stationary distribution. If we have found a distribution π that solves the detailed balance condition,
then π must be that unique stationary distribution.

Exercise 6.12 (StaƟonary distribuƟon using detailed balance).
Calculate the stationary distribution of the following Markov chain.

a b c
α α

1− α1− α

1− α α

Is it irreducible? Actually, if α = 0 or α = 1 then the chain is not irreducible: if α = 0 then it gets
stuck in state a, so the stationary distribution is πa = 1, πb = πc = 0. If α = 1 then it gets stuck in
state c, so the stationary distribution is πa = πb = 0, πc = 1.

In the case 0 < α < 1, it’s easy to see that it’s possible to get from any state to any other.
Therefore the theorem of Section 6.5.1 applies, and so there is a unique stationary distribution. It
never hurts to try to solve the detailed balance equations; either we find the stationary distribution
without much work, or we quickly discover that they can’t be solved and we have to solve the full
equations (39). In this case, the detailed balance equations are

for (a, b) and (b, a): πaα = πb(1− α)

for (a, c) and (c, a): πa0 = πc0

for (b, c) and (c, b): πbα = πc(1− α)

for (a, a) etc.: πa(1− α) = πa(1− α) etc.

and they have the solution

πb = πa
α

1− α
, πc = πa

( α

1− α

)2
.

Putting in the constraint πa + πb + πc = 1, we get

[
πa, πb, πc

]
=

1

1 + α/(1− α) + α2/(1− α)2

[
1,

α

1− α
,
( α

1− α

)2]
.
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Exercise 6.13 (Random walk on an undirected graph).
A knight moves on an otherwise empty chessboard, each timestep picking one of its legal moves
at random (out of 8 legal moves if it is in the center of the board, and 2 legal moves if it is in a
corner). Show that the stationary probability of being in position x is mx/336, where mx is the
number of legal moves out of position x.

We should first check whether the Markov chain described in the question is irreducible, since other-
wise there isn’t even a unique stationary distribution. This is just a matter of sketching a chessboard
and persuading ourselves that a knight can indeed get from any position to any other position, given
enough moves.

The question tells us the stationary distribution and asks us to verify it. We could plug it into
the full equations (39), but if it happens to solve the detailed balance equations then that is sufficient
and our work will be simpler. The detailed balance equations are

mx

336
× 1

mx
=

my

336
× 1

my
if x ↔ y is legal,

mx

336
× 0 =

my

336
× 0 if x ↔ y is illegal.

These equations are certainly true, and they are the only equations that need to be satisfied, since
x → y is legal if and only if y → x is legal. Therefore the suggested distribution solves detailed
balance.

Finally, we need to verify that the suggested distribution is indeed a distribution, i.e. that it
sums to 1. Counting the number of possible moves from every position on the chessboard gives a total
of 336, thus

∑
x mx/336 = 1.

It’s easy to check that the result described here can be generalised to a random walk on any
undirected graph.

6.5.3. ERGODIC THEOREM

Theorem (ergodicity). Let X be an irreducible Markov chain with stationary distribution π. Then
the long-run average of time spent in each state converges to π. Mathematically,

E
( 1
n

n∑
i=1

1Xi=x

)
→ πx as n → ∞, for all states x. (41)

If the Markov chain’s initial stateX0 were chosen from distributionπ, then we know from Section 6.5.1
that Xn would have distribution π for every n, thus E 1Xi=x = P(Xi = x) = πx for all i, and so (41)
would be true exactly, no need for a limit. What’s remarkable is that the theorem holds regardless of
how the initial state is chosen.

Example 6.14. Consider the pathological Markov chain, starting at X0 = α. This chain is not
irreducible, so the ergodic theorem doesn’t apply directly. But we can still say how the chain
behaves: with probability 0.4 it jumps toX1 = β, and thereafter it behaves just like an irreducible
chain on {β, γ} and spends half its time in each of those two states; or with probability 0.6 it
jumps to X1 = δ, and thereafter it behaves just like an irreducible chain on {δ, ϵ, ζ} and spends
roughly 20% of its time in δ, 40% in ε, and 40% in ζ.

6.5.4. L IMITING BEHAVIOUR AND APERIODICITY

In the Cambridge weather Markov chain, the ergodic theorem tells us that the long-run fraction of
rainy days is equal to πr, where π is the stationary distribution. So we’d expect that, if we pick a day
arbitrarily, the probability of rain is πr. This works for the Cambridge weather example, but it doesn’t
always work... the caveat is illustrated by states β and γ in the pathological Markov chain: if the chain
starts in X0 = β then Xn = β for even n and Xn = γ for odd n, and so we can’t make a blanket
claim about ‘typical Xn’. The following theorem gives a general condition under which time-averages
correspond to typical values.
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Theorem. Let X be a Markov chain. A state x is said to be aperiodic if there exists an n0 such that
P(Xn = x |X0 = x) > 0 for all n ≥ n0. If the chain is irreducible and has an aperiodic state, then
all its states are aperiodic, and furthermore

P(Xn = x |X0 = y) → πx as n → ∞, for all states x and y.

Note that P(Xn = x |X0 = y) = [Pn]x y where P is the transition matrix, according to our calcula-
tions in Example 6.4.

This is most useful as a tool for generating a random variable from distribution π. In many
applications, from statistical physics to Bayesian inference, we want to be able to generate a random
variable from a distribution π that we can’t even write out explicitly. Suppose we can cunningly devise
transition probabilities of a Markov chain to ensure that it has stationary distribution π. Then we can
generate a random variable from distribution π just by starting the Markov chain in an arbitrary state,
and running it for a large number of steps n, and returning the state Xn.

Exercise 6.15. Consider the three-state Markov chain consisting of states δ, ϵ, and ζ from the
pathological Markov chain. Show that all three states are aperiodic.

First we verify that it is irreducible. We can get from any state to any other by following links δ →
ϵ → ζ → δ → . . . , so yes it is irreducible.

For aperiodicity, let’s pick one state arbitrarily, say δ, and work out if that state is aperiodic.
The theorem says that if one state is aperiodic then all states are aperiodic. Can we get from δ to δ in
n steps?

n can get from δ to δ in n steps?
1 no
2 no
3 yes, δ → ϵ → ζ → δ
4 no
5 yes, going around the loop ϵ → ζ → ϵ once
6 yes, going around the loop δ → ϵ → ζ → δ twice
7 yes, using two loops ϵ → ζ → ϵ
8 yes, since 8 = 5 + 3 and 5 and 3 are possible
9 yes, 3+3+3
n ≥ 8 yes, by mixing loops of length 5 and length 3

(This is related to IA Discrete Mathematics. We can go from δ to δ in 3 steps, and in 5 steps. The
greatest common divisor of 3 and 5 is 1, therefore there is an integer linear combination equal to 1,
in this case 2× 3− 1× 5 = 1. We can achieve any n = 5m by m copies of the 5-step loop, and we
can achieve n = 5m+ l by adding l copies of the 2× 3− 1× 5 widget.)
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A. Standard random variables
The first place to look up a random variable is Wikipedia. Here’s an example, the entry for the Geo-
metric distribution. This table has two columns, because there are two standard ways to defined this
random variable. Some terminology: support means “X takes values in ...”; pmf and pdf refer to
PrX ; and CDF is the cumulative distribution function P(X ≤ ·).

Parameters 0 < p < 1 success
probability (real)

0 < p ≤ 1 success
probability (real)

Support k trials where
k ∈ {1, 2, 3, . . . }

k failures where k ∈
{0, 1, 2, 3, . . . }

Probability mass func-
tion (pmf)

(1− p)k−1p (1− p)kp

CDF 1− (1− p)k 1− (1− p)k+1

Mean 1
p

1−p
p

Median ⌈ −1
log2(1−p)

⌉ (not unique
if −1/ log2(1− p) is
an integer)

⌈ −1
log2(1−p)

⌉ − 1 (not
unique if −1/ log2(1−
p) is an integer)

Mode 1 0
Variance 1−p

p2
1−p
p2

In Python, numpy and scipy.stats have useful functions for working with random variables. They have
a consistent naming convention, shown here for the Normal distribution.

numpy.random.normal(..., size=n)
Generate n independent random variables from the Normal distribution. The ... are parameters,
different for each distribution.

scipy.stats.norm.pdf(x=x, ...)
the probability density function Pr(x)

scipy.stats.norm.cdf(x=x, ...)
the cumulative distribution function P(X ≤ x)

scipy.stats.norm.ppf(q=q, ...)
the inverse of the cumulative distribution function, returns x such that P(X ≤ x) = q;
for discrete random variables, when cdf jumps up in steps, returns min{x : P(X ≤ x) ≥ q}

scipy.stats.norm.mean(...), median, var, std
summaries of the distribution

Data science computation often involves small probabilities, so watch out for bugs arising from nu-
merical overflow and underflow. It’s usually a good idea to work with log probabilities and with the
survival function sf(x) = P(X > x).

scipy.stats.norm.logpdf(x, ...)
log Pr(x)

scipy.stats.norm.logcdf(x, ...)
logP(X ≤ x)

scipy.stats.norm.sf(x, ...), logsf
P(X > x) and logP(X > x)

https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
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A.1. Variables associated with waiƟng and counƟng

Geometric: If we’re playing a lottery, and each week the chance of winning is p, then our first win
happens on week X ∼ Geom(p). This random variable takes values in {1, 2, . . . , n}, and

P(X = r) = (1− p)r−1p, P(X ≥ r) = (1− p)r−1.

Mean 1/p, variance (1− p)/p2. In Python, numpy.random.geometric(p).

ExponenƟal: The Exponential random variable is a continuous-time version of the Geometric. It’s used
to model the time until an event, for many natural processes: for example the time until a lump of
radioactive matter emits its next particle, or the time until a lightbulb blows, or the time until the next
web request arrives. If X ∼ Exp(λ) then it takes values in [0,∞), and

Pr(x) = λe−λx, P(X ≥ x) = e−λx.

The parameter λ is called the rate. The chance of an event in a short interval of time [t, t+ δ] is

P(X ≤ t+ δ |X ≥ t) =
P(X ∈ [t, t+ δ])

P(X ≥ t)
=

∫ t+δ

t
λe−λx dx

e−λt
≈ δλ.

Mean 1/λ, variance 1/λ2. In Python, numpy.random.exponential(scale=1/λ).

Binomial: If we toss a biased coin n times, and each coin has chance p of heads, the total number of
heads is X ∼ Binom(n, p). This random variable takes values in {0, 1, . . . , n}, and

P(X = r) =

(
n

r

)
pr(1− p)n−r.

When n = 1, i.e. a single coin toss, it’s called a Bernoulli random variable. There is a related
random variable called the negative binomial, which arose in section 6.3 when we calculated P(At =
a when Bob delivers).

Mean np, variance np(1− p). In Python, numpy.random.binomial(n,p).

MulƟnomial: If we haven individuals each of whom falls into one ofK categories, and the probability of
falling into category k is pk, then the total number in each category is a multivariate random variable
X ∼ Multinom(n, p). It takes values in {0, 1, . . . , n}K , and

P(X = x) =
n!

x1!x2! · · ·xK !
px1
1 px2

2 · · · pxK

K .

(The binomial distribution is the special case when k = 2.)

In Python, numpy.random.multinomial(n,p).

Poisson: The random variable X ∼ Poisson(λ) takes values in {0, 1, . . . }, and

P(X = r) =
λre−λ

r!
.

Suppose we’re counting the number of events in a fixed interval of time, for example the number of
buses passing a spot on the street, or the number of web requests, or the number of particles emitted
by a lump of radioactive matter. If the time between events is Exp(λ), then the total number of events
in time t is X ∼ Poisson(λt).

Mean λ, variance λ. In Python, numpy.random.poisson(lam=λ).
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A.2. Variables associated with sizes

Normal / Gaussian: This distribution is a very popular choice for data analysis because it’s often a good
model for things that are the aggregate of many small pieces, for example height which is the aggregate
of many influences from genetics and the environment. It’s also easy to do probability calculations
with it. If X ∼ Normal(µ, σ2), then X is a continuous random variable taking values in the entire
real line, and

Pr(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 , EX = µ, VarX = σ2.

There is also a multivariate version, called the multivariate normal. Here are some useful facts about
the Normal distribution. If X ∼ Normal(µ, σ2), and Y ∼ Normal(ν, ρ2) is independent, and a and b
are real numbers, then

P
(
µ− 1.96σ ≤ X ≤ µ+ 1.96σ

)
= 95%

aX + b ∼ Normal(aµ+ b, a2σ2)

(X − µ)/σ ∼ Normal(0, 1)
X + Y ∼ Normal

(
µ+ ν, σ2 + ρ2

)
In Python, numpy.random.normal(loc=µ, scale=σ), and watch out for σ versus σ2!

Pareto and lognormal: Some natural phenomena, like sizes of forest fires, or insurance claims, or In-
ternet traffic volumes, or stock market crashes, have the characteristic that there are events of wildly
different sizes. This tends to cause problems for simulations and forecasting, since the entire outcome
can hinge on one ‘black swan’ event38. A common random variable with this characteristic is the
Pareto distribution, X ∼ Pareto(α), named after the Italian economist Vilfredo Pareto who studied
extreme wealth inequality. It is a continuous random variable taking values in [1,∞), and

Pr(x) = αx−(α+1), P(X ≥ x) = x−α.

The mean and variance become ∞ for small α,

EX =

{
∞ if α ≤ 1

α/(α− 1) otherwise,
VarX =

{
∞ if α ≤ 2

α / (α− 1)2(α− 2)2 otherwise.

For α < 2 it tends to produce many small values (‘mice’) and very occasional huge values (‘ele-
phants’). To illustrate, here are some samples drawn from three different distributions, all with mean
value 1.

X ∼ Exp(1),
EX = 1

X ∼ α−1
α Pareto(α)

with α = 5,
EX = 1

X ∼ α−1
α Pareto(α)

with α = 1.1,
EX = 1

The lognormal distribution X ∼ eN(µ,σ2) has similar characteristics to the Pareto but is not quite as
extreme. It was invented by the Cambridge senior wrangler and medic Donald MacAlister.

38Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable. 2nd ed. Random House, 2010.
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Zipf: The random variable X ∼ Zipf(n, s) takes values in {1, 2, . . . , n} and

P(X = r) =
r−s

1 + 2−s + · · ·+ n−s
.

It is named after the American linguist Goerge Zipf, who used it to describe frequencies of words in
texts. Take a large piece of text, and count the number of occurrences of each word, and rank the
words from most common to least common. Say that the most common word has rank 1, the next
most common has rank 2, and so on. Zipf observed that the number of occurrences of the rth ranked
word is roughly const × r−s where s ≈ 1 in English texts. Another way of putting this: if we pick
a word at random from the entire body of text, then the rank of that word is Zipf(n, s), where n is
the size of the vocabulary. The same phenomenon happens with cities: if we take a person at random
from the entire population, and look at which city they come from, and rank cities by size, then the
rank of that person’s city is Zipf(n, s) where n is the number of cities and s is roughly 1.07.

There is a direct link between the Pareto(α) and Zipf(n, 1/α) distributions. First, create a
‘pseudo-random’ sample ofn city sizes, to match the Pareto(α) distribution. Make the largest city have
size x(1) such that x−α

(1) = 1/N , make the second-largest city have size x(2) such that x−α
(2) = 2/N , etc.

This is a deterministic equivalent of the Pareto(α) distribution, in which P(X ≥ x) = x−α. Then,
the city of rank r has size const × r−1/α, which fits with Zipf(n, 1/α).

A.3. Variables for inference

Beta: If we toss a biased coin n times, and each coin has chance p of heads, then the number of heads
has a Bin(n, p) distribution. In Bayesian inference, a common prior distribution for p is Beta(α, β).
It takes values in (0, 1), and has parameters α > 0 and β > 0, and density

Pr(p) =
(
α+ β − 2

α− 1

)
pα−1(1− p)β−1

(but with a generalized form of the binomial coefficient when α and β are non-integer). It has mean
α/(α+ β), and the rough interpretation is “I’ve seen α heads and β tails”.

In Python, numpy.random.beta(a=α, b=β).

Dirichlet: The Dirichlet distribution Dir(α) is a generalization of the Beta distribution. Instead of two
categories (heads and tails), it allows K ≥ 2 categories, and α is a vector in RK . It is a continuous
random variable, and it takes values in

Ω =
{
[x1, . . . , xK ] ∈ (0, 1)K : x1 + · · ·+ xK = 1

}
.

In other words, it generates probability distributions over the K categories. It is used in Bayesian
inference to describe belief about a multinomial distribution, and the rough interpretation is “I’ve
seen αk items in category k”. Its density function is

Pr
(
[x1, . . . , xK ]

)
∝ xα1−1

1 xα2−1
2 · · ·xαK−1

K .

In Python, numpy.random.dirichlet(alpha=α).

Gamma: The Gamma distribution X ∼ Γ(k, λ) is a continuous random variable taking values in [0,∞),
and its parameters are k > 0 and λ > 0. It arises in two places: it’s the sum of k independent Exponen-
tial random variables; and it’s a common choice of prior distribution for 1/σ2 in Bayesian calculations
with Normal(µ, σ2) random variables. (Engineers call 1/σ2 the ‘precision’.) It has density

Pr(x) =
λkxk−1e−λx

(k − 1)!

(but with (k − 1)! replaced by the gamma function Γ(k) for non-integer k).

Mean kλ, variance k/λ2. In Python, numpy.random.gamma(shape=k, scale=1/λ).
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