This example sheet covers material up to Lecture 4 on 15 October. The more challenging questions are 3(b), 5(b), 8, 10(b).

Question 1. If X_1, \ldots, X_n are independent samples from Uniform[0, θ], find the maximum likelihood estimator for θ. Hint. Write the density as

$$P_{X}(x \mid \theta) = \frac{1}{\theta} 1_{x \geq 0} 1_{x \leq \theta} \quad \text{for } x \in \mathbb{R}$$

where 1_{\cdot} stands for the indicator function, $1_{\text{true}} = 1$ and $1_{\text{false}} = 0$.

Question 2. Let x_i be the population of city i, and let y_i be the number of crimes reported. Fit the model $Y_i \sim \text{Poisson}(\lambda x_i)$, where λ is an unknown parameter.

Question 3. A 0/1 signal is being sent over a noisy wire. If x_n is the true signal at timestep $n \in \{1, 2, \ldots\}$, then the received message is $R_n = x_n + \text{Normal}(0, \varepsilon^2)$, where ε is known. Suppose that the signal being sent has a single changepoint, i.e.

$$x_n = \begin{cases}
0 & \text{for } n \leq \theta \\
1 & \text{for } n > \theta
\end{cases}$$

(a) Give pseudocode for a function `changepoint([r_1, \ldots, r_N])` to estimate θ from N received messages. We’d like to run this as a ‘streaming’ procedure, looking for a changepoint in $[r_1]$ then in $[r_1, r_2]$ then in $[r_1, r_2, r_3]$ and so on.

(b) The naive `changepoint` function might produce lots of false alarms, detecting a changepoint as soon as it sees a high r_n and then realising its mistake when it sees r_{n+1}. Suggest an evidence-based approach to fix this problem.

Question 4.

(a) Let U be a uniform random variable on [0, 1]. Let $Y = U(1 - U)$. Calculate $P(Y \leq y)$, and hence find the density of Y.

(b) A point lightsource at coordinates (0, 1) sends out a ray of light at an angle Θ chosen uniformly in $[-\pi/2, \pi/2]$. Let X be the point where the ray intersects the horizontal line through the origin. What is the density of X? This random variable is known as the Cauchy distribution. It is unusual in that it has no mean.

Question 5. The Gumbel distribution is used in econometrics, for modelling how people make choices. If $X \sim \text{Gumbel}(\lambda)$ then

$$P(X \leq x) = \exp[-\exp(-(x - \lambda))], \quad x \in \mathbb{R}.$$

Let $X_1 \sim \text{Gumbel}(\lambda_1)$ and $X_2 \sim \text{Gumbel}(\lambda_2)$ be independent. Show the following:

$$\max(X_1, X_2) \sim \text{Gumbel}(\log(e^{\lambda_1} + e^{\lambda_2})) \quad \text{ (a)}$$

and

$$P(X_1 \geq X_2) = \frac{e^{\lambda_1}}{e^{\lambda_1} + e^{\lambda_2}}. \quad \text{ (b)}$$

Hint. For the first equation, $P(\max(X_1, X_2) \leq x) = P(X_1 \leq x \text{ and } X_2 \leq x)$. This trick saves you a fiddly integration.
Question 6. Let $X \sim \text{Normal}(\mu, \sigma^2)$. We wish to sample from $(X \mid X \geq 0)$. Give pseudocode, based on the inversion method. You should use the scipy functions `ppf` and `cdf` functions, described in the lecture notes appendix.

Question 7. Consider a pair of random variables with joint density

$$Pr_{X,Y}(x,y) = \frac{3}{16} xy^2, \quad 0 \leq x \leq 2, \quad 0 \leq y \leq 2.$$

Find $Pr_X(x)$ and $Pr_Y(y)$, the marginal densities. **Hint. It may be easier to first prove Exercise 1.7 from lecture notes.**

Question 8. In a hash table with n buckets and a load factor of α (i.e. with an items hashed), what is the expected number of empty buckets? **Hint: $E_A = P(A)$.**

Question 9. Let $X_i \sim \text{Uniform}(2x/3, 4x/3)$, where x is given. Find a 95% confidence interval for $X_1 + \cdots + X_n$. This arises in the context of statistical multiplexing of TCP flows on the Internet. See Exercise 2.6 in lecture notes for the background.

Question 10. Let $\bar{X}_n = n^{-1}(X_1 + \cdots + X_n)$, where the X_i are independent $\text{Exp}(\lambda)$ random variables.

(a) Find the mean and standard deviation of \bar{X}_n.

(b) Let $N \sim \text{Poisson}(\nu)$, independent of the X_i. Find the mean and standard deviation of \bar{X}_{N+1}. **Hint. Use the law of total expectation, and condition on N.**

Question 11. Suppose we’re given a function $f(x) \geq 0$ and we want to evaluate

$$\int_{x=a}^{b} f(x) \, dx.$$

Here’s an approximation method: (i) draw a box that contains $f(x)$ over the range $x \in [a, b]$, (ii) scatter points uniformly at random in this box, (iii) return $A \times p$ where A is the area of the box and p is the fraction of points that are under the curve.

Explain why this is a special case of Monte Carlo integration. In your answer, you should identify the random variable and the function to which Monte Carlo is being applied.