
Concurrent and Distributed Systems - 2017–2018

Supervision 2: Transactions

Transaction-processing systems provide concurrency control for composite operations that act on
multiple distinct shared objects/data, behind the abstraction of a “transaction”. The guarantees
of transactional systems are described by the ACID properties: atomicity, consistency, isolation,
and durability. Transaction systems shift the burden of managing concurrency away from the
end programmer into databases, language runtimes, and operating systems – and by masking its
effects, allow flexibility in how the ACID properties are implemented.

Q1 ACID properties
(a) In the context of multi-threading, “atomicity” meant something different than in transaction

systems. If we simply associate locks with objects in a transaction system to implement 2-
phase locking (2PL), which ACID properties fall out naturally, and which require additional
work? Why?

(b) Our definition of “isolation” is grounded in “serialisability”: the appearance of concurrently
executing transactions within a system to conform to serial execution. In lecture, we discussed
“conflict serialisability”, in which a schedule is considered serialisable if two transactions
operating on overlapping sets of objects order all conflicting (non-commutative) operations
the same way.

For the following two transactions, enumerate all interleavings under the assumption that
individual operations on objects are atomic. For each, is it a serial execution? A conflict-
serialisable execution?

transaction T1 {
a = A.getBalance();
A.credit(INTEREST*a);

}

transaction T2 {
A.debit(100);
B.credit(100);

}

(c) In transaction systems, “atomicity” refers to transactions being committed fully or not at
all. Why might it be easier to implement transaction atomicity with optimistic concurrency
control than with 2PL?

(d) One limitation of 2PL is that it can suffer “cascading abort”, as it implements “isolation”
rather than “strict isolation”. In the above transactions, B.credit(100) may abort due to
the resulting balance exceeding a yearly limit; illustrate a 2PL schedule in which aborting T2
triggers a cascading abort of T1. Why would strict 2PL have prevented this problem?

(e) “Durability” ensures that if a transaction is reported as committed to the submitter, the results
will persist across a variety of failure modes including power loss. However, the obvious
solution of simply writing out object updates to disk before returning success may encounter
problems with atomicity – under what circumstances might this occur?

1



(f) One technique for implementing durability in transaction systems is write-ahead logging. In
this scheme, a balance is sought between a pure log-based store (in which all object accesses
are stored as an append-only log of changes, infinitely long) and simple on-disk object stores
in which all stores are performed “in place” (such as simple inode-based file systems). What
effect does varying the maximum log size have on:

1. Efficient use of persistant storage space?
2. Transaction throughput?
3. Recovery time following a crash?

(g) Write-ahead logging uses atomicity and isolation properties of single- sector writes to build
atomicity and durability properties for transactions.

1. What might go wrong if single-sector write was not atomic?
2. What might go wrong if disks did not properly serialise stores – e.g., did not implement

a “happens-before” relation between sequential synchronous disk writes?

Q2 2-phase locking
2-phase locking is one scheme for implementing isolation in the presence of concurrent transaction
processing on multiple objects. It consists of two monotonic phases: lock expansion, and lock
contraction. For this question, we will work with the following transactions:

transaction T1 {
x = A.read();
B.write(x);

}

transaction T2 {
x = B.read();
C.write(x);

}

transaction T3 {
x = C.read();
A.write(x);

}

Imagine that the transaction scheduler, in an effort to offer fairness to transactions, interleaves
scheduling with lines of code in a round-robin manner. For example, it would, without the inter-
vention of locking, schedule two transactions as follows:

(First epoch)
T1.L1
T2.L1

(Second epoch)
T1.L2
T2.L2

...

If a transaction is blocked on a lock, then the scheduler will skip that transaction and proceed to
the next transaction in the epoch.

2



(a) If we use naı̈ve 2PL to implement transactions T1, T2, and T3, what schedule will be selected?

(b) Deadlock presents a serious challenge to 2PL in the presence of composite operations. Imagine
that the transaction system implements a simple deadlock detector in which, if there are in-
flight transactions but none can be scheduled, then all in-flight transactions will be aborted
(and their locks released) to restart in the next epoch. What schedule arises with the above
three transactions?

(c) Livelock can also be a challenge for 2PL in the presence of a naı̈ve deadlock resolution scheme.
How might the scheme in (b) be modified to provide guarantees of progress in the event that
a deadlock is detected?

Q3 Timestamp ordering (TSO) and optimistic concurrency control (OCC)
Timestamp ordering allows transactions to operate concurrently based on a serialisation selected
as transactions start. Each transaction is issued a timestamp (sequence or ticket number) that be
checked against object timestamps to detect conflicts, and to taint objects written or read to trigger
detection of conflicts with other transactions that will touch the same object later.

(a) Timestamp ordering is conservative, in that it is committed to a particular serialisation of a
transaction attempt at the moment that the timestamp is selected, causing it to potentially
reject other valid serialisations. Give an example of two transactions, timestamp assignments,
and an interleaved schedule in which a valid serialisation is rejected by TSO, leading to an
unnecessary abort.

(b) TSO aborts transactions as conflicting operations are detected. Why, informally, might this
lead us to believe that TSO could suffer from livelock under contention?

Optimistic concurrency control likewise allows transactions to operate concurrently; unlike TSO,
it “searches” for a valid serialisation on transaction commit, rather than at transaction start. This
is argued to give OCC greater flexibility in avoiding unnecessary aborts seen in TSO, which might
exclude valid serialisations.

(c) Give an example of two transations and a schedule that would be accepted by OCC, but
rejected by TSO.

(d) OCC executes transactions against local copies of data (“shadows”) rather than globally vis-
ible original copies, which avoids the need to explicitly handle cascading aborts. However,
copying all objects at the start of the transaction is problematic if the set of objects to be op-
erated on is determined as part of the transaction itself. Why does on-demand copying of
objects complicate transaction validation?

(e) OCC aborts transactions as conflicting commits are detected. Why, informally, might we argue
that this conflict behaviour is more resistant to whole-system livelock than TSO?

(f) How could OCC’s validation model lead to starvation? Describe a scenario in which a set of
transactions and a serialisation cause starvation for a transaction.

3


