Concurrent systems
Lecture 8: Case study - FreeBSD kernel concurrency

Dr Anil Madhavapeddy

FreeBSD kernel

e Open-source OS kernel
— Large: millions of LoC

— Complex: thousands of subsystems,
drivers, ...

— Very concurrent: dozens or hundreds
of CPU cores / hyperthreads

— Widely used: NetApp, EMC, Dell,
Apple, Juniper, Netflix, Sony,
Panasonic, Cisco, Yahoo!, ...

e« Why a case study?

— Extensively employs C&DS principles |
Qm ARSHALL KIRk McKUSICK

— Concurrency performance and b Georoe v. NEVILLE-NEIL
- OBERT N.m. WATSON 7
composability at scale

« Consider design and evolution

THE
DESIGN AND
IMPLEMENTATION

FreeBSD

OPERATING SYSTEM

2
o
m
<
m
5
5
(©]
Z
(©]
hal
=
5
m

ANV N9OIS3a IHL

(ol

W3LSAS ONIIVIIJO

In the library: Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. The Design and ,
Implementation of the FreeBSD Operating System (2nd Edition), Pearson Education, 2014.

BSD + FreeBSD: a brief history

« 1980s Berkeley Standard Distribution (BSD)
— ‘BSD’-style open-source license (MIT, ISC, CMU, ...)

— UNIX Fast File System (UFS/FFS), sockets API, DNS, used
TCP/IP stack, FTP, sendmail, BIND, cron, vi, ...

e« Open-source FreeBSD operating system
1993: FreeBSD 1.0 without support for multiprocessing

1998: FreeBSD 3.0 with “giant-lock” multiprocessing

2003: FreeBSD 5.0 with fine-grained locking
2005: FreeBSD 6.0 with mature fine-grained locking

2012: FreeBSD 9.0 with TCP scalability beyond 32 cores

FreeBSD: before multiprocessing (1)

e Concurrency model inherited from UNIX

o Userspace
— Preemptive multitasking between processes
— Later, preemptive multithreading within processes

e Kernel
— ‘Just’ a C program running ‘bare metal’

— Internally multithreaded
o User threads operating ‘in kernel’ (e.g., in system calls)

« Kernel services (e.g., asynchronous work for VM, etc.)

FreeBSD: before multiprocessing (2)

« Cooperative multitasking within kernel
— Mutual exclusion as long as you don’t sleep()
— Implied global lock means local locks rarely required
— Except for interrupt handlers, non-preemptive kernel
— Critical sections control interrupt-handler execution

« Wait channels: implied condition variable per address

sleep(&xX, ..); // Wait for event on &x
wakeup (&X) ; // Signal an event on &x

— Must leave global state consistent when calling sleep()
— Must reload any cached local state after sleep() returns
« Use to build higher-level synchronization primitives

— E.g., lockmgr() reader-writer lock can be held over I/O
(sleep), used in filesystems

Pre-multiprocessor scheduling

CPUQ ==

sshd

sshd (k)

apache

apache (k)

idle

netisr

sshd (k)

sshd

apache (k)

apache

Lots of unexploited
parallelism!

Hardware parallelism, synchronization

e Late 1990s: multi-CPU begins to move down market
— In 2000s: 2-processor a big deal
— In 2010s: 64-core is increasingly common

e Coherent, symmetric, shared memory systems

— Instructions for atomic memory access
. Compare-and-swap, test-and-set, load linked/store conditional

e Signaling via Inter-Processor Interrupts (IPIs)
— CPUs can trigger an interrupt handler on each another
« Vendor extensions for performance, programmability

— MIPS inter-thread message passing
— Intel TM support: TSX (Whoops: HSW136!)

Giant locking the kernel

e FreeBSD follows footsteps of Cray, Sun, ...

 First, allow user programs to run in parallel
— One instance of kernel code/data shared by all CPUs
— Different user processes/threads on different CPUs
« Giant spinlock around kernel
— Acquire on syscall/trap to kernel; drop on return

— In effect: kernel runs on at most once CPU at a time;
‘migrates’ between CPUs on demand

e |nterrupts

— If interrupt delivered on CPU X while kernel is on CPUYY,
forward interrupt to Y using an IPI

Giant-locked scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache = =

Kernel-user
parallelism

User-user
parallelism

CPU 1==«| apache | spin | apache (k) | idle | netisr | sshd (k) | apache (k) apache!\' idle

I
CPUO==«| sshd | sshd (k) idle sshd }lﬂe a-»
"

Kernel giant-lock Serial kernel execution; parallelism
contention opportunity missed

Fine-grained locking

e Giant locking is OK for user-program parallelism

« Kernel-centered workloads trigger Giant contention
— Scheduler, IPC-intensive workloads
— TCP/buffer cache on high-load web servers
— Process-model contention with multithreading (VM, ...)

e Motivates migration to fine-grained locking
— Greater granularity (may) afford greater parallelism
 Mutexes + condition variables rather than semaphores
— Increasing consensus on pthreads-like synchronization
— Explicit locks are easier to debug than semaphores
— Support for priority inheritance + priority propagation
— E.g., Linux has also now migrated away from semaphores

10

Fine-grained scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache ==
I I
T
CPUO== sshd | sshd (k) idle sshd we -
S
CPU1 1=~ True kern e| netisr | sshd (k) | apache (k) | apache !\' idle E-}
parallelism
[| [|
= [
CPUO== sshd | sshd (k) idle sshd (k) sshd A -
<
CPU 1=« apache | apache (k) | idle | netisr | apache (k) | apache idle -
11
B B

How does this work in practice?

e Kernel is heavily multi-threaded

e Each user thread has a corresponding kernel thread
— Represents user thread when in syscall, page fault, etc.

e Kernels services often execute in asynchronous threads
— Interrupts, timers, 1/O, networking, etc.

= Therefore extensive synchronization
— Locking model is almost always data-oriented
— Think ‘monitors’ rather than ‘critical sections’
— Reference counting or reader-writer locks used for stability

— Higher-level patterns (producer-consumer, active objects, etc.)
used frequently

« Avoiding deadlock is an essential aspect of the design

Kernel threads in action

robert@lemongrass-freebsd64:~> procstat —at

100037 int

Vast hoards of threads

swil:

PID TID COMM TDNAME CPU PRI STATE WCHAN 12 100038 int
P S w0 460 e o sivselae represent concurrent activities
0 100014 kernel kqueue taskg 20!
0 100016 kernel thread tas . o =
0 100020 kernel acpi_task_(Idle CPUS are OCCU pled by usbus0 0 32 sleep -
0 100021 kernel acp%_task_ . usbus0 0 28 sleep -
G 100135 hormel gy anidle thread ... why? wabocd o 5 o
PID TID COMM DNAME CPU PRI STATE WCHAN
11 100003 idle idle: cpul 0 255 run -
12 100024 intr irql4: ataOl 0 12 wait -
12 100025 intr irql5: atal 1 12 wait -
12 100008, intr swil: netisr 0 1 28 wait -
3588 1001 sshd - 0 122 sleep select
12 100005 intr swid: clock 1 40 wait - 937 100064 getty
12 100006 ing swid: clock 0 40 wait 938 100077 getty
12 100007 j swi3: wvm 0 36 wait 939 100067 getty
12 2 netisr 0 1 28

10000
Q

Device-driver interrupts
execute in kernel ithreads

[U N N

netisr

Asynchronous packet
processing occursin a

‘soft’ ithread

Familiar userspace

thread: sshd, blocked in
network /O (‘in kernel’)

Kernel-internal concurrency is represented using a familiar

shared memory threading model

WITNESS lock-order checker

« Kernel relies on partial lock order to prevent deadlock
(Recall dining philosophers)

— In-field lock-related deadlocks are (very) rare
« WITNESS is a lock-order debugging tool
— Warns when lock cycles (could) arise by tracking edges
— Only in debugging kernels due to overhead (15%+)
o Tracks both statically declared, dynamic lock orders
— Static orders most commonly intra-module
— Dynamic orders most commonly inter-module
« Deadlocks for condition variables remain hard to debug

— What thread should have woken up a CV being waited on?
— Similar to semaphore problem

14

WITNESS: global lock-order graph®

* Turns out that the global lock-order
graph is pretty complicated.

* Commentary on WITNESS full-system lock-order
graph complexity; courtesy Scott Long, Netflix

16

Excerpt from global lock-order graph*

This bit mostly has to do eI, | ocal clusters: e.g., related

with networking 7 - locks from the firewall: two

leaf nodes; one is held over
calls to other subsystems

Network interface locks:
“transmit” occurs at the
bottom of call stacks via many
layers holding locks

Memory allocator locks follow
most other locks, since most
kernel components require

memory allocation

* The local lock-order graph is also complicated.

WITNESS debug output

1st Oxffffff80025207f0 run0 node lock (runO0 node lock) @ /usr/src/sys/
net80211/ieee80211 ioctl.c:1341

2nd O0xffffff80025142a8 run0 (network driver) @ /usr/src/sys/modules/usb/
run/../../../dev/usb/wlan/if run.c:3368

KDB: stack backtrace:
db trace self wrapper() at db trace self wrapper+0x2a Lock names and source
kdb backtrace() at kdb backtrace+0x37 code locations of
_witness debugger() at witness debugger+0x2c c ers .
witness checkorder() at witness checkorder+0x853 vaUISIt-IonS addmg the
_mtx_lock flags() at mtx lock flags+0x85 offending graph edge
run raw _xmit() at run raw xmit+0x58
ieee80211 send mgmt() at ieeeB80211 send mgmt+0x4d5
domlme() at domlme+0x95

setmlme common() at setmlme common+0x2f0
ieee80211 ioctl setmlme() at ieeeB80211 ioctl setmlme+0x7e
ieee80211 ioctl set80211() at ieeeB80211 ioctl set80211+0x46f
in control() at in control+0Oxad . .-
ifioctl() at ifioctl+Oxece Stack trace to acquisition

kern ioctl() at kern ioctl+0xcd that triggered cycle:

sys ioctl() at sys ioctl+0xfO0 802.11 called USB:
amd64 syscall() at amd64 syscall+0x380 ‘

Xfast syscall() at Xfast syscall+0xf7

previously, perhaps USB

-—— syscall (54, FreeBSD ELF64, sys ioctl), rip = 0xt¢ called 802.117
Ox7f£ff£fff£fd848, rbp = 0x2a ---

Case study: the network stack (1)

« What is a network stack?
— Kernel-resident library of networking routines
— Sockets, TCP/IP, UDP/IP, Ethernet, ...

o Implements user abstractions, network-interface
abstraction, protocol state machines, sockets, etc.

— System calls: socket(), connect(), send(), recv(), listen(), ...
« Highly complex and concurrent subsystem

— Composed from many (pluggable) elements
— Socket layer, network device drivers, protocols, ...

 Typical paths ‘up’ and ‘down’: packets come in, go out

19

Network-stack work flows

Applications send,

receive, await data

on sockets

Data/packets
processed;
dispatched via
producer-
consumer
relationships

Packets go in and
out of network
interfaces

The work: adding/removing headers, calculating checksums, fragmentation/

Application

System call layer

Socket layer

TCP layer

IP layer

Link layer

Device driver

send() recv()
send() recv()
* *
sosend) | L . Sorecieve() |
sbappend() Sbappend()
* *
tcp_send() tcp_reass()
tcp_output() tcp_input()
* *
ip_putput() ip_input()
*
ether_output() ether_input()
* *
Lo .2'.:\:593:{: | | em_intr()

—

defragmentation, segment reassembly, reordering, flow control, etc.

Case study: the network stack (2)

o First, make it safe without the Giant lock
— Lots of data structures require locks
— Condition signaling already exists but will be added to
— Establish key work flows, lock orders
« Then, make it fast
— Especially locking primitives themselves
— Increase locking granularity where there is contention
« As hardware becomes more parallel, identify and
exploit further concurrency opportunities
— Add more threads, distribute more work

21

What to lock and how?

e Fine-grained locking overhead vs. contention
— Some contention is inherent: necessary communication

— Some contention is false sharing: side effect of structures

e Principle: lock data, not code (i.e., not critical sections)
— Key structures: NICs, sockets, work queues, ...
— Independent structure instances often have own locks

« Horizontal vs. vertical parallelism

— H: Different locks across connections (e.g., TCP1 vs. TCP2)
— H: Different locks within a layer (e.g., recv. vs. send buffers)
— V: Different locks at different layers (e.g., socket vs. TCP)

e Things not to lock: packets in flight - mbufs (‘work’)

22

Example: Universal Memory Allocator
(UMA)

Memory consumers (mbufs, sockets, ...)

CPUO CPU 1
Consumer Consumer

UMA zone

\v

Virtual memory

Key kernel service

Slab allocator
— (Bonwick 1994)

Per-CPU caches

— Individually locked

— Amortise (or avoid) global
lock contention

Some allocation patterns
use only per-CPU caches

Others require dipping into

the global pool

23

Work distribution

o Packets (mbufs) are units of work
« Parallel work requires distribution to threads
e Must keep packets ordered — or TCP gets cranky!

e Implication: strong per-flow serialization
— l.e., no generalized producer-consumer/round robin

— Various strategies to keep work ordered; e.g.:
e Process in a single thread
« Multiple threads in a ‘pipeline’ linked by a queue

— Misordering OK between flows, just not within them

o Establish flow-CPU affinity can both order
processing and utilize caches well

24

Transactions/sec

7608

Scalability

Performance increase may
reduce due to contention,
which wastes resources

pesql sysbench o

T

L]

Key idea:
speedup

As we add more

parallelism, we would like
the system to get faster.

Key idea:
performance collapse

Sometimes parallelism
hurts performance more
than it helps due to work-

distribution overheads,

contention.

FreeBSD 8,08, ULE —+—
Flreeesn 8.1!I ULE topo.l?gg ——

2 4 6 8 10 12
Concurrency (£ threads)

14 16 18 20 25

Longer-term strategies

« Hardware change motivates continuing work
— Optimize inevitable contention
— Lockless primitives
— Read-mostly locks, read-copy-update (RCU)
— Per-CPU data structures

— Better distribute work to more threads to utilise growing
core/hyperthread count

« Optimise for locality, not just contention: cache,
NUMA, and I/O affinity

— If communication is essential, contention is inevitable

26

Conclusions

e FreeBSD employs many of C&DS techniques

— Multithreading within (and over) the kernel

— Mutual exclusion, condition synchronization

— Partial lock order with dynamic checking

— Producer-consumer, lockless primitives

— Also Write-Ahead Logging (WAL) in filesystems, ...
e Real-world systems are really complicated

— Composition is not straightforward

— Parallelism performance wins are a lot of work

— Hardware continues to evolve, placing pressure on
software systems to utilise new parallelism

e Next: Distributed Systems!

27

