
Concurrent systems  
Lecture 8: Case study - FreeBSD kernel concurrency

Dr Anil Madhavapeddy

?1

FreeBSD kernel

• Open-source OS kernel
– Large: millions of LoC

– Complex: thousands of subsystems,
drivers, ...

– Very concurrent: dozens or hundreds
of CPU cores / hyperthreads

– Widely used: NetApp, EMC, Dell,
Apple, Juniper, Netflix, Sony,
Panasonic, Cisco, Yahoo!, …

• Why a case study?
– Extensively employs C&DS principles

– Concurrency performance and
composability at scale

• Consider design and evolution

?2
In the library: Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. The Design and
Implementation of the FreeBSD Operating System (2nd Edition), Pearson Education, 2014.

BSD + FreeBSD: a brief history

• 1980s Berkeley Standard Distribution (BSD)
– ‘BSD’-style open-source license (MIT, ISC, CMU, …)
– UNIX Fast File System (UFS/FFS), sockets API, DNS, used

TCP/IP stack, FTP, sendmail, BIND, cron, vi, …

• Open-source FreeBSD operating system
1993: FreeBSD 1.0 without support for multiprocessing

1998: FreeBSD 3.0 with “giant-lock” multiprocessing

2003: FreeBSD 5.0 with fine-grained locking
2005: FreeBSD 6.0 with mature fine-grained locking

2012: FreeBSD 9.0 with TCP scalability beyond 32 cores

?3

FreeBSD: before multiprocessing (1)

• Concurrency model inherited from UNIX

• Userspace
– Preemptive multitasking between processes

– Later, preemptive multithreading within processes

• Kernel
– ‘Just’ a C program running ‘bare metal’

– Internally multithreaded

• User threads operating ‘in kernel’ (e.g., in system calls)

• Kernel services (e.g., asynchronous work for VM, etc.)

?4

FreeBSD: before multiprocessing (2)

• Cooperative multitasking within kernel
– Mutual exclusion as long as you don’t sleep()
– Implied global lock means local locks rarely required
– Except for interrupt handlers, non-preemptive kernel
– Critical sections control interrupt-handler execution

• Wait channels: implied condition variable per address

sleep(&x, …); // Wait for event on &x
wakeup(&x); // Signal an event on &x

– Must leave global state consistent when calling sleep()

– Must reload any cached local state after sleep() returns

• Use to build higher-level synchronization primitives
– E.g., lockmgr() reader-writer lock can be held over I/O

(sleep), used in filesystems
?5

Pre-multiprocessor scheduling 

?6

Lots of unexploited
parallelism!

Hardware parallelism, synchronization

• Late 1990s: multi-CPU begins to move down market
– In 2000s: 2-processor a big deal
– In 2010s: 64-core is increasingly common

• Coherent, symmetric, shared memory systems
– Instructions for atomic memory access

• Compare-and-swap, test-and-set, load linked/store conditional

• Signaling via Inter-Processor Interrupts (IPIs)
– CPUs can trigger an interrupt handler on each another

• Vendor extensions for performance, programmability
– MIPS inter-thread message passing
– Intel TM support: TSX (Whoops: HSW136!)

?7

Giant locking the kernel

• FreeBSD follows footsteps of Cray, Sun, …
• First, allow user programs to run in parallel
– One instance of kernel code/data shared by all CPUs
– Different user processes/threads on different CPUs

• Giant spinlock around kernel
– Acquire on syscall/trap to kernel; drop on return
– In effect: kernel runs on at most once CPU at a time;

‘migrates’ between CPUs on demand

• Interrupts
– If interrupt delivered on CPU X while kernel is on CPU Y,

forward interrupt to Y using an IPI

?8

Giant-locked scheduling 

?9

Serial kernel execution; parallelism
opportunity missed

Kernel giant-lock
contention

Kernel-user
parallelism

User-user
parallelism

Fine-grained locking

• Giant locking is OK for user-program parallelism
• Kernel-centered workloads trigger Giant contention

– Scheduler, IPC-intensive workloads
– TCP/buffer cache on high-load web servers
– Process-model contention with multithreading (VM, …)

• Motivates migration to fine-grained locking
– Greater granularity (may) afford greater parallelism

• Mutexes + condition variables rather than semaphores
– Increasing consensus on pthreads-like synchronization
– Explicit locks are easier to debug than semaphores
– Support for priority inheritance + priority propagation
– E.g., Linux has also now migrated away from semaphores

?10

Fine-grained scheduling 

?11

True kernel
parallelism

How does this work in practice?

• Kernel is heavily multi-threaded

• Each user thread has a corresponding kernel thread
– Represents user thread when in syscall, page fault, etc.

• Kernels services often execute in asynchronous threads
– Interrupts, timers, I/O, networking, etc.

➡ Therefore extensive synchronization
– Locking model is almost always data-oriented

– Think ‘monitors’ rather than ‘critical sections’

– Reference counting or reader-writer locks used for stability

– Higher-level patterns (producer-consumer, active objects, etc.)
used frequently

• Avoiding deadlock is an essential aspect of the design
?12

Kernel threads in action  

?13

robert@lemongrass-freebsd64:~> procstat –at
 PID TID COMM TDNAME CPU PRI STATE WCHAN
 0 100000 kernel swapper 1 84 sleep sched
 0 100009 kernel firmware taskq 0 108 sleep -
 0 100014 kernel kqueue taskq 0 108 sleep -
 0 100016 kernel thread taskq 0 108 sleep -
 0 100020 kernel acpi_task_0 1 108 sleep -
 0 100021 kernel acpi_task_1 1 108 sleep -
 0 100022 kernel acpi_task_2 1 108 sleep -
 0 100023 kernel ffs_trim taskq 1 108 sleep -
 0 100033 kernel em0 taskq 1 8 sleep -
 1 100002 init - 0 152 sleep wait
 2 100027 mpt_recovery0 - 0 84 sleep idle
 3 100039 fdc0 - 1 84 sleep -
 4 100040 ctl_thrd - 0 84 sleep ctl_work
 5 100041 sctp_iterator - 0 84 sleep waiting_
 6 100042 xpt_thrd - 0 84 sleep ccb_scan
 7 100043 pagedaemon - 1 84 sleep psleep
 8 100044 vmdaemon - 1 84 sleep psleep
 9 100045 pagezero - 1 255 sleep pgzero
 10 100001 audit - 0 84 sleep audit_wo
 11 100003 idle idle: cpu0 0 255 run -
 11 100004 idle idle: cpu1 1 255 run -
 12 100005 intr swi4: clock 1 40 wait -
 12 100006 intr swi4: clock 0 40 wait -
 12 100007 intr swi3: vm 0 36 wait -
 12 100008 intr swi1: netisr 0 1 28 wait -
 12 100015 intr swi5: + 0 44 wait -
 12 100017 intr swi6: Giant task 0 48 wait -
 12 100018 intr swi6: task queue 0 48 wait -
 12 100019 intr swi2: cambio 1 32 wait -
 12 100024 intr irq14: ata0 0 12 wait -
 12 100025 intr irq15: ata1 1 12 wait -
 12 100026 intr irq17: mpt0 1 12 wait -
 12 100028 intr irq18: uhci0 0 12 wait -
 12 100034 intr irq16: pcm0 0 4 wait -
 12 100035 intr irq1: atkbd0 1 16 wait -
 12 100036 intr irq12: psm0 0 16 wait -

 12 100037 intr irq7: ppc0 0 16 wait -
 12 100038 intr swi0: uart uart 0 24 wait -
 13 100010 geom g_event 0 92 sleep -
 13 100011 geom g_up 1 92 sleep -
 13 100012 geom g_down 1 92 sleep -
 14 100013 yarrow - 1 84 sleep -
 15 100029 usb usbus0 0 32 sleep -
 15 100030 usb usbus0 0 28 sleep -
 15 100031 usb usbus0 0 32 sleep USBWAIT
 15 100032 usb usbus0 0 32 sleep -
 16 100046 bufdaemon - 0 84 sleep psleep
 17 100047 syncer - 1 116 sleep syncer
 18 100048 vnlru - 1 84 sleep vlruwt
 19 100049 softdepflush - 1 84 sleep sdflush
 104 100055 adjkerntz - 1 152 sleep pause
 615 100056 dhclient - 0 139 sleep select
 667 100075 dhclient - 1 120 sleep select
 685 100068 devd - 1 120 sleep wait
 798 100065 syslogd - 0 120 sleep select
 895 100076 sshd - 0 120 sleep select
 934 100052 login - 1 120 sleep wait
 935 100070 getty - 0 152 sleep ttyin
 936 100060 getty - 0 152 sleep ttyin
 937 100064 getty - 0 152 sleep ttyin
 938 100077 getty - 1 152 sleep ttyin
 939 100067 getty - 1 152 sleep ttyin
 940 100072 getty - 1 152 sleep ttyin
 941 100073 getty - 0 152 sleep ttyin
9074 100138 csh - 0 120 sleep ttyin
3023 100207 ssh-agent - 1 120 sleep select
3556 100231 sh - 0 123 sleep piperd
3558 100216 sh - 1 124 sleep wait
3559 100145 sh - 0 122 sleep vmo_de
3560 100058 sh - 0 123 sleep piperd
3588 100176 sshd - 0 122 sleep select
3590 101853 sshd - 1 122 run -
3591 100069 tcsh - 0 152 sleep pause
3596 100172 procstat - 0 172 run -

Kernel-internal concurrency is represented using a familiar 
shared memory threading model

 PID TID COMM TDNAME CPU PRI STATE WCHAN
 11 100003 idle idle: cpu0 0 255 run -
 12 100024 intr irq14: ata0 0 12 wait -
 12 100025 intr irq15: ata1 1 12 wait -
 12 100008 intr swi1: netisr 0 1 28 wait -
3588 100176 sshd - 0 122 sleep select

Vast hoards of threads
represent concurrent activities

Device-driver interrupts
execute in kernel ithreads

Idle CPUs are occupied by
an idle thread … why?

Asynchronous packet
processing occurs in a
netisr ‘soft’ ithread

Familiar userspace
thread: sshd, blocked in
network I/O (‘in kernel’)

WITNESS lock-order checker

• Kernel relies on partial lock order to prevent deadlock 
(Recall dining philosophers)
– In-field lock-related deadlocks are (very) rare

• WITNESS is a lock-order debugging tool
– Warns when lock cycles (could) arise by tracking edges
– Only in debugging kernels due to overhead (15%+)

• Tracks both statically declared, dynamic lock orders
– Static orders most commonly intra-module
– Dynamic orders most commonly inter-module

• Deadlocks for condition variables remain hard to debug
– What thread should have woken up a CV being waited on?
– Similar to semaphore problem

?14

WITNESS: global lock-order graph* 

?15

* Turns out that the global lock-order  
 graph is pretty complicated.

?16

* Commentary on WITNESS full-system lock-order 
 graph complexity; courtesy Scott Long, Netflix

*

Excerpt from global lock-order graph* 

?17* The local lock-order graph is also complicated.

This bit mostly has to do
with networking

Local clusters: e.g., related
locks from the firewall: two
leaf nodes; one is held over
calls to other subsystems

Network interface locks:
“transmit” occurs at the

bottom of call stacks via many
layers holding locks

Memory allocator locks follow
most other locks, since most
kernel components require

memory allocation

WITNESS debug output 

?18

1st 0xffffff80025207f0 run0_node_lock (run0_node_lock) @ /usr/src/sys/
net80211/ieee80211_ioctl.c:1341
 2nd 0xffffff80025142a8 run0 (network driver) @ /usr/src/sys/modules/usb/
run/../../../dev/usb/wlan/if_run.c:3368

KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2a
kdb_backtrace() at kdb_backtrace+0x37
_witness_debugger() at _witness_debugger+0x2c
witness_checkorder() at witness_checkorder+0x853
_mtx_lock_flags() at _mtx_lock_flags+0x85
run_raw_xmit() at run_raw_xmit+0x58
ieee80211_send_mgmt() at ieee80211_send_mgmt+0x4d5
domlme() at domlme+0x95
setmlme_common() at setmlme_common+0x2f0
ieee80211_ioctl_setmlme() at ieee80211_ioctl_setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211_ioctl_set80211+0x46f
in_control() at in_control+0xad
ifioctl() at ifioctl+0xece
kern_ioctl() at kern_ioctl+0xcd
sys_ioctl() at sys_ioctl+0xf0
amd64_syscall() at amd64_syscall+0x380
Xfast_syscall() at Xfast_syscall+0xf7
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800de7aec, rsp =
0x7fffffffd848, rbp = 0x2a ---

Lock names and source
code locations of

acquisitions adding the
offending graph edge

Stack trace to acquisition
that triggered cycle:
802.11 called USB;

previously, perhaps USB
called 802.11?

Case study: the network stack (1)

• What is a network stack?
– Kernel-resident library of networking routines

– Sockets, TCP/IP, UDP/IP, Ethernet, …

• Implements user abstractions, network-interface
abstraction, protocol state machines, sockets, etc.
– System calls: socket(), connect(), send(), recv(), listen(), …

• Highly complex and concurrent subsystem
– Composed from many (pluggable) elements

– Socket layer, network device drivers, protocols, …

• Typical paths ‘up’ and ‘down’: packets come in, go out

?19

Network-stack work flows 

?20

Applications send,
receive, await data

on sockets

Data/packets
processed;

dispatched via
producer-
consumer

relationships

Packets go in and
out of network

interfaces

The work: adding/removing headers, calculating checksums, fragmentation/
defragmentation, segment reassembly, reordering, flow control, etc.

Case study: the network stack (2)

• First, make it safe without the Giant lock
– Lots of data structures require locks

– Condition signaling already exists but will be added to

– Establish key work flows, lock orders

• Then, make it fast
– Especially locking primitives themselves

– Increase locking granularity where there is contention

• As hardware becomes more parallel, identify and
exploit further concurrency opportunities
– Add more threads, distribute more work

?21

What to lock and how?
• Fine-grained locking overhead vs. contention

– Some contention is inherent: necessary communication

– Some contention is false sharing: side effect of structures

• Principle: lock data, not code (i.e., not critical sections)
– Key structures: NICs, sockets, work queues, …

– Independent structure instances often have own locks

• Horizontal vs. vertical parallelism
– H: Different locks across connections (e.g., TCP1 vs. TCP2)

– H: Different locks within a layer (e.g., recv. vs. send buffers)

– V: Different locks at different layers (e.g., socket vs. TCP)

• Things not to lock: packets in flight - mbufs (‘work’)

?22

Example: Universal Memory Allocator
(UMA)

• Key kernel service

• Slab allocator
– (Bonwick 1994)

• Per-CPU caches
– Individually locked

– Amortise (or avoid) global
lock contention

• Some allocation patterns
use only per-CPU caches

• Others require dipping into
the global pool

?23

🔒🔒

🔒

Work distribution

• Packets (mbufs) are units of work
• Parallel work requires distribution to threads
• Must keep packets ordered – or TCP gets cranky!
• Implication: strong per-flow serialization
– I.e., no generalized producer-consumer/round robin
– Various strategies to keep work ordered; e.g.:

• Process in a single thread
• Multiple threads in a ‘pipeline’ linked by a queue

– Misordering OK between flows, just not within them

• Establish flow-CPU affinity can both order
processing and utilize caches well

?24

Scalability 

?25

?

Performance increase may
reduce due to contention,

which wastes resources

Key idea:
speedup

As we add more
parallelism, we would like
the system to get faster.

Key idea:
performance collapse

Sometimes parallelism
hurts performance more
than it helps due to work-

distribution overheads,
contention.

Longer-term strategies

• Hardware change motivates continuing work
– Optimize inevitable contention

– Lockless primitives

– Read-mostly locks, read-copy-update (RCU)

– Per-CPU data structures

– Better distribute work to more threads to utilise growing
core/hyperthread count

• Optimise for locality, not just contention: cache,
NUMA, and I/O affinity
– If communication is essential, contention is inevitable

?26

Conclusions

• FreeBSD employs many of C&DS techniques
– Multithreading within (and over) the kernel
– Mutual exclusion, condition synchronization
– Partial lock order with dynamic checking
– Producer-consumer, lockless primitives
– Also Write-Ahead Logging (WAL) in filesystems, …

• Real-world systems are really complicated
– Composition is not straightforward
– Parallelism performance wins are a lot of work
– Hardware continues to evolve, placing pressure on

software systems to utilise new parallelism

• Next: Distributed Systems!
?27

