
Concurrent systems  
Lecture 8: Case study - FreeBSD kernel concurrency

Dr Anil Madhavapeddy

?1



FreeBSD kernel

• Open-source OS kernel 
– Large: millions of LoC 

– Complex: thousands of subsystems, 
drivers, ... 

– Very concurrent: dozens or hundreds 
of CPU cores / hyperthreads 

– Widely used: NetApp, EMC, Dell, 
Apple, Juniper, Netflix, Sony, 
Panasonic, Cisco, Yahoo!, … 

• Why a case study? 
– Extensively employs C&DS principles 

– Concurrency performance and 
composability at scale 

• Consider design and evolution
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In the library: Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. The Design and 
Implementation of the FreeBSD Operating System (2nd Edition), Pearson Education, 2014.



BSD + FreeBSD: a brief history

• 1980s Berkeley Standard Distribution (BSD) 
– ‘BSD’-style open-source license (MIT, ISC, CMU, …) 
– UNIX Fast File System (UFS/FFS), sockets API, DNS, used 

TCP/IP stack, FTP, sendmail, BIND, cron, vi, … 

• Open-source FreeBSD operating system 
1993: FreeBSD 1.0 without support for multiprocessing 

1998: FreeBSD 3.0 with “giant-lock” multiprocessing 

2003: FreeBSD 5.0 with fine-grained locking 
2005: FreeBSD 6.0 with mature fine-grained locking 

2012: FreeBSD 9.0 with TCP scalability beyond 32 cores
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FreeBSD: before multiprocessing (1)

• Concurrency model inherited from UNIX 

• Userspace 
– Preemptive multitasking between processes 

– Later, preemptive multithreading within processes 

• Kernel 
– ‘Just’ a C program running ‘bare metal’ 

– Internally multithreaded 

• User threads operating ‘in kernel’ (e.g., in system calls) 

• Kernel services (e.g., asynchronous work for VM, etc.)
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FreeBSD: before multiprocessing (2)

• Cooperative multitasking within kernel 
– Mutual exclusion as long as you don’t sleep() 
– Implied global lock means local locks rarely required 
– Except for interrupt handlers, non-preemptive kernel 
– Critical sections control interrupt-handler execution 

• Wait channels: implied condition variable per address 

sleep(&x, …); // Wait for event on &x
wakeup(&x); // Signal an event on &x

– Must leave global state consistent when calling sleep() 

– Must reload any cached local state after sleep() returns 

• Use to build higher-level synchronization primitives 
– E.g., lockmgr() reader-writer lock can be held over I/O 

(sleep), used in filesystems
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Pre-multiprocessor scheduling 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Lots of unexploited 
parallelism!



Hardware parallelism, synchronization

• Late 1990s: multi-CPU begins to move down market 
– In 2000s: 2-processor a big deal 
– In 2010s: 64-core is increasingly common 

• Coherent, symmetric, shared memory systems 
– Instructions for atomic memory access 

• Compare-and-swap, test-and-set, load linked/store conditional 

• Signaling via Inter-Processor Interrupts (IPIs) 
– CPUs can trigger an interrupt handler on each another 

• Vendor extensions for performance, programmability 
– MIPS inter-thread message passing 
– Intel TM support: TSX   (Whoops: HSW136!)
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Giant locking the kernel

• FreeBSD follows footsteps of Cray, Sun, … 
• First, allow user programs to run in parallel 
– One instance of kernel code/data shared by all CPUs 
– Different user processes/threads on different CPUs 

• Giant spinlock around kernel 
– Acquire on syscall/trap to kernel; drop on return 
– In effect: kernel runs on at most once CPU at a time; 

‘migrates’ between CPUs on demand 

• Interrupts 
– If interrupt delivered on CPU X while kernel is on CPU Y, 

forward interrupt to Y using an IPI
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Giant-locked scheduling 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Serial kernel execution; parallelism 
opportunity missed

Kernel giant-lock 
contention

Kernel-user 
parallelism

User-user 
parallelism



Fine-grained locking

• Giant locking is OK for user-program parallelism 
• Kernel-centered workloads trigger Giant contention 

– Scheduler, IPC-intensive workloads 
– TCP/buffer cache on high-load web servers 
– Process-model contention with multithreading (VM, …) 

• Motivates migration to fine-grained locking 
– Greater granularity (may) afford greater parallelism 

• Mutexes + condition variables rather than semaphores 
– Increasing consensus on pthreads-like synchronization 
– Explicit locks are easier to debug than semaphores 
– Support for priority inheritance + priority propagation 
– E.g., Linux has also now migrated away from semaphores
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Fine-grained scheduling 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True kernel 
parallelism



How does this work in practice?

• Kernel is heavily multi-threaded 

• Each user thread has a corresponding kernel thread 
– Represents user thread when in syscall, page fault, etc. 

• Kernels services often execute in asynchronous threads 
– Interrupts, timers, I/O, networking, etc. 

➡ Therefore extensive synchronization 
– Locking model is almost always data-oriented 

– Think ‘monitors’ rather than ‘critical sections’ 

– Reference counting or reader-writer locks used for stability 

– Higher-level patterns (producer-consumer, active objects, etc.) 
used frequently 

• Avoiding deadlock is an essential aspect of the design
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Kernel threads in action  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robert@lemongrass-freebsd64:~> procstat –at
 PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
   0 100000 kernel           swapper            1   84 sleep   sched     
   0 100009 kernel           firmware taskq     0  108 sleep   -         
   0 100014 kernel           kqueue taskq       0  108 sleep   -         
   0 100016 kernel           thread taskq       0  108 sleep   -         
   0 100020 kernel           acpi_task_0        1  108 sleep   -         
   0 100021 kernel           acpi_task_1        1  108 sleep   -         
   0 100022 kernel           acpi_task_2        1  108 sleep   -         
   0 100023 kernel           ffs_trim taskq     1  108 sleep   -         
   0 100033 kernel           em0 taskq          1    8 sleep   -         
   1 100002 init             -                  0  152 sleep   wait      
   2 100027 mpt_recovery0    -                  0   84 sleep   idle      
   3 100039 fdc0             -                  1   84 sleep   -         
   4 100040 ctl_thrd         -                  0   84 sleep   ctl_work  
   5 100041 sctp_iterator    -                  0   84 sleep   waiting_  
   6 100042 xpt_thrd         -                  0   84 sleep   ccb_scan  
   7 100043 pagedaemon       -                  1   84 sleep   psleep    
   8 100044 vmdaemon         -                  1   84 sleep   psleep    
   9 100045 pagezero         -                  1  255 sleep   pgzero    
  10 100001 audit            -                  0   84 sleep   audit_wo  
  11 100003 idle             idle: cpu0         0  255 run     -         
  11 100004 idle             idle: cpu1         1  255 run     -         
  12 100005 intr             swi4: clock        1   40 wait    -         
  12 100006 intr             swi4: clock        0   40 wait    -         
  12 100007 intr             swi3: vm           0   36 wait    -         
  12 100008 intr             swi1: netisr 0     1   28 wait    -         
  12 100015 intr             swi5: +            0   44 wait    -         
  12 100017 intr             swi6: Giant task   0   48 wait    -         
  12 100018 intr             swi6: task queue   0   48 wait    -         
  12 100019 intr             swi2: cambio       1   32 wait    -         
  12 100024 intr             irq14: ata0        0   12 wait    -         
  12 100025 intr             irq15: ata1        1   12 wait    -         
  12 100026 intr             irq17: mpt0        1   12 wait    -         
  12 100028 intr             irq18: uhci0       0   12 wait    -         
  12 100034 intr             irq16: pcm0        0    4 wait    -         
  12 100035 intr             irq1: atkbd0       1   16 wait    -         
  12 100036 intr             irq12: psm0        0   16 wait    -         

  12 100037 intr             irq7: ppc0         0   16 wait    -         
  12 100038 intr             swi0: uart uart    0   24 wait    -         
  13 100010 geom             g_event            0   92 sleep   -         
  13 100011 geom             g_up               1   92 sleep   -         
  13 100012 geom             g_down             1   92 sleep   -         
  14 100013 yarrow           -                  1   84 sleep   -         
  15 100029 usb              usbus0             0   32 sleep   -         
  15 100030 usb              usbus0             0   28 sleep   -         
  15 100031 usb              usbus0             0   32 sleep   USBWAIT   
  15 100032 usb              usbus0             0   32 sleep   -         
  16 100046 bufdaemon        -                  0   84 sleep   psleep    
  17 100047 syncer           -                  1  116 sleep   syncer    
  18 100048 vnlru            -                  1   84 sleep   vlruwt    
  19 100049 softdepflush     -                  1   84 sleep   sdflush 
 104 100055 adjkerntz        -                  1  152 sleep   pause     
 615 100056 dhclient         -                  0  139 sleep   select    
 667 100075 dhclient         -                  1  120 sleep   select    
 685 100068 devd             -                  1  120 sleep   wait      
 798 100065 syslogd          -                  0  120 sleep   select    
 895 100076 sshd             -                  0  120 sleep   select    
 934 100052 login            -                  1  120 sleep   wait      
 935 100070 getty            -                  0  152 sleep   ttyin     
 936 100060 getty            -                  0  152 sleep   ttyin     
 937 100064 getty            -                  0  152 sleep   ttyin     
 938 100077 getty            -                  1  152 sleep   ttyin     
 939 100067 getty            -                  1  152 sleep   ttyin     
 940 100072 getty            -                  1  152 sleep   ttyin      
 941 100073 getty            -                  0  152 sleep   ttyin     
9074 100138 csh              -                  0  120 sleep   ttyin     
3023 100207 ssh-agent        -                  1  120 sleep   select    
3556 100231 sh               -                  0  123 sleep   piperd    
3558 100216 sh               -                  1  124 sleep   wait      
3559 100145 sh               -                  0  122 sleep   vmo_de    
3560 100058 sh               -                  0  123 sleep   piperd    
3588 100176 sshd             -                  0  122 sleep   select    
3590 101853 sshd             -                  1  122 run     -         
3591 100069 tcsh             -                  0  152 sleep   pause     
3596 100172 procstat         -                  0  172 run     - 

Kernel-internal  concurrency is represented using a familiar 
shared memory threading model

 PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN    
  11 100003 idle             idle: cpu0         0  255 run     -         
  12 100024 intr             irq14: ata0        0   12 wait    -         
  12 100025 intr             irq15: ata1        1   12 wait    - 
  12 100008 intr             swi1: netisr 0     1   28 wait    -         
3588 100176 sshd             -                  0  122 sleep   select

Vast hoards of threads 
represent concurrent activities

Device-driver interrupts 
execute in kernel ithreads

Idle CPUs are occupied by 
an idle thread … why?

Asynchronous packet 
processing occurs in a 
netisr ‘soft’ ithread

Familiar userspace 
thread: sshd, blocked in 
network I/O (‘in kernel’)



WITNESS lock-order checker

• Kernel relies on partial lock order to prevent deadlock 
(Recall dining philosophers) 
– In-field lock-related deadlocks are (very) rare 

• WITNESS is a lock-order debugging tool 
– Warns when lock cycles (could) arise by tracking edges 
– Only in debugging kernels due to overhead (15%+) 

• Tracks both statically declared, dynamic lock orders 
– Static orders most commonly intra-module 
– Dynamic orders most commonly inter-module 

• Deadlocks for condition variables remain hard to debug 
– What thread should have woken up a CV being waited on? 
– Similar to semaphore problem
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WITNESS: global lock-order graph* 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* Turns out that the global lock-order  
   graph is pretty complicated.
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* Commentary on WITNESS full-system lock-order 
    graph complexity; courtesy Scott Long, Netflix

*



Excerpt from global lock-order graph* 

?17* The local lock-order graph is also complicated.

This bit mostly has to do 
with networking

Local clusters: e.g., related 
locks from the firewall: two 
leaf nodes; one is held over 
calls to other subsystems

Network interface locks: 
“transmit” occurs at the 

bottom of call stacks via many 
layers holding locks

Memory allocator locks follow 
most other locks, since most 
kernel components require 

memory allocation



WITNESS debug output 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1st 0xffffff80025207f0 run0_node_lock (run0_node_lock) @ /usr/src/sys/
net80211/ieee80211_ioctl.c:1341
 2nd 0xffffff80025142a8 run0 (network driver) @ /usr/src/sys/modules/usb/
run/../../../dev/usb/wlan/if_run.c:3368

KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2a
kdb_backtrace() at kdb_backtrace+0x37
_witness_debugger() at _witness_debugger+0x2c
witness_checkorder() at witness_checkorder+0x853
_mtx_lock_flags() at _mtx_lock_flags+0x85
run_raw_xmit() at run_raw_xmit+0x58
ieee80211_send_mgmt() at ieee80211_send_mgmt+0x4d5
domlme() at domlme+0x95
setmlme_common() at setmlme_common+0x2f0
ieee80211_ioctl_setmlme() at ieee80211_ioctl_setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211_ioctl_set80211+0x46f
in_control() at in_control+0xad
ifioctl() at ifioctl+0xece
kern_ioctl() at kern_ioctl+0xcd
sys_ioctl() at sys_ioctl+0xf0
amd64_syscall() at amd64_syscall+0x380
Xfast_syscall() at Xfast_syscall+0xf7
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800de7aec, rsp = 
0x7fffffffd848, rbp = 0x2a ---

Lock names and source 
code locations of 

acquisitions adding the 
offending graph edge

Stack trace to acquisition 
that triggered cycle: 
802.11 called USB; 

previously, perhaps USB 
called 802.11?



Case study: the network stack (1)

• What is a network stack? 
– Kernel-resident library of networking routines 

– Sockets, TCP/IP, UDP/IP, Ethernet, … 

• Implements user abstractions, network-interface 
abstraction, protocol state machines, sockets, etc. 
– System calls: socket(), connect(), send(), recv(), listen(), … 

• Highly complex and concurrent subsystem 
– Composed from many (pluggable) elements 

– Socket layer, network device drivers, protocols, … 

• Typical paths ‘up’ and ‘down’: packets come in, go out
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Network-stack work flows 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Applications send, 
receive, await data 

on sockets

Data/packets 
processed;  

dispatched via 
producer-
consumer 

relationships

Packets go in and 
out of network 

interfaces

The work: adding/removing headers, calculating checksums, fragmentation/
defragmentation, segment reassembly, reordering, flow control, etc.



Case study: the network stack (2)

• First, make it safe without the Giant lock 
– Lots of data structures require locks 

– Condition signaling already exists but will be added to 

– Establish key work flows, lock orders 

• Then, make it fast 
– Especially locking primitives themselves 

– Increase locking granularity where there is contention 

• As hardware becomes more parallel, identify and 
exploit further concurrency opportunities 
– Add more threads, distribute more work
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What to lock and how?
• Fine-grained locking overhead vs. contention 

– Some contention is inherent: necessary communication 

– Some contention is false sharing: side effect of structures 

• Principle: lock data, not code (i.e., not critical sections) 
– Key structures: NICs, sockets, work queues, … 

– Independent structure instances often have own locks 

• Horizontal vs. vertical parallelism 
– H: Different locks across connections (e.g., TCP1 vs. TCP2) 

– H: Different locks within a layer (e.g., recv. vs. send buffers) 

– V: Different locks at different layers (e.g., socket vs. TCP) 

• Things not to lock: packets in flight - mbufs (‘work’)
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Example: Universal Memory Allocator 
(UMA)

• Key kernel service 

• Slab allocator 
– (Bonwick 1994) 

• Per-CPU caches 
– Individually locked 

– Amortise (or avoid) global 
lock contention 

• Some allocation patterns 
use only per-CPU caches 

• Others require dipping into 
the global pool
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Work distribution

• Packets (mbufs) are units of work 
• Parallel work requires distribution to threads 
• Must keep packets ordered – or TCP gets cranky! 
• Implication: strong per-flow serialization 
– I.e., no generalized producer-consumer/round robin 
– Various strategies to keep work ordered; e.g.: 

• Process in a single thread 
• Multiple threads in a ‘pipeline’ linked by a queue 

– Misordering OK between flows, just not within them 

• Establish flow-CPU affinity can both order 
processing and utilize caches well
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Scalability 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?

Performance increase may 
reduce due to contention, 

which wastes resources

Key idea: 
speedup 

As we add more 
parallelism, we would like 
the system to get faster.

Key idea: 
performance collapse 

Sometimes parallelism 
hurts performance more 
than it helps due to work-

distribution overheads, 
contention.



Longer-term strategies

• Hardware change motivates continuing work 
– Optimize inevitable contention 

– Lockless primitives 

– Read-mostly locks, read-copy-update (RCU) 

– Per-CPU data structures 

– Better distribute work to more threads to utilise growing 
core/hyperthread count 

• Optimise for locality, not just contention: cache, 
NUMA, and I/O affinity 
– If communication is essential, contention is inevitable
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Conclusions

• FreeBSD employs many of C&DS techniques 
– Multithreading within (and over) the kernel 
– Mutual exclusion, condition synchronization 
– Partial lock order with dynamic checking 
– Producer-consumer, lockless primitives 
– Also Write-Ahead Logging (WAL) in filesystems, … 

• Real-world systems are really complicated 
– Composition is not straightforward 
– Parallelism performance wins are a lot of work 
– Hardware continues to evolve, placing pressure on 

software systems to utilise new parallelism 

• Next: Distributed Systems!
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