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Reminder from last time

• Liveness properties 

• Deadlock (requirements; resource allocation 
graphs; detection; prevention; recovery) 

• The Dining Philosophers 

• Priority inversion 

• Priority inheritance
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Concurrency is so hard! 

If only there were some way that programmers could 
accomplish useful concurrent computation without… 

(1) the hassles of shared memory concurrency 
(2) blocking synchronisation primitives



This time

• Concurrency without shared data 
– Use same hardware+OS primitives, but expose higher-level 

models via software libraries or programming languages 

• Active objects 
– Ada 

• Message passing; the actor model 
– Occam, Erlang 

• Composite operations 
– Transactions, ACID properties 
– Isolation and serialisability 

• History graphs; good (and bad) schedules
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This material has significant overlap with databases and distributed 
systems – but is presented here from a concurrency perspective



Concurrency without shared data

• The examples so far have involved threads which 
can arbitrarily read & write shared data 
– A key need for mutual exclusion has been to avoid race-

conditions (i.e. ‘collisions’ on access to this data) 

• An alternative approach is to have only one thread 
access any particular piece of data 
– Different threads can own distinct chunks of data 

• Retain concurrency by allowing other threads to ask 
for operations to be done on their behalf 
– This ‘asking’ of course needs to be concurrency safe…
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Fundamental design dimension: concurrent access via 
shared data vs. concurrent access via explicit communication



Example: Active Objects

• A monitor with an associated server thread 
– Exports an entry for each operation it provides 

– Other (client) threads ‘call’ methods 

– Call returns when operation is done 

• All complexity bundled up in an active object 
–Must manage mutual exclusion where needed 

–Must queue requests from multiple threads 

–May need to delay requests pending conditions 
• E.g. if a producer wants to insert but buffer is full
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Observation: code running in exactly one thread, and the data 
that only it accesses, effectively experience mutual exclusion



Producer-Consumer in Ada
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task-body ProducerConsumer is  
  ... 
  loop  
    SELECT  
      when count < buffer-size 
        ACCEPT insert(item) do 
          // insert item into buffer 
        end; 
      count++;  
    or 
      when count > 0 
        ACCEPT consume(item) do 
          // remove item from buffer 
        end; 
      count--; 
    end SELECT 
  end loop

Non-deterministic choice 
between a set of guarded 

ACCEPT clauses

Clause is active only when 
condition is true

ACCEPT dequeues a client 
request and performs the 

operation

Single thread: no need for 
mutual exclusion



Message passing
• Dynamic invocations between threads can be thought 

of as general message passing 
– Thread X can send a message to Thread Y 

– Contents of message can be arbitrary data 

• Can be used to build Remote Procedure Call (RPC) 
– Message includes name of operation to invoke along with as 

any parameters  

– Receiving thread checks operation name, and invokes the 
relevant code 

– Return value(s) sent back as another message 

• (Called Remote Method Invocation (RMI) in Java)
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We will discuss message passing and RPC in detail next term; a taster 
now, as these ideas apply to local, not just distributed, systems.



Message passing semantics

• Can conceptually view sending a message to be 
similar to sending an email:  
1. Sender prepares contents locally, and then sends 
2. System eventually delivers a copy to receiver 
3. Receiver checks for messages 

• In this model, sending is asynchronous: 
– Sender doesn’t need to wait for message delivery 
– (but they may, of course, choose to wait for a reply) 

• Receiving is also asynchronous:  
– messages first delivered to a mailbox, later retrieved 
– message is a copy of the data (i.e. no actual sharing)
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Message passing advantages

• Copy semantics avoid race conditions 
– At least directly on the data 

• Flexible API: e.g.  
– Batching: can send K messages before waiting; and can 

similarly batch a set of replies 
– Scheduling: can choose when to receive, who to receive 

from, and which messages to prioritize 
– Broadcast: can send messages to many recipients 

• Works both within and between machines 
– i.e. same design works for distributed systems 

• Explicitly used as basis of some languages…
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Example: occam
• Language based on Hoare’s Communicating Sequential 

Processes (CSP) formalism 
– A “process algebra” for modeling concurrency 

• Processes synchronously communicate via channels
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<channel> ? <variable>    // an input process 
<channel> ! <expression>  // an output process

• Build complex processes via SEQ, PAR and ALT, e.g.
ALT  
  count1 < 100 & c1 ? Data 
    SEQ                       
      count1:= count1 + 1 
      merged ! data  
  count2 < 100 & c2 ? Data 
    SEQ 
      count2:= count2 + 1 
      merged ! data



Example: Erlang
• Functional programming language designed in mid 80’s, 

made popular more recently 
• Implements the actor model 
• Actors: lightweight language-level processes 

– Can spawn() new processes very cheaply 

• Single-assignment: each variable is assigned only once, 
and thereafter is immutable 
– But values can be sent to other processes 

• Guarded receives (as in Ada, occam) 
– Messages delivered in order to local mailbox 

• Message/actor-oriented model allows run-time restart or 
replacement of modules to  limit downtime

=11

Proponents of Erlang argue that lack of synchronous message 
passing prevents deadlock. Why might this claim be misleading?



Producer-Consumer in Erlang
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-module(producerconsumer). 
-export([start/0]). 

start() ->  
  spawn(fun() -> loop() end). 

loop() ->   
  receive  
    {produce, item } -> 
      enter_item(item),  
      loop();  
    {consume, Pid } -> 
      Pid ! remove_item(),  
      loop(); 
    stop -> 
      ok 
end.

Invoking start() will spawn 
an actor…

receive matches 
messages to patterns

explicit tail-recursion is 
required to keep the 

actor alive…

… so if send ‘stop’, 
process will terminate.



Message passing: summary

• A way of sidestepping (at least some of) the issues 
with shared memory concurrency 
– No direct access to data => no data race conditions 

– Threads choose actions based on message 

• Explicit message passing can be awkward 
– Many weird and wonderful languages ;-) 

• Can also use with traditional languages, e.g.  
– Transparent messaging via RPC/RMI 

– Scala, Kilim (actors on Java, or for Java), …
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We have eliminated some of the issues associated with shared memory, but 
these are still concurrent programs subject to deadlock, livelock, etc.



Composite operations

• So far have seen various ways to ensure safe concurrent 
access to a single object 
– e.g. monitors, active objects, message passing 

• More generally want to handle composite operations: 
– i.e. build systems which act on multiple distinct objects 

• As an example, imagine an internal bank system which 
allows account access via three method calls: 
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int amount = getBalance(account); 
bool credit(account, amount); 
bool debit(account, amount);

• If each is thread-safe, is this sufficient? 

• Or are we going to get into trouble???



Composite operations

• Consider two concurrently executing client threads: 
– One wishes to transfer 100 quid from the savings account to 

the current account  
– The other wishes to learn the combined balance
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// thread 1: transfer 100 
// from savings->current 
  debit(savings, 100);  
  credit(current, 100);

// thread 2: check balance 
  s = getBalance(savings); 
  c = getBalance(current); 
  tot = s + c;

• If we’re unlucky then: 

– Thread 2 could see balance that’s too small 
– Thread 1 could crash after doing debit() – ouch! 

– Server thread could crash at any point – ouch?



Problems with composite operations 

Two separate kinds of problem here: 
1. Insufficient Isolation 
– Individual operations being atomic is not enough 

– E.g., want the credit & debit making up the transfer to 
happen as one operation 

– Could fix this particular example with a new transfer() 
method, but not very general ... 

2. Fault Tolerance 
– In the real-word, programs (or systems) can fail 

– Need to make sure we can recover safely
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Transactions

• Want programmer to be able to specify that a set of 
operations should happen atomically, e.g. 
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// transfer amt from A -> B 
transaction { 
 if (getBalance(A) > amt) {  
    debit(A, amt);  
    credit(B, amt); 
    return true;  
  } else return false; 
}

• A transaction either executes correctly (in which case we say it commits), or has 
no effect at all (i.e. it aborts) 

• regardless of other transactions, or system crashes! 



ACID Properties
Want committed transactions to satisfy four properties: 
• Atomicity: either all or none of the transaction’s operations are 

performed  
– Programmer doesn’t need to worry about clean up 

• Consistency: a transaction transforms the system from one 
consistent state to another – i.e., preserves invariants 
– Programmer must ensure e.g. conservation of money 

• Isolation: each transaction executes [as if] isolated from the 
concurrent effects of others 
– Can ignore concurrent transactions (or partial updates) 

• Durability: the effects of committed transactions survive 
subsequent system failures 
– If system reports success, must ensure this is recorded on disk
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This is a different use of the word “atomic” than previously; 
we will just have to live with that, unfortunately.



ACID Properties

Can group these into two categories 
1. Atomicity & Durability deal with making sure the 

system is safe even across failures 
– (A) No partially complete txactions 

– (D) Transactions previously reported as committed don’t 
disappear, even after a system crash 

2. Consistency & Isolation ensure correct behavior 
even in the face of concurrency 
– (C) Can always code as if invariants in place 

– (I) Concurrently executing transactions are indivisible
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Isolation

• To ensure a transaction executes in isolation could 
just have a server-wide lock… simple!
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// transfer amt from A -> B 
transaction {  // acquire server lock 
 if (getBalance(A) > amt) {  
    debit(A, amt);  
    credit(B, amt); 
    return true;  
  } else return false; 
}              // release server lock

• But doesn’t allow any concurrency… 

• And doesn’t handle mid-transaction failure 
(e.g. what if we are unable to credit the amount to B?)



Isolation – Serialisability

• The idea of executing transactions serially (one after 
the other) is a useful model for the programmer: 
– To improve performance, transaction systems execute many 

transactions concurrently 
– But programmers must only observe behaviours consistent 

with a possible serial execution: serialisability 

• Consider two transactions, T1 and T2
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T2 transaction { 
  debit(S, 100);  
  credit(C, 100); 
  return true; 
}

• If assume individual operations are atomic, then there are six possible ways the operations 
can interleave… 

T1 transaction { 
  s = getBalance(S); 
  c = getBalance(C); 
  return (s + c); 
}



Isolation – serialisability

• First case is a serial execution and hence serialisable
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• Second case is not serial as transactions are interleaved 
– Its results are identical to serially executing T2 and then T1 
– The schedule is therefore serialisable 

• Informally: it is serialisable because we have only swapped the 
execution orders of non-conflicting operations 
– All of T1’s operations on any objects happen after T2’s update



Isolation – serialisability

• This execution is neither serial nor serialisable 
– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable 
– T1 sees inconsistent values: new S, old C 

• Both orderings swap conflicting operations such that 
there is no matching serial execution



Conflict Serialisability

• There are many flavours of serialisability 

• Conflict serialisability is satisfied for a schedule S if 
(and only if): 
– It contains the same set of operations as some serial 

schedule T; and  

– All conflicting operations are ordered the same way as in 
T 

• Define conflicting as non-commutative 
– I.e., differences are permitted between the execution 

ordering and T, but they can’t have a visible impact
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History graphs

• Can construct a graph for any execution schedule: 
– Nodes represent individual operations, and  
– Arrows represent “happens-before” relations  

• Insert edges between operations within a given 
transaction in program order (i.e., as written) 

• Insert edges between conflicting operations 
operating on the same objects, ordered by 
execution schedule 
– e.g. A.credit(), A.debit() commute [don’t conflict] 
– A.credit() and A.addInterest() do conflict 

• NB: Graphs represent particular execution 
schedules not sets of allowable schedules
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History graphs: good schedules

• Same schedules as before (both ok) 
• Can easily see that everything in T1 either happens 

before everything in T2, or vice versa 
– Hence schedule can be serialised
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



History graphs: bad schedules

• Cycles indicate that schedules are bad :-( 
• Neither transaction strictly “happened before” the other: 

– Arrows from T1 to T2 mean “T1 must happen before T2” 
– But arrows from T2 to T1 => “T2 must happen before T1” 
– Notice the cycle in the graph! 

• Can’t both be true ! schedules are non-serialisable
=27

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



Isolation – serialisability

• This execution is neither serial nor serialisable 
– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable 
– T1 sees inconsistent values: new S, old C 

• Both orderings swap conflicting operations such that 
there is no matching serial execution

The transaction system must ensure that, regardless of 
any actual concurrent execution used to improve 

performance, only results consistent with serialisable 
orderings are visible to the transaction programmer. 

Same as earlier slide.



Summary + next time

• Concurrency without shared data (Active Objects) 
• Message passing, actor model (Occam, Erlang) 
• Composite operations; transactions; ACID properties 
• Isolation and serialisability 
• History graphs; good (and bad) schedules 

• Next time – more on transactions: 
– Isolation vs. strict isolation; enforcing isolation 
– Two-phase locking; rollback 
– Timestamp ordering (TSO); optimistic concurrency control (OCC) 
– Isolation and concurrency summary
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