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The Deadlock Lecture



Reminder from last time

• Multi-Reader Single-Writer (MRSW) locks 

• Alternatives to semaphores/locks: 
– Conditional critical regions (CCRs) 

–Monitors 

– Condition variables 

– Signal-and-wait vs. signal-and-continue semantics 

• Concurrency primitives in practice 

• Concurrency primitives wrap-up

>2



From last time: primitives summary

• Concurrent systems require means to ensure: 
– Safety (mutual exclusion in critical sections), and 

– Progress (condition synchronization) 

• Spinlocks (busy wait); semaphores; CCRs and monitors 
– Hardware primitives for synchronisation 

– Signal-and-Wait vs. Signal-and-Continue 

• Many of these are still used in practice 
– Subtle minor differences can be dangerous 

– Require care to avoid bugs – e.g., “lost wakeups” 

• More detail on implementation in our case study
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Progress is particularly difficult, in large part because of 
primitives themselves, which is the topic of this lecture



This time

• Liveness properties 

• Deadlock 
– Requirements 

– Resource allocation graphs and detection 

– Prevention – the Dining Philosophers Problem – and 
recovery 

• Thread priority and the scheduling problem 

• Priority inversion 

• Priority inheritance

>4



Liveness properties

• From a theoretical viewpoint must ensure that we 
eventually make progress, i.e. want to avoid 
– Deadlock (threads sleep waiting for one another), and 

– Livelock (threads execute but make no progress) 

• Practically speaking, also want good performance 
– No starvation (single thread must make progress) 

– (more generally may aim for fairness)  

– Minimality (no unnecessary waiting or signaling) 

• The properties are often at odds with safety :-(
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Deadlock

• Set of k threads go asleep and cannot wake up 
– each can only be woken by another who’s asleep! 

• Real-life example (Kansas, 1920s):  
“When two trains approach each other at a crossing, both shall 
come to a full stop and neither shall start up again until the other 
has gone.” 

• In concurrent programs, tends to involve the taking of 
mutual exclusion locks, e.g.:
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// thread 2 
lock(Y); 
  ...  
  if(<cond>) { 
    lock(X);  
    ...

// thread 1 
lock(X); 
 ... 
 lock(Y);  
 // critical section     
 unlock(Y); 

Risk of deadlock if both 
threads get here 
simultaneously



Requirements for deadlock

• Like all concurrency bugs, deadlock may be rare (e.g. 
imagine <cond> is mostly false) 

• In practice there are four necessary conditions 
1. Mutual Exclusion: resources have bounded #owners 
2. Hold-and-Wait: can acquire Rx and wait for Ry 
3. No Preemption: keep Rx until you release it 
4. Circular Wait: cyclic dependency 

• Require all four to be true to get deadlock 
– But most modern systems always satisfy 1, 2, 3 

• Tempting to think that his applies only to locks … 
– But it also can occur for many other resource classes whose 

allocation meets conditions: memory, CPU time, …
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Resource allocation graphs
• Graphical way of thinking about deadlock 
– Circles are threads (or processes) 
– Boxes are single-owner resources (e.g. mutexes) 
– Edges show lock hold and wait conditions 
– A cycle means we (will) have deadlock
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T1 T3T2

Ra Rb Rc Rd

Thick line R->T means 
T holds resource R

Dashed line T->R 
T wants resource R

Deadlock!



Resource allocation graphs

• Can generalize to resources which can have K 
distinct users (c/f semaphores) 

• Absence of a cycle means no deadlock… 
– but presence only means may have deadlock, e.g.
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Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource in 
quantity 1

Resource in quantity 2
No deadlock: If T1 releases Rb, then 
T3’s acquire of Rb can be satisfied



Dealing with deadlock

1. Ensure it never happens 
– Deadlock prevention  

– Deadlock avoidance (Banker’s Algorithm) 

2. Let it happen, but recover 
– Deadlock detection & recovery 

3. Ignore it!  
– The so-called “Ostrich Algorithm” ;-) 
– “Have you tried turning it off and back on again?” 
– Very widely used in practice! 
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Deadlock prevention
1. Mutual Exclusion: resources have bounded #owners 
– Could always allow access… but probably unsafe ;-( 
– However can help e.g. by using MRSW locks  

2. Hold-and-Wait: can get Rx and wait for Ry 
– Require that we request all resources simultaneously; deny 

the request if any resource is not available now 
– But must know maximal resource set in advance = hard? 

3. No Preemption: keep Rx until you release it 
– Stealing a resource generally unsafe (but see later) 

4. Circular Wait: cyclic dependency 
– Impose a partial order on resource acquisition 
– Can work: but requires programmer discipline 
– Lock order enforcement rules used in many systems e.g., 

FreeBSD WITNESS – static and dynamic orders checked >11



Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…
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while(true) {        // philosopher i 
   think(); 
   wait(fork[i]); 
   wait(fork[(i+1) % 5]; 
   eat();  
   signal(fork[i]); 
   signal(fork[(i+1) % 5]; 
}

Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘left’ fork 

• Q: what happens if we swap order of signal()s?  



Example: Dining Philosophers

• (one) Solution: always take lower fork first 
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while(true) {        // philosopher i  
   think(); 
   first = MIN(i, (i+1) % 5); 
   second = MAX(i, (i+1) % 5);  
   wait(fork[first]); 
   wait(fork[second]; 
   eat();  
   signal(fork[second]); 
   signal(fork[first]); 
}

Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1, 2, 3 are held, 4 will not acquire final fork



Deadlock avoidance

• Prevention aims for deadlock-free “by design” 
• Deadlock avoidance is a dynamic scheme:  
– Assumption: We know maximum possible resource 

allocation for every process / thread 
– Assumption: A process granted all desired resources will 

complete, terminate, and free its resources 
– Track actual allocations in real-time 
– When a request is made, only grant  if guaranteed no 

deadlock even if all others take max resources 

• E.g. Banker’s Algorithm – see textbooks  
– Not really useful in general as need a priori knowledge of 

#processes/threads, and their max resource needs
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Deadlock detection

• Deadlock detection is a dynamic scheme that determines if 
deadlock exists 
– Principle: At a some moment in execution, examine resource 

allocations and graph 
– Determine if there is at least one plausible sequence of events in 

which all threads could make progress 
– I.e., check that we are not in an unsafe state in which no further 

sequences can complete without deadlock 

• When only a single instance of each resource, can explicitly 
check for a cycle: 
– Keep track which object each thread is waiting for 
– From time to time, iterate over all threads and build the resource 

allocation graph 
– Run a cycle detection algorithm on graph O(n2)  

• More difficult if have multi-instance resources
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Deadlock detection

• Have m distinct resources and n threads 

• V[0:m-1], vector of currently available resources 

• A, the m x n resource allocation matrix, and  
R, the m x n (outstanding) request matrix 

– Ai,j is the number of objects of type j owned by i 

– Ri,j is the number of objects of type j needed by i 

• Proceed by successively marking rows in A for 
threads that are not part of a deadlocked set  

– If we cannot mark all rows of A we have deadlock
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Optimistic assumption: if we can fulfill thread i’s request Ri, then it will run to 

completion and release held resources for other threads to allocate.



Deadlock detection algorithm

• Mark all zero rows of A (since a thread holding zero 
resources can’t be part of deadlock set) 

• Initialize a working vector W[0:m-1] to V 
– W[] describes any free resources at start, plus any 

resources released by a hypothesized sequence of 
satisfied threads freeing and terminating  

• Select an unmarked row i of A s.t. R[i] <= W 
– (i.e. find a thread who’s request can be satisfied) 

– Set W = W + A[i]; mark row i, and repeat 

• Terminate when no such row can be found 
– Unmarked rows (if any) are in the deadlock set
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Deadlock detection example 1

• Five threads and three resources (none free)
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     X Y Z     X Y Z     X Y Z  
T0   0 1 0     0 0 0     0 0 0  
T1   2 0 0     2 0 2  
T2   3 0 3     0 0 0  
T3   2 1 1     1 0 0  
T4   0 0 1     0 0 2

       A         R         V

• Find an unmarked row, mark it, and update W 

• T0, T2, T3, T4, T1 

  W

X Y Z 
0 0 0 
X Y Z 
0 1 0 
X Y Z 
3 1 3 
X Y Z 
5 2 4 
X Y Z 
5 2 5 
X Y Z 
7 2 5 

At the end of the algorithm, all rows are marked: 
the deadlock set is empty.



Deadlock detection example 2

• Five threads and three resources (none free)
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     X Y Z     X Y Z     X Y Z  
T0   0 1 0     0 0 0     0 0 0  
T1   2 0 0     2 0 2  
T2   3 0 3     0 0 1  
T3   2 1 1     1 0 0  
T4   0 0 1     0 0 2

       A         R         V

• One minor tweak to T2’s request vector…

  W

X Y Z 
0 0 0 
X Y Z 
0 1 0 

Cannot find a row in 
R <= W!!

Now wants one unit 
of  resource Z

Threads T1, T2, T3 & T4 
in deadlock set



Deadlock recovery

• What can we do when we detect deadlock? 
• Simplest solution: kill something! 
– Ideally someone in the deadlock set ;-) 

• Brutal, and not guaranteed to work  
– But sometimes the best (only) we can do  
– E.g. Linux OOM killer (better than system reboot?) 
– … Or not – often kills the X server!  

• Could also resume from checkpoint 
– Assuming we have one 

• In practice computer systems seldom detect or 
recover from deadlock: rely on programmer
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Note: “kill someone” breaks the no preemption precondition for deadlock.



Livelock

• Deadlock is at least ‘easy’ to detect by humans 
– System basically blocks & stops making any progress 

• Livelock is less easy to detect as threads continue to 
run… but do nothing useful 

• Often occurs from trying to be clever, e.g.:
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// thread 2 
lock(Y); 
  ...  
  while(!trylock(X)) { 
    unlock(Y);  
    yield(); 
    lock(Y); 
  } 
  ...

// thread 1 
lock(X); 
 ... 
 while (!trylock(Y)) { 
   unlock(X);  
   yield(); 
   lock(X);  
 }  
 ...

Livelock if both threads 
get here 

simultaneously



Scheduling and thread priorities
• Which thread should run when >1 runnable? E.g., if: 

– A thread releases a contended lock and continues to run 

– CV broadcast wakes up several waiting threads 

• Many possible scheduling policies; e.g., 
– Round robin – rotate between threads to ensure progress 

– Fixed priorities – assign priorities to threads, schedule 
highest– e.g., real-time > interactive >  bulk > idle-time 

– Dynamic priorities – adjust priorities to balance goals – e.g., 
boost priority after I/O to improve interactivity 

– Gang scheduling – schedule for patterns such as P-C 

– Affinity – schedule for efficient resource use (e.g., caches) 

• Goals: latency vs. throughput, energy, “fairness”, … 
– NB: These competing goals cannot generally all be satisfied
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Priority inversion

• Another liveness problem… 
– Due to interaction between locking and scheduler 

• Consider three threads: T1, T2, T3 
– T1 is high priority, T2 medium priority, T3 is low 
– T3 gets lucky and acquires lock L…  
– … T1 preempts T3 and sleeps waiting for L… 
– … then T2 runs, preventing T3 from releasing L! 
– Priority inversion: despite having higher priority and no 

shared lock, T1 waits for lower priority thread T2 

• This is not deadlock or livelock 
– But not desirable (particularly in real-time systems)! 
– Disabled Mars Pathfinder robot for several months
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Priority inheritance

• Typical solution is priority inheritance:  
– Temporarily boost priority of lock holder to that of the 

highest waiting thread 
– T3 would have run with T1’s priority while holding a lock 

T1 was waiting for – preventing T2 from preempting T3 
– Concrete benefits to system interactivity  
– (some RT systems (like VxWorks) allow you specify on a 

per-mutex basis [to Rover’s detriment ;-]) 

• Windows “solution” 
– Check if any ready thread hasn’t run for 300 ticks 
– If so, double its quantum and boost its priority to 15 

– ☺
>24



Problems with priority inheritance
• Hard to reason about resulting behaviour: heuristic 

• Works for locks 
– More complex than it appears: propagation might need to be 

propagated across chains containing multiple locks 

– How might we handle reader-writer locks? 

• How about condition synchronisation, res. allocation? 
– With locks, we know what thread holds the lock 

– Semaphores do not record which thread might issue a signal 
or release an allocated resource 

– Must compose across multiple waiting types: e.g., “waiting for 
a signal while holding a lock” 

• Where possible, avoid the need for priority inheritance 
– Avoid sharing between threads of differing priorities >25



Summary + next time

• Liveness properties 
• Deadlock 

– Requirements 
– Resource allocation graphs and detection 
– Prevention – the Dining Philosophers Problem – and recovery 

• Thread priority and the scheduling problem 
• Priority inversion 
• Priority inheritance 

• Next time: 
– Concurrency without shared data 
– Active objects; message passing 
– Composite operations; transactions 
– ACID properties; isolation; serialisability >26


