
Concurrent systems  
Lecture 4: Deadlock, Livelock, and Priority Inversion

Dr Anil Madhavapeddy

>1

The Deadlock Lecture

Reminder from last time

• Multi-Reader Single-Writer (MRSW) locks

• Alternatives to semaphores/locks:
– Conditional critical regions (CCRs)

–Monitors

– Condition variables

– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice

• Concurrency primitives wrap-up

>2

From last time: primitives summary

• Concurrent systems require means to ensure:
– Safety (mutual exclusion in critical sections), and

– Progress (condition synchronization)

• Spinlocks (busy wait); semaphores; CCRs and monitors
– Hardware primitives for synchronisation

– Signal-and-Wait vs. Signal-and-Continue

• Many of these are still used in practice
– Subtle minor differences can be dangerous

– Require care to avoid bugs – e.g., “lost wakeups”

• More detail on implementation in our case study

>3

Progress is particularly difficult, in large part because of
primitives themselves, which is the topic of this lecture

This time

• Liveness properties

• Deadlock
– Requirements

– Resource allocation graphs and detection

– Prevention – the Dining Philosophers Problem – and
recovery

• Thread priority and the scheduling problem

• Priority inversion

• Priority inheritance

>4

Liveness properties

• From a theoretical viewpoint must ensure that we
eventually make progress, i.e. want to avoid
– Deadlock (threads sleep waiting for one another), and

– Livelock (threads execute but make no progress)

• Practically speaking, also want good performance
– No starvation (single thread must make progress)

– (more generally may aim for fairness)

– Minimality (no unnecessary waiting or signaling)

• The properties are often at odds with safety :-(

>5

Deadlock

• Set of k threads go asleep and cannot wake up
– each can only be woken by another who’s asleep!

• Real-life example (Kansas, 1920s):
“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone.”

• In concurrent programs, tends to involve the taking of
mutual exclusion locks, e.g.:

>6

// thread 2
lock(Y);
 ...
 if(<cond>) {
 lock(X);
 ...

// thread 1
lock(X);
 ...
 lock(Y);
 // critical section
 unlock(Y);

Risk of deadlock if both
threads get here
simultaneously

Requirements for deadlock

• Like all concurrency bugs, deadlock may be rare (e.g.
imagine <cond> is mostly false)

• In practice there are four necessary conditions
1. Mutual Exclusion: resources have bounded #owners
2. Hold-and-Wait: can acquire Rx and wait for Ry
3. No Preemption: keep Rx until you release it
4. Circular Wait: cyclic dependency

• Require all four to be true to get deadlock
– But most modern systems always satisfy 1, 2, 3

• Tempting to think that his applies only to locks …
– But it also can occur for many other resource classes whose

allocation meets conditions: memory, CPU time, …

>7

Resource allocation graphs
• Graphical way of thinking about deadlock
– Circles are threads (or processes)
– Boxes are single-owner resources (e.g. mutexes)
– Edges show lock hold and wait conditions
– A cycle means we (will) have deadlock

>8

T1 T3T2

Ra Rb Rc Rd

Thick line R->T means
T holds resource R

Dashed line T->R
T wants resource R

Deadlock!

Resource allocation graphs

• Can generalize to resources which can have K
distinct users (c/f semaphores)

• Absence of a cycle means no deadlock…
– but presence only means may have deadlock, e.g.

>9

Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource in
quantity 1

Resource in quantity 2
No deadlock: If T1 releases Rb, then
T3’s acquire of Rb can be satisfied

Dealing with deadlock

1. Ensure it never happens
– Deadlock prevention

– Deadlock avoidance (Banker’s Algorithm)

2. Let it happen, but recover
– Deadlock detection & recovery

3. Ignore it!
– The so-called “Ostrich Algorithm” ;-)
– “Have you tried turning it off and back on again?”
– Very widely used in practice!

>10

Deadlock prevention
1. Mutual Exclusion: resources have bounded #owners
– Could always allow access… but probably unsafe ;-(
– However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry
– Require that we request all resources simultaneously; deny

the request if any resource is not available now
– But must know maximal resource set in advance = hard?

3. No Preemption: keep Rx until you release it
– Stealing a resource generally unsafe (but see later)

4. Circular Wait: cyclic dependency
– Impose a partial order on resource acquisition
– Can work: but requires programmer discipline
– Lock order enforcement rules used in many systems e.g.,

FreeBSD WITNESS – static and dynamic orders checked >11

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

>12

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘left’ fork

• Q: what happens if we swap order of signal()s?

Example: Dining Philosophers

• (one) Solution: always take lower fork first

>13

while(true) { // philosopher i
 think();
 first = MIN(i, (i+1) % 5);
 second = MAX(i, (i+1) % 5);
 wait(fork[first]);
 wait(fork[second];
 eat();
 signal(fork[second]);
 signal(fork[first]);
}

Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1, 2, 3 are held, 4 will not acquire final fork

Deadlock avoidance

• Prevention aims for deadlock-free “by design”
• Deadlock avoidance is a dynamic scheme:
– Assumption: We know maximum possible resource

allocation for every process / thread
– Assumption: A process granted all desired resources will

complete, terminate, and free its resources
– Track actual allocations in real-time
– When a request is made, only grant if guaranteed no

deadlock even if all others take max resources

• E.g. Banker’s Algorithm – see textbooks
– Not really useful in general as need a priori knowledge of

#processes/threads, and their max resource needs
>14

Deadlock detection

• Deadlock detection is a dynamic scheme that determines if
deadlock exists
– Principle: At a some moment in execution, examine resource

allocations and graph
– Determine if there is at least one plausible sequence of events in

which all threads could make progress
– I.e., check that we are not in an unsafe state in which no further

sequences can complete without deadlock

• When only a single instance of each resource, can explicitly
check for a cycle:
– Keep track which object each thread is waiting for
– From time to time, iterate over all threads and build the resource

allocation graph
– Run a cycle detection algorithm on graph O(n2)

• More difficult if have multi-instance resources
>15

Deadlock detection

• Have m distinct resources and n threads

• V[0:m-1], vector of currently available resources

• A, the m x n resource allocation matrix, and  
R, the m x n (outstanding) request matrix

– Ai,j is the number of objects of type j owned by i

– Ri,j is the number of objects of type j needed by i

• Proceed by successively marking rows in A for
threads that are not part of a deadlocked set

– If we cannot mark all rows of A we have deadlock

>16

Optimistic assumption: if we can fulfill thread i’s request Ri, then it will run to

completion and release held resources for other threads to allocate.

Deadlock detection algorithm

• Mark all zero rows of A (since a thread holding zero
resources can’t be part of deadlock set)

• Initialize a working vector W[0:m-1] to V
– W[] describes any free resources at start, plus any

resources released by a hypothesized sequence of
satisfied threads freeing and terminating

• Select an unmarked row i of A s.t. R[i] <= W
– (i.e. find a thread who’s request can be satisfied)

– Set W = W + A[i]; mark row i, and repeat

• Terminate when no such row can be found
– Unmarked rows (if any) are in the deadlock set

>17

Deadlock detection example 1

• Five threads and three resources (none free)

>18

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V

• Find an unmarked row, mark it, and update W

• T0, T2, T3, T4, T1

 W

X Y Z
0 0 0
X Y Z
0 1 0
X Y Z
3 1 3
X Y Z
5 2 4
X Y Z
5 2 5
X Y Z
7 2 5

At the end of the algorithm, all rows are marked:
the deadlock set is empty.

Deadlock detection example 2

• Five threads and three resources (none free)

>19

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 1
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V

• One minor tweak to T2’s request vector…

 W

X Y Z
0 0 0
X Y Z
0 1 0

Cannot find a row in
R <= W!!

Now wants one unit
of resource Z

Threads T1, T2, T3 & T4
in deadlock set

Deadlock recovery

• What can we do when we detect deadlock?
• Simplest solution: kill something!
– Ideally someone in the deadlock set ;-)

• Brutal, and not guaranteed to work
– But sometimes the best (only) we can do
– E.g. Linux OOM killer (better than system reboot?)
– … Or not – often kills the X server!

• Could also resume from checkpoint
– Assuming we have one

• In practice computer systems seldom detect or
recover from deadlock: rely on programmer

>20
Note: “kill someone” breaks the no preemption precondition for deadlock.

Livelock

• Deadlock is at least ‘easy’ to detect by humans
– System basically blocks & stops making any progress

• Livelock is less easy to detect as threads continue to
run… but do nothing useful

• Often occurs from trying to be clever, e.g.:

>21

// thread 2
lock(Y);
 ...
 while(!trylock(X)) {
 unlock(Y);
 yield();
 lock(Y);
 }
 ...

// thread 1
lock(X);
 ...
 while (!trylock(Y)) {
 unlock(X);
 yield();
 lock(X);
 }
 ...

Livelock if both threads
get here

simultaneously

Scheduling and thread priorities
• Which thread should run when >1 runnable? E.g., if:

– A thread releases a contended lock and continues to run

– CV broadcast wakes up several waiting threads

• Many possible scheduling policies; e.g.,
– Round robin – rotate between threads to ensure progress

– Fixed priorities – assign priorities to threads, schedule
highest– e.g., real-time > interactive > bulk > idle-time

– Dynamic priorities – adjust priorities to balance goals – e.g.,
boost priority after I/O to improve interactivity

– Gang scheduling – schedule for patterns such as P-C

– Affinity – schedule for efficient resource use (e.g., caches)

• Goals: latency vs. throughput, energy, “fairness”, …
– NB: These competing goals cannot generally all be satisfied

>22

Priority inversion

• Another liveness problem…
– Due to interaction between locking and scheduler

• Consider three threads: T1, T2, T3
– T1 is high priority, T2 medium priority, T3 is low
– T3 gets lucky and acquires lock L…
– … T1 preempts T3 and sleeps waiting for L…
– … then T2 runs, preventing T3 from releasing L!
– Priority inversion: despite having higher priority and no

shared lock, T1 waits for lower priority thread T2

• This is not deadlock or livelock
– But not desirable (particularly in real-time systems)!
– Disabled Mars Pathfinder robot for several months

>23

Priority inheritance

• Typical solution is priority inheritance:
– Temporarily boost priority of lock holder to that of the

highest waiting thread
– T3 would have run with T1’s priority while holding a lock

T1 was waiting for – preventing T2 from preempting T3
– Concrete benefits to system interactivity
– (some RT systems (like VxWorks) allow you specify on a

per-mutex basis [to Rover’s detriment ;-])

• Windows “solution”
– Check if any ready thread hasn’t run for 300 ticks
– If so, double its quantum and boost its priority to 15

– ☺
>24

Problems with priority inheritance
• Hard to reason about resulting behaviour: heuristic

• Works for locks
– More complex than it appears: propagation might need to be

propagated across chains containing multiple locks

– How might we handle reader-writer locks?

• How about condition synchronisation, res. allocation?
– With locks, we know what thread holds the lock

– Semaphores do not record which thread might issue a signal
or release an allocated resource

– Must compose across multiple waiting types: e.g., “waiting for
a signal while holding a lock”

• Where possible, avoid the need for priority inheritance
– Avoid sharing between threads of differing priorities >25

Summary + next time

• Liveness properties
• Deadlock

– Requirements
– Resource allocation graphs and detection
– Prevention – the Dining Philosophers Problem – and recovery

• Thread priority and the scheduling problem
• Priority inversion
• Priority inheritance

• Next time:
– Concurrency without shared data
– Active objects; message passing
– Composite operations; transactions
– ACID properties; isolation; serialisability >26

