
Concurrent systems  
Lecture 2: More mutual exclusion, semaphores, 

and producer-consumer relationships

Dr Anil Madhavapeddy

=1

Reminder from last time

• Definition of a concurrent system

• Origins of concurrency within a computer

• Processes and threads

• Challenge: concurrent access to shared resources

• Mutual exclusion, race conditions, and atomicity

• Mutual exclusion locks (mutexes)

=2

From last time: beer-buying example

• Thread 1 (person 1)
1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

• In most cases, this works just fine…

• But if both people look (step 1) before either refills the
fridge (step 3)… we’ll end up with too much beer!

• Obviously more worrying if “look in fridge” is “check
reactor”, and “buy beer” is “toggle safety system” ;-)

• Thread 2 (person 2)

1. Look in fridge

2. If no beer, go buy beer

3. Put beer in fridge

=3

We spotted race conditions in obvious concurrent implementations.
Ad hoc solutions (e.g., leaving a note) failed.

Even naïve application of atomic operations failed.
Mutexes provide a general mechanism for mutual exclusion.

From last lecture

This time

• Implementing mutual exclusion

• Hardware support for atomicity, condition
synchronisation

• Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

• Two-party and generalised producer-consumer
relationships

=4

Implementing mutual exclusion

• Associate a mutual exclusion lock with each
critical section, e.g. a variable L
– (must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”  
LEAVE_CS() = “UNLOCK(L)”

• Can implement LOCK() using read-and-set():

LOCK(L) {
 while(!read-and-set(L))
 ; // do nothing
}

UNLOCK(L) {
 L = 0;
}

=5

From last lecture

Hardware foundations for atomicity

• How can we implement atomic read-and-set?

• Simple pair of load and store instructions fail the
atomicity test (obviously divisible!)

• Need a new ISA primitive for protection against parallel
access to memory from another CPU

• Two common flavours:
– Atomic Compare and Swap (CAS)

– Load Linked, Store Conditional (LL/SC)

– Atomic conditionals: if a race is lost, software will retry

• NB: May also need to disable interrupts (preemption)
– Typically a special supervisor-only instruction

=6

Atomic Compare and Swap (CAS)

• Instruction operands: memory address, prior + new values
– If prior value matches in-memory value, new value stored
– If prior value does not match in-memory value, instruction fails
– Software checks return value, can loop on failure

• Found on CISC systems such as x86 (cmpxchg)
– Atomic Test and Set (TAS) another variation
– NB: Also added to recent ARMv8 ISA revision – why?

=7

 mov %edx, 1 # New value -> register
spin:
 mov %eax, [foo_lock] # Load prior value
 test %eax, %eax # If non-zero (owned),
 jnz spin # loop
 lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,
 test %eax, %eax # swap in value from
 jnz spin # %edx; else loop

Load Linked-Store Conditional (LL/SC)

• Found on RISC systems (MIPS, Alpha, ARM, …)
– Load value from memory location with LL
– Manipulate value in register (e.g., add, assign, …)
– SC fails if memory location modified (or interrupt) since LL
– SC writes back register indicating success (or not)
– Software checks return value, can loop on failure

• Foundation for a more general technique seeing early
deployment: Software Transactional Memory (STM)

=8

spin:
 lld $t0, 0($a0) # Load prior value
 bnez $t0, spin # If non-zero (owned), loop
 dli $t0, 1 # New value (branch-delay slot)
 scd $t0, 0($a0) # Conditional store to $a0
 beqz $t0, spin # If failed ($t0 zero), loop
 nop # Branch-delay slot

Semaphores
• Even with atomic ops, busy waiting is inefficient…

– Recall from previous lecture: lock contention
– Better to sleep until resource available

• Dijkstra (THE, 1968) proposed semaphores
– New type of variable
– Initialized once to an integer value (default 0)

• Supports two operations: wait() and signal()
– Sometimes called down() and up()
– (and originally called P() and V() ... blurk!)

• Can be used for mutual exclusion with sleeping
• Can also be used for condition synchronisation

– Wake up another waiting thread on a condition or event
– E.g., “There is an item available for processing in a queue”

=9

Semaphore implementation

• Implemented as an integer and a queue
wait(sem) {
 if(sem > 0) {
 sem = sem - 1;
 } else suspend caller & add thread to queue for sem
}

signal(sem) {
 if no threads are waiting {
 sem = sem + 1;
 } else wake up some thread on queue
}

• Method bodies are implemented atomically

• Think of “count” as the number of available “items”

• “suspend” and “wake” invoke threading APIs =10

Hardware support for wakeups: IPIs

• CAS/LLSC/… support atomicity via shared memory
• But what about “wake up thread”?

– E.g., notify waiter of resources now free, work now waiting, …
– Generally known as condition synchronisation
– On a single CPU, wakeup triggers context switch
– How to wake up a thread on another CPU that is already busy doing

something else?

• Inter-Processor Interrupts (IPIs)
– Mark thread as “runnable”
– Send an interrupt to the target CPU
– IPI handler runs thread scheduler, preempts running thread, triggers

context switch

• Together, shared memory and IPIs support atomicity and
condition synchronisation between processors

=11

Mutual exclusion with a semaphore

• Initialize semaphore to 1; wait() is lock(), signal() is unlock()

aSem

CS

A B

wait (aSem)

wait (aSem)

CS

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B blocked

C blocked

CS

signal (aSem)

=12

Condition synchronisation

• Initialize semaphore to 0; A proceeds only after B signals

aSem A B

 wait before signal signal before wait

0

wait (aSem)

1
0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up waiting”

aSem

A continues
A continues

=13

N-resource allocation

• Suppose there are N instances of a resource
– e.g. N printers attached to a DTP system

• Can manage allocation with a semaphore sem,
initialized to N
– Anyone wanting printer does wait(sem)

– After N people get a printer, next will sleep

– To release resource, signal(sem)
• Will wake someone if anyone is waiting

• Will typically also require mutual exclusion
– E.g. to decide which printers are free

=14

Semaphore design patterns

• Semaphores are quite powerful
– Can solve mutual exclusion…

– Can also provide condition synchronization
• Thread waits until some condition set by another thread

• Let’s look at some examples:
– One producer thread, one consumer thread, with a N-

slot shared memory buffer

– Any number of producer and consumer threads, again
using an N-slot shared memory buffer

– Multiple reader, single writer synchronization

=15

Producer-consumer problem

• General “pipe” concurrent programming paradigm
– E.g. pipelines in Unix; staged servers; work stealing; 

download thread vs. rendering thread in web browser

• Shared buffer B[] with N slots, initially empty

• Producer thread wants to:
– Produce an item

– If there’s room, insert into next slot;

– Otherwise, wait until there is room

• Consumer thread wants to:
– If there’s anything in buffer, remove an item (+consume it)

– Otherwise, wait until there is something

• Maintain order, use parallelism, avoid context switches
=16

Producer-consumer solution

// producer thread
while(true) {
 item = produce();
 if there is space {
 buffer[in] = item;
 in = (in + 1) % N;
 }
}

// consumer thread
while(true) {
 if there is an item {
 item = buffer[out];
 out = (out + 1) % N;
 }
 consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);

g h i j k l

out in0 N-1

buffer

=17

Producer-consumer solution

// producer thread
while(true) {
 item = produce();
 wait(spaces);
 buffer[in] = item;
 in = (in + 1) % N;
 signal(items);
}

// consumer thread
while(true) {
 wait(items);
 item = buffer[out];
 out = (out + 1) % N;
 signal(spaces);
 consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);

g h i j k l

out in0 N-1

buffer

=18

Producer-consumer solution

• Use of semaphores for N-resource allocation
– In this case, resource is a slot in the buffer

– spaces allocates empty slots (for producer)

– items allocates full slots (for consumer)

• No explicit mutual exclusion
– Threads will never try to access the same slot at

the same time; if “in == out” then either
• buffer is empty (and consumer will sleep on items), or

• buffer is full (and producer will sleep on spaces)

– NB: in and out are each accessed solely in one of
the producer (in) or consumer (out) =19

Generalized producer-consumer

• Previously had exactly one producer thread,
and exactly one consumer thread

• More generally might have many threads
adding items, and many removing them

• If so, we do need explicit mutual exclusion
– E.g. to prevent two consumers from trying to

remove (and consume) the same item
– (Race conditions due to concurrent use of in and

out precluded when just one thread on each end)

• Can implement with one more semaphore…
=20

Generalized P-C solution

• Exercise: Can we modify this design to allow concurrent access by 1
producer and 1 consumer by adding one more semaphore?

// producer threads
while(true) {
 item = produce();
 wait(spaces);
 wait(guard);
 buffer[in] = item;
 in = (in + 1) % N;
 signal(guard);
 signal(items);
}

// consumer threads
while(true) {
 wait(items);
 wait(guard);
 item = buffer[out];
 out = (out + 1) % N;
 signal(guard);
 signal(spaces);
 consume(item);
}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(1); // for mutual exclusion

=21

Semaphores: summary

• Powerful abstraction for implementing concurrency
control:
– Mutual exclusion & condition synchronization

• Better than read-and-set()… but correct use
requires considerable care
– E.g. forget to wait(), can corrupt data

– E.g. forget to signal(), can lead to infinite delay

– Generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but
generally deprecated for other mechanisms…

=22

Mutual exclusion and invariants
• One important goal of locking is to avoid exposing

inconsistent intermediate states to other threads

• This suggests an invariants-based strategy:
– Invariants hold as mutex is acquired

– Invariants may be violated while mutex is held

– Invariants must be restored before mutex is released

• E.g., deletion from a doubly linked list
– Invariant: an entry is in the list, or not in the list

– Individually non-atomic updates of forward and backward
pointers around a deleted object are fine as long as the lock
isn’t released in between the pointer updates

=23
A B C

Summary + next time

• Implementing mutual exclusion: hardware support for
atomicity and inter-processor interrupts

• Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

• Two-party and generalised producer-consumer
relationships

• Invariants and locks

• Next time:
– Multi-Reader Single-Writer (MRSW) locks
– Starvation and fairness
– Alternatives to semaphores/locks
– Concurrent primitives in practice

=24

