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Reminder from last time

• Definition of a concurrent system 

• Origins of concurrency within a computer 

• Processes and threads 

• Challenge: concurrent access to shared resources 

• Mutual exclusion, race conditions, and atomicity 

• Mutual exclusion locks (mutexes)
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From last time: beer-buying example

• Thread 1 (person 1) 
1. Look in fridge 

2. If no beer, go buy beer 

3. Put beer in fridge 

• In most cases, this works just fine… 

• But if both people look (step 1) before either refills the 
fridge (step 3)… we’ll end up with too much beer! 

• Obviously more worrying if “look in fridge” is “check 
reactor”, and “buy beer” is “toggle safety system” ;-)

• Thread 2 (person 2) 

1. Look in fridge 

2. If no beer, go buy beer 

3. Put beer in fridge 
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We spotted race conditions in obvious concurrent implementations. 
Ad hoc solutions (e.g., leaving a note) failed. 

Even naïve application of atomic operations failed. 
Mutexes provide a general mechanism for mutual exclusion.

From last lecture



This time

• Implementing mutual exclusion 

• Hardware support for atomicity, condition 
synchronisation 

• Semaphores for mutual exclusion, condition 
synchronisation, and resource allocation 

• Two-party and generalised producer-consumer 
relationships
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Implementing mutual exclusion

• Associate a mutual exclusion lock with each 
critical section, e.g. a variable L 
– (must ensure use correct lock variable!) 

ENTER_CS() = “LOCK(L)”  
LEAVE_CS() = “UNLOCK(L)” 

• Can implement LOCK() using read-and-set():

LOCK(L) {  
  while(!read-and-set(L)) 
    ; // do nothing 
}

UNLOCK(L) {  
  L = 0; 
} 
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Hardware foundations for atomicity

• How can we implement atomic read-and-set? 

• Simple pair of load and store instructions fail the 
atomicity test (obviously divisible!) 

• Need a new ISA primitive for protection against parallel 
access to memory from another CPU 

• Two common flavours: 
– Atomic Compare and Swap (CAS) 

– Load Linked, Store Conditional (LL/SC) 

– Atomic conditionals: if a race is lost, software will retry 

• NB: May also need to disable interrupts (preemption) 
– Typically a special supervisor-only instruction
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Atomic Compare and Swap (CAS)

• Instruction operands: memory address, prior + new values 
– If prior value matches in-memory value, new value stored 
– If prior value does not match in-memory value, instruction fails 
– Software checks return value, can loop on failure 

• Found on CISC systems such as x86 (cmpxchg) 
– Atomic Test and Set (TAS) another variation 
– NB: Also added to recent ARMv8 ISA revision – why?
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 mov  %edx, 1  # New value -> register 
spin: 
 mov  %eax, [foo_lock] # Load prior value 
 test  %eax, %eax  # If non-zero (owned), 
 jnz  spin   #   loop 
 lock cmpxchg [foo_lock], %edx  # If *foo_lock == %eax, 
 test  %eax, %eax  #   swap in value from  
 jnz  spin   #   %edx; else loop



Load Linked-Store Conditional (LL/SC)

• Found on RISC systems (MIPS, Alpha, ARM, …) 
– Load value from memory location with LL 
– Manipulate value in register (e.g., add, assign, …) 
– SC fails if memory location modified (or interrupt) since LL 
– SC writes back register indicating success (or not) 
– Software checks return value, can loop on failure 

• Foundation for a more general technique seeing early 
deployment: Software Transactional Memory (STM)
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spin: 
 lld $t0, 0($a0) # Load prior value 
 bnez $t0, spin # If non-zero (owned), loop 
 dli $t0, 1  # New value (branch-delay slot) 
 scd $t0, 0($a0) # Conditional store to $a0 
 beqz $t0, spin # If failed ($t0 zero), loop 
 nop   # Branch-delay slot



Semaphores
• Even with atomic ops, busy waiting is inefficient… 

– Recall from previous lecture: lock contention 
– Better to sleep until resource available 

• Dijkstra (THE, 1968) proposed semaphores 
– New type of variable 
– Initialized once to an integer value (default 0)  

• Supports two operations: wait() and signal() 
– Sometimes called down() and up() 
– (and originally called P() and V() ... blurk!) 

• Can be used for mutual exclusion with sleeping 
• Can also be used for condition synchronisation 

– Wake up another waiting thread on a condition or event 
– E.g., “There is an item available for processing in a queue”
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Semaphore implementation

• Implemented as an integer and a queue 
wait(sem) {  
  if(sem > 0) { 
     sem = sem - 1; 
   } else suspend caller & add thread to queue for sem  
} 

signal(sem) { 
  if no threads are waiting { 
     sem = sem + 1; 
  } else wake up some thread on queue  
} 

• Method bodies are implemented atomically   

• Think of “count” as the number of available “items” 

• “suspend” and “wake” invoke threading APIs =10



Hardware support for wakeups: IPIs

• CAS/LLSC/… support atomicity via shared memory 
• But what about “wake up thread”? 

– E.g., notify waiter of resources now free, work now waiting, … 
– Generally known as condition synchronisation 
– On a single CPU, wakeup triggers context switch 
– How to wake up a thread on another CPU that is already busy doing 

something else? 

• Inter-Processor Interrupts (IPIs) 
– Mark thread as “runnable” 
– Send an interrupt to the target CPU 
– IPI handler runs thread scheduler, preempts running thread, triggers 

context switch 

• Together, shared memory and IPIs support atomicity and 
condition synchronisation between processors
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Mutual exclusion with a semaphore

• Initialize semaphore to 1; wait() is lock(), signal() is unlock()

aSem

CS

A B

wait (aSem)

wait (aSem)

CS

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B  blocked

C  blocked

CS

signal (aSem)
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Condition synchronisation

• Initialize semaphore to 0; A proceeds only after B signals

aSem A B

                wait before signal                                                  signal before wait

0

wait (aSem)

1
0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up waiting”

aSem

A continues
A continues
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N-resource allocation

• Suppose there are N instances of a resource 
– e.g. N printers attached to a DTP system 

• Can manage allocation with a semaphore sem, 
initialized to N  
– Anyone wanting printer does wait(sem) 

– After N people get a printer, next will sleep 

– To release resource, signal(sem) 
• Will wake someone if anyone is waiting 

• Will typically also require mutual exclusion 
– E.g. to decide which printers are free
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Semaphore design patterns

• Semaphores are quite powerful 
– Can solve mutual exclusion…  

– Can also provide condition synchronization 
• Thread waits until some condition set by another thread 

• Let’s look at some examples: 
– One producer thread, one consumer thread, with a N-

slot shared memory buffer 

– Any number of producer and consumer threads,  again 
using an N-slot shared memory buffer 

– Multiple reader, single writer synchronization  
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Producer-consumer problem

• General “pipe” concurrent programming paradigm 
– E.g. pipelines in Unix; staged servers; work stealing; 

download thread vs. rendering thread in web browser 

• Shared buffer B[] with N slots, initially empty 

• Producer thread wants to: 
– Produce an item 

– If there’s room, insert into next slot;  

– Otherwise, wait until there is room 

• Consumer thread wants to:  
– If there’s anything in buffer, remove an item (+consume it) 

– Otherwise, wait until there is something 

• Maintain order, use parallelism, avoid context switches
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Producer-consumer solution

// producer thread 
while(true) { 
  item = produce();  
  if there is space {  
     buffer[in] = item; 
     in = (in + 1) % N; 
  } 
}

// consumer thread  
while(true) { 
  if there is an item {  
     item = buffer[out];  
     out  = (out + 1) % N; 
  } 
  consume(item); 
}

int buffer[N]; int in = 0, out = 0; 
spaces = new Semaphore(N);  
items  = new Semaphore(0);  

g h i j k l

out in0 N-1

buffer
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Producer-consumer solution

// producer thread 
while(true) { 
  item = produce();  
  wait(spaces);  
     buffer[in] = item; 
     in = (in + 1) % N; 
  signal(items); 
}

// consumer thread  
while(true) { 
  wait(items);  
     item = buffer[out];  
     out  = (out + 1) % N; 
  signal(spaces); 
  consume(item); 
}

int buffer[N]; int in = 0, out = 0; 
spaces = new Semaphore(N);  
items  = new Semaphore(0);  

g h i j k l

out in0 N-1

buffer
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Producer-consumer solution

• Use of semaphores for N-resource allocation 
– In this case, resource is a slot in the buffer 

– spaces allocates empty slots (for producer) 

– items allocates full slots (for consumer) 

• No explicit mutual exclusion 
– Threads will never try to access the same slot at 

the same time; if “in == out” then either 
• buffer is empty (and consumer will sleep on items), or 

• buffer is full (and producer will sleep on spaces) 

– NB: in and out are each accessed solely in one of 
the producer (in) or consumer (out) =19



Generalized producer-consumer

• Previously had exactly one producer thread, 
and exactly one consumer thread 

• More generally might have many threads 
adding items, and many removing them 

• If so, we do need explicit mutual exclusion 
– E.g. to prevent two consumers from trying to 

remove (and consume) the same item 
– (Race conditions due to concurrent use of in and 

out precluded when just one thread on each end) 

• Can implement with one more semaphore…
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Generalized P-C solution

• Exercise: Can we modify this design to allow concurrent access by 1 
producer and 1 consumer by adding one more semaphore?

// producer threads 
while(true) { 
  item = produce();  
  wait(spaces); 
  wait(guard); 
     buffer[in] = item; 
     in = (in + 1) % N; 
  signal(guard); 
  signal(items); 
}

// consumer threads  
while(true) { 
  wait(items); 
  wait(guard);  
     item = buffer[out];  
     out  = (out + 1) % N; 
  signal(guard); 
  signal(spaces); 
  consume(item); 
}

int buffer[N]; int in = 0, out = 0; 
spaces = new Semaphore(N);  
items  = new Semaphore(0); 
guard  = new Semaphore(1);   // for mutual exclusion 

=21



Semaphores: summary

• Powerful abstraction for implementing concurrency 
control: 
– Mutual exclusion & condition synchronization 

• Better than read-and-set()… but correct use 
requires considerable care  
– E.g. forget to wait(), can corrupt data 

– E.g. forget to signal(), can lead to infinite delay 

– Generally get more complex as add more semaphores 

• Used internally in some OSes and libraries, but 
generally deprecated for other mechanisms…
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Mutual exclusion and invariants
• One important goal of locking is to avoid exposing 

inconsistent intermediate states to other threads 

• This suggests an invariants-based strategy: 
– Invariants hold as mutex is acquired 

– Invariants may be violated while mutex is held 

– Invariants must be restored before mutex is released 

• E.g., deletion from a doubly linked list 
– Invariant: an entry is in the list, or not in the list 

– Individually non-atomic updates of forward and backward 
pointers around a deleted object are fine as long as the lock 
isn’t released in between the pointer updates
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Summary + next time

• Implementing mutual exclusion: hardware support for 
atomicity and inter-processor interrupts 

• Semaphores for mutual exclusion, condition 
synchronisation, and resource allocation 

• Two-party and generalised producer-consumer 
relationships 

• Invariants and locks 

• Next time: 
– Multi-Reader Single-Writer (MRSW) locks 
– Starvation and fairness 
– Alternatives to semaphores/locks 
– Concurrent primitives in practice
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