Distributed systems
Lecture 15: Replication, quorums, consistency, CAP, and Amazon/Google case studies

Michaelmas 2018
Dr Richard Mortier and
Dr Anil Madhavapeddy
(With thanks to Dr Robert N. M. Watson and Dr Steven Hand)
Last time

- General issue of **consensus**:
 - How to get processes to agree on something
 - FLP says “impossible” in **asynchronous networks** with at least 1 (more) failure ... but in practice we’re OK!
 - General idea useful for **leadership elections, distributed mutual exclusion**: relies on being able to detect failures

- **Distributed transactions**:
 - Need to commit a set of “sub-transactions” across multiple servers – want **all-or-nothing semantics**
 - Use **atomic commit** protocol like 2PC

- **Replication**:
 - Performance, load-balancing, and **fault tolerance**
 - Introduction to **consistency**
Replication and consistency

• More challenging if clients can perform updates
• For example, imagine \(x \) has value 3 (in all replicas)
 – C1 requests \texttt{write}(x, 5) from S4
 – C2 requests \texttt{read}(x) from S3
 – What should occur?

• With \textbf{strong consistency}, the distributed system behaves as if there is \textbf{no replication present}:
 – i.e. in above, C2 should get the value 5
 – requires coordination between all servers

• With \textbf{weak consistency}, C2 may get 3 or 5 (or ...?)
 – Less satisfactory, but much easier to implement
 – Recall \texttt{close-to-open consistency} in NFS

From last lecture...
Achieving strong consistency

• Goal: impose **total order** on updates to some state \(x \)
 – Ensure update propagated to replicas **before** later reads

• Simple **lock-step** solution for replicated object:
 1. When \(S_i \) receives update for \(x \), locks \(x \) at all other replicas
 2. Make change to \(x \) on \(S_i \)
 3. Propagate \(S_i \)'s change to \(x \) to all other replicas
 4. Other servers send ACK to \(S_i \)
 5. After ACKs received, instruct replicas to unlock \(x \)
 6. Once \(C_j \) has ACK for its write to \(S_i \), any \(C_k \) will see update

• Need to handle failure (of replica, of network)
 – Add step to tentatively apply update, and only actually apply (“commit”) update if all replicas agree

• We’ve reinvented distributed transactions & 2PC!
Quorum systems

• Transactional consistency works, but:
 – High overhead, and
 – Poor availability during update (worse if crash!)

• An alternative is a **quorum system**:
 – Imagine there are N replicas, a write quorum Q_w, and a read quorum Q_r
 – Constraint on writes: $Q_w > N/2$
 – Constraint on reads: $(Q_w + Q_r) > N$

• To perform a write, must update Q_w replicas
 – Ensures a majority of replicas have new value

• To perform a read, must read Q_r replicas
 – Ensures that we read *at least one* updated value
• Seven replicas \((N=7)\), \(Q_w = 5\), \(Q_r = 3\)
• All objects have associated version \((T, S)\)
 – \(T\) is logical timestamp, initialized to zero
 – \(S\) is a server ID (used to break ties)
• Any write will update at least \(Q_w\) replicas
• Performing a read is easy:
 – Choose replicas to read from until get \(Q_r\) responses
 – Correct value is the one with highest version
Quorum systems: writes

• Performing a write is trickier:
 – Must ensure get entire quorum, or cannot update
 – Hence need a commit protocol (as before)
• In fact, transactional consistency is a quorum protocol with $Q_w = N$ and $Q_r = 1$!
 – But when $Q_w < N$, additional complexity since must bring replicas up-to-date before updating
• Quorum systems are good when expect failures
 – Additional work on update, additional work on reads...
 – ... but increased availability during failure
• How might client-server traffic scale with Q_w/Q_r?
Weak consistency

• Maintaining strong consistency has costs:
 – Need to coordinate updates to all (or Q_w) replicas
 – Slow... and will block other accesses for the duration

• **Weak consistency** systems provides fewer guarantees:
 – E.g. C_1 updates (replica of) object Y at S_3
 – S_3 lazily propagates changes to other replicas

• We can do this by reducing quorum parameters
 – Q_r: Clients can potentially read **stale** value from other S_x
 – Q_w: Writes may **conflict**: >1 Y values w/same timestamp

• Considerably more **efficient** and more **available**:
 – Less waiting for replicas on read and write...
 – ... hence is also more available (i.e. fault tolerant)

• But it can be harder to reason about possible outcomes
FIFO consistency

- As with group communication primitives, various ordering guarantees possible
- **FIFO consistency**: all updates originating at S_i (on behalf of a client) occur in the same order at all replicas
 - As with FIFO multicast, can buffer for as long as we like!
 - But says nothing about how S_i’s updates are interleaved with S_j’s at another replica (may put S_j first, or S_i, or mix)
- Still useful in some circumstances
 - E.g. single user accessing different replicas at disjoint times
 - I.e., client will see its writes **serialized**
 - Essentially primary replication with primary = last accessed
- E.g., sufficient for multiple mail clients interacting with the same mailbox independently (phone, tablet)
Eventual consistency

• FIFO consistency doesn’t provide very nice semantics:
 – E.g. C_1 writes V_1 of file f to S_1
 – Later C_1 reads f from S_2, and writes V_2
 – Much later, C_1 reads f from S_3 and gets V_1 – changes lost!
• What happened?
 – V_1 arrived at S_3 after V_2, thus overwrote it (stoooopid S_3)
• A desirable property in weakly consistent systems is that they converge to a more correct state
 – I.e. in the absence of further updates, every replica will eventually end up with the same latest version
• This is called eventual consistency
Implementing eventual consistency

• Servers S_i keep a version vector $V_i(O)$ for each object O
 – For each update of O on S_i, increment $V_i(O)[i]$
 – (essentially a vector clock as a per-object version number)

• Servers synchronize pair-wise from time to time
 – For each object O, compare $V_i(O)$ to $V_j(O)$
 – If $V_i(O) < V_j(O)$, S_i gets an up-to-date copy from S_j
 – If $V_j(O) < V_i(O)$, S_j gets an up-to-date copy from S_i

• But if $V_i(O) \sim V_j(O)$ we have a write conflict:
 – Concurrent updates have occurred at 2 or more servers
 – Must apply some kind of reconciliation method
 – (similar to revision control systems, and equally painful)

• Coda filesystem (next lecture) uses this approach
Amazon’s Dynamo [2007]

• Storage service used within Amazon’s web services
• Designed to prioritize availability above consistency:
 – SLA to give bounded response time 99.99% of the time
 – If customer wants to add something to shopping basket and there’s a failure... still want addition to ‘work’
 – Even if get (temporarily) inconsistent view... fix later!
• Built around notion of a so-called sloppy quorum:
 – Have N, Q_w, Q_r as we saw earlier... but don’t actually require that Q_w > N/2, or that (Q_w + Q_r) > N
 – Instead make tunable: lower Q values = higher availability; and higher read (or write) throughput
 – Also let system continue during failure
 – Application must handle (reconcile?) inconsistency
Session guarantees

• Eventual consistency seems great, but how can you program to it?
 – Need to know **something** about guarantees to the client
• These are called **session guarantees**:
 – Not system wide, just for one (identified) client
 – Client must be a more active participant
 – E.g. client maintains version vectors of objects it reads/writes
• Example: **Read Your Writes (RYW)**:
 – If C_i writes a new value to x, a later read of x should see the update ... even if C_i is now reading from another replica
 – Need C_i to remember highest ID of any update it made
 – Only read from a server if it has seen that update
• E.g., Webmail: Exchange stale message read/delete flags between sessions for greater scalability
Session guarantees + availability

- There are many variations on session guarantees
 - All deal with allowable state on replica given history of accesses by a specific client
- Session guarantees are weaker than strong consistency, but stronger than ‘pure’ weak consistency:
 - But this means that they sacrifice availability
 - I.e. choosing not to allow a read or write if it would break a session guarantee means not allowing that operation!
 - ‘Pure’ weak consistency would allow the operation
- Can we get the best of both worlds?
Consistency, Availability & Partitions (CAP)

• Short answer: No ;-

• The **CAP Theorem** (Brewer 2000, Gilbert & Lynch 2002) says you can only guarantee two of:
 – **Consistent data, Availability, Partition-tolerance**

• ... in a single system.

• In local-area systems, can sometimes drop partition-tolerance by using redundant networks

• In the wide-area, this is not an option:
 – **Must choose between consistency & availability**
 – Most Internet-scale systems ditch consistency

• **NB**: this doesn’t mean things are always inconsistent, just that they’re not **guaranteed** to be consistent
A Google datacentre

- **MapReduce**
 - Scalable distributed computation model
- **BigTable**
 - Distributed storage with weak consistency
- **Spanner**
 - Distributed storage with strong consistency
- Many spiffy distributed systems at Google
 - E.g., **Dapper**: trace RPCs and distributed events
Google: architecture overview

- Parallel data processing: MapReduce
- Fast data analytics: Dremel
- Web serving: GWS
- Cross-datacenter RDBMS: Spanner
- Structured storage: BigTable
- Distributed locking: Chubby
- Cluster management and scheduling: Borg / Omega
- Distributed storage: Colossus
- RPCs
Google’s MapReduce [2004]

- **Specialized** programming framework for scale
 - Run a program on 100s to 10,000s machines
- Framework takes care of:
 - Parallelization, distribution, load-balancing, scaling up (or down) & fault-tolerance
 - **Locality**: compute close to (distributed) data
- Programmer implements two methods
 - `map(key, value) → list of <key’, value’> pairs`
 - `reduce(key’, value’) → result`
- Inspired by functional programming
- Reduce data movement by computing close to data source
- E.g., for every word, count documents using word(s):
 - Extract words from local documents in `map()` phase
 - Aggregate and generate sums in `reduce()` phase
MapReduce: for each key, sum values

Perform Map() query against local data matching input spec; write new keys/values (e.g., 5 instances of X found here)

Aggregate gathered results for each intermediate key using Reduce() (e.g., $X_{\text{sum}} = \sum(X_i)$)

End user can query results via distributed key/value store

Results: $X_{\text{sum}}: 8, Y_{\text{sum}}: 9$
MapReduce example programs

- **Sorting** data is trivial (map, reduce both identity function)
 - Works since the shuffle step essentially sorts data
- **Distributed grep** (search for words)
 - **map**: emit a line if it matches a given pattern
 - **reduce**: just copy the intermediate data to the output
- **Count URL access frequency**
 - **map**: process logs of web page access; output <URL, n>
 - **reduce**: add all values for the same URL
- **Reverse web-link graph**
 - **map**: output <target, source> for each link to target in a page
 - **reduce**: concatenate the list of all source URLs associated with a target. Output <target, list(source)>
MapReduce: pros and cons

• Extremely simple, and:
 – Can **auto-parallelize** (since operations on every element in input are independent)
 – Can **auto-distribute** (since rely on underlying Colossus/BigTable distributed storage)
 – Gets **fault-tolerance** (since tasks are idempotent, i.e. can just re-execute if a machine crashes)

• Doesn’t really use **any** of the sophisticated algorithms we’ve seen (except storage replication)
 – Limited to batch jobs and computations that are expressible as a **map()** followed by a **reduce()**
Google’s BigTable [2006]

• “Three-dimensional” structured key-value store:
 – \(<row \, \text{key}, \, column \, \text{key}, \, timestamp> \rightarrow value\)

• Effectively a distributed, sorted, sparse map
 • Versioned web contents by URL, user activity history, web logs, …
Google’s BigTable [2006]

- Distributed **tablets** (~1 GB max) hold subsets of **map**
 - Adjacent rows have user-specifiable locality
 - E.g., store pages for a particular website in the same tablet
- On top of **Colossus**, which handles replication and fault tolerance: *only one (active) server per tablet!*
- Reads & writes within a row are **transactional**
 - Independently of the number of columns touched
 - **But:** no cross-row transactions possible
- META0 tablet is “root” for name resolution
 - Filesystem meta stored in BigTable itself
- Use **Chubby** to elect master (META0 tablet server), and to maintain list of tablet servers & schemas
 - 5-way replicated **Paxos consensus** on data in **Chubby**
Google’s Spanner [2012]

- **BigTable** insufficient for some consistency needs
- Often have transactions across >1 datacenters
 - May buy app on Play Store while travelling in the U.S.
 - Hit U.S. server, but customer billing data is in U.K.
- **Spanner** offers *transactional consistency*: full RDBMS power, ACID properties, at global scale!
- Wide-area consistency is hard
 - Due to long delays and clock skew
- Secret sauce: **hardware-assisted clock sync**
 - Using GPS and atomic clocks in datacenters
 - Use global timestamps and **Paxos** to reach consensus
 - Still have a period of uncertainty for write TX: *wait it out!*
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Dynamo</th>
<th>BigTable</th>
<th>Spanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>eventual</td>
<td>weak(ish)</td>
<td>strong</td>
</tr>
<tr>
<td>Availability</td>
<td>high throughput, low latency</td>
<td></td>
<td>low throughput, high latency</td>
</tr>
<tr>
<td>Expressivity</td>
<td>simple key-value</td>
<td>row transactions</td>
<td>full transactions</td>
</tr>
</tbody>
</table>
Summary + next time

• Strong, weak, and eventual consistency
• Quorum replication
• Session guarantees
• CAP theorem
• Amazon/Google case studies

• Distributed-system security
 – Access control, capabilities, RBAC, single-system sign on
• Distributed storage system case studies
 – NASD, AFS3, and Coda