
Distributed systems
Lecture 15: Replication, quorums, consistency, CAP,

and Amazon/Google case studies

Michaelmas 2018
Dr Richard Mortier and
Dr Anil Madhavapeddy

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)

1

Last time

• General issue of consensus:
– How to get processes to agree on something

– FLP says “impossible” in asynchronous networks with at
least 1 (more) failure … but in practice we’re OK!

– General idea useful for leadership elections, distributed
mutual exclusion: relies on being able to detect failures

• Distributed transactions:
– Need to commit a set of “sub-transactions” across multiple

servers – want all-or-nothing semantics
– Use atomic commit protocol like 2PC

• Replication:
– Performance, load-balancing, and fault tolerance
– Introduction to consistency

2

Replication and consistency

• More challenging if clients can perform updates
• For example, imagine x has value 3 (in all replicas)
– C1 requests write(x, 5) from S4
– C2 requests read(x) from S3
– What should occur?

• With strong consistency, the distributed system
behaves as if there is no replication present:
– i.e. in above, C2 should get the value 5
– requires coordination between all servers

• With weak consistency, C2 may get 3 or 5 (or …?)
– Less satisfactory, but much easier to implement
– Recall close-to-open consistency in NFS

3

From last lecture…

Achieving strong consistency
• Goal: impose total order on updates to some state x
– Ensure update propagated to replicas before later reads

• Simple lock-step solution for replicated object:
1. When Si receives update for x, locks x at all other replicas
2. Make change to x on Si
3. Propagate Si’s change to x to all other replicas
4. Other servers send ACK to Si
5. After ACKs received, instruct replicas to unlock x
6. Once Cj has ACK for its write to Si, any Ck will see update

• Need to handle failure (of replica, of network)
– Add step to tentatively apply update, and only actually

apply (“commit”) update if all replicas agree
• We’ve reinvented distributed transactions & 2PC!

4

Quorum systems
• Transactional consistency works, but:
– High overhead, and
– Poor availability during update (worse if crash!)

• An alternative is a quorum system:
– Imagine there are N replicas, a write quorum Qw, and

a read quorum Qr
– Constraint on writes: Qw > N/2
– Constraint on reads: (Qw + Qr) > N

• To perform a write, must update Qw replicas
– Ensures a majority of replicas have new value

• To perform a read, must read Qr replicas
– Ensures that we read at least one updated value

5

Example

• Seven replicas (N=7), Qw = 5, Qr = 3
• All objects have associated version (T, S)

– T is logical timestamp, initialized to zero
– S is a server ID (used to break ties)

• Any write will update at least Qw replicas
• Performing a read is easy:

– Choose replicas to read from until get Qr responses
– Correct value is the one with highest version 6

X=5
(t1,S1)

S1
time

X=5
(t1,S1)

X=5
(t1,S1)

X=5
(t1,S1)

X=5
(t1,S1)

X=5
(t1,S1)

X=5
(t1,S1)

S2 S3 S4 S5 S6 S7

X=5
(t1,S1)

X=0
(t2,S3)

X=0
(t2,S3)

X=5
(t1,S1)

X=0
(t2,S3)

X=0
(t2,S3)

X=0
(t2,S3)

Quorum systems: writes
• Performing a write is trickier:
– Must ensure get entire quorum, or cannot update
– Hence need a commit protocol (as before)

• In fact, transactional consistency is a quorum
protocol with Qw = N and Qr = 1!
– But when Qw < N, additional complexity since must

bring replicas up-to-date before updating
• Quorum systems are good when expect failures
– Additional work on update, additional work on reads…
– … but increased availability during failure

• How might client-server traffic scale with Qw/Qr?
7

Weak consistency
• Maintaining strong consistency has costs:
– Need to coordinate updates to all (or Qw) replicas
– Slow… and will block other accesses for the duration

• Weak consistency systems provides fewer guarantees:
– E.g. C1 updates (replica of) object Y at S3
– S3 lazily propagates changes to other replicas

• We can do this by reducing quorum parameters
– Qr: Clients can potentially read stale value from other Sx
– Qw: Writes may conflict: >1 Y values w/same timestamp

• Considerably more efficient and more available:
– Less waiting for replicas on read and write…
– … hence is also more available (i.e. fault tolerant)

• But it can be harder to reason about possible outcomes
8

FIFO consistency

• As with group communication primitives, various
ordering guarantees possible

• FIFO consistency: all updates originating at Si (on
behalf of a client) occur in the same order at all replicas
– As with FIFO multicast, can buffer for as long as we like!
– But says nothing about how Si’s updates are interleaved

with Sj’s at another replica (may put Sj first, or Si, or mix)

• Still useful in some circumstances
– E.g. single user accessing different replicas at disjoint times
– I.e., client will see its writes serialized
– Essentially primary replication with primary = last accessed

• E.g., sufficient for multiple mail clients interacting with
the same mailbox independently (phone, tablet)

9

Eventual consistency
• FIFO consistency doesn’t provide very nice semantics:
– E.g. C1 writes V1 of file f to S1
– Later C1 reads f from S2, and writes V2
– Much later, C1 reads f from S3 and gets V1 – changes lost!

• What happened?
– V1 arrived at S3 after V2, thus overwrote it (stoooopid S3)

• A desirable property in weakly consistent systems is
that they converge to a more correct state
– I.e. in the absence of further updates, every replica will

eventually end up with the same latest version
• This is called eventual consistency

10

Implementing eventual consistency

• Servers Si keep a version vector Vi(O) for each object O
– For each update of O on Si, increment Vi(O)[i]
– (essentially a vector clock as a per-object version number)

• Servers synchronize pair-wise from time to time
– For each object O, compare Vi(O) to Vj(O)
– If Vi(O) < Vj(O), Si gets an up-to-date copy from Sj
– If Vj(O) < Vi(O), Sj gets an up-to-date copy from Si

• But if Vi(O) ~ Vj(O) we have a write conflict:
– Concurrent updates have occurred at 2 or more servers
– Must apply some kind of reconciliation method
– (similar to revision control systems, and equally painful)

• Coda filesystem (next lecture) uses this approach
11

Amazon’s Dynamo [2007]
• Storage service used within Amazon’s web services
• Designed to prioritize availability above consistency:

– SLA to give bounded response time 99.99% of the time
– If customer wants to add something to shopping basket

and there’s a failure… still want addition to ‘work’
– Even if get (temporarily) inconsistent view… fix later!

• Built around notion of a so-called sloppy quorum:
– Have N, Qw, Qr as we saw earlier… but don’t actually

require that Qw > N/2, or that (Qw + Qr) > N
– Instead make tunable: lower Q values = higher

availability; and higher read (or write) throughput
– Also let system continue during failure

– Application must handle (reconcile?) inconsistency
12

Session guarantees
• Eventual consistency seems great, but how can you

program to it?
– Need to know something about guarantees to the client

• These are called session guarantees:
– Not system wide, just for one (identified) client
– Client must be a more active participant
– E.g. client maintains version vectors of objects it reads/writes

• Example: Read Your Writes (RYW):
– If Ci writes a new value to x, a later read of x should see the

update … even if Ci is now reading from another replica
– Need Ci to remember highest ID of any update it made
– Only read from a server if it has seen that update

• E.g., Webmail: Exchange stale message read/delete flags
between sessions for greater scalability

13

Session guarantees + availability

• There are many variations on session guarantees
– All deal with allowable state on replica given history of

accesses by a specific client
• Session guarantees are weaker than strong

consistency, but stronger than ‘pure’ weak
consistency:
– But this means that they sacrifice availability
– I.e. choosing not to allow a read or write if it would

break a session guarantee means not allowing that
operation!

– ‘Pure’ weak consistency would allow the operation
• Can we get the best of both worlds?

14

Consistency, Availability & Partitions (CAP)

• Short answer: No ;-)

• The CAP Theorem (Brewer 2000, Gilbert & Lynch 2002)

says you can only guarantee two of:

– Consistent data, Availability, Partition-tolerance
• … in a single system.

• In local-area systems, can sometimes drop partition-

tolerance by using redundant networks

• In the wide-area, this is not an option:

– Must choose between consistency & availability
– Most Internet-scale systems ditch consistency

• NB: this doesn’t mean things are always inconsistent,

just that they’re not guaranteed to be consistent
15

A Google datacentre

• MapReduce
• Scalable distributed computation model

• BigTable
• Distributed storage with weak consistency

• Spanner
• Distributed storage with strong consistency

• Many spiffy distributed systems at Google
• E.g., Dapper: trace RPCs and distributed events

16

Google: architecture overview

Structured storage: BigTable

Parallel data
processing:
MapReduce Cross-datacenter

RDBMS: Spanner

Distributed storage: Colossus

Distributed locking:
Chubby

Web serving: GWSFast data
analytics:
Dremel

Cluster managment and
scheduling:

Borg / Omega

RP
Cs

17

Google’s MapReduce [2004]

• Specialized programming framework for scale
– Run a program on 100s to 10,000s machines

• Framework takes care of:
– Parallelization, distribution, load-balancing, scaling up (or down)

& fault-tolerance
– Locality: compute close to (distributed) data

• Programmer implements two methods
– map(key, value) → list of <key’, value’> pairs
– reduce(key’, value’) → result
– Inspired by functional programming
– Reduce data movement by computing close to data source

– E.g., for every word, count documents using word(s):
– Extract words from local documents in map() phase
– Aggregate and generate sums in reduce() phase

MapReduce: for each key, sum values
Input

Map

Reduce

Output

Shuffle

X: 5 X: 3 Y: 2 Y: 7

Ysum: 9Xsum: 8

Results: Xsum: 8, Ysum: 9

Perform Map() query against local data matching input spec;
write new keys/values (e.g., 5 instances of X found here)

Aggregate gathered results for each
intermediate key using Reduce()

(e.g., Xsum = sum(Xi))

End user can query results via
distributed key/value store

MapReduce example programs

• Sorting data is trivial (map, reduce both identity function)

– Works since the shuffle step essentially sorts data

• Distributed grep (search for words)

– map: emit a line if it matches a given pattern

– reduce: just copy the intermediate data to the output

• Count URL access frequency
– map: process logs of web page access; output <URL, n>

– reduce: add all values for the same URL

• Reverse web-link graph
– map: output <target, source> for each link to target in a page
– reduce: concatenate the list of all source URLs associated with a

target. Output <target, list(source)>

MapReduce: pros and cons

• Extremely simple, and:
– Can auto-parallelize (since operations on every element in

input are independent)
– Can auto-distribute (since rely on underlying

Colossus/BigTable distributed storage)
– Gets fault-tolerance (since tasks are idempotent, i.e. can

just re-execute if a machine crashes)
• Doesn’t really use any of the sophisticated algorithms

we’ve seen (except storage replication)
– Limited to batch jobs and computations that are

expressible as a map() followed by a reduce()

Google’s BigTable [2006]

• “Three-dimensional” structured key-value store:
– <row key, column key, timestamp> → value

• Effectively a distributed, sorted, sparse map
• Versioned web contents by URL, user activity history, web logs, …

column
(key: string)

row
(key: string)

timestamp
(key: int64)

cell

<“larry.page“, “websearch“, 133746428> → “cat pictures“

22

Google’s BigTable [2006]

• Distributed tablets (~1 GB max) hold subsets of map
• Adjacent rows have user-specifiable locality
• E.g., store pages for a particular website in the same tablet

• On top of Colossus, which handles replication and fault
tolerance: only one (active) server per tablet!

• Reads & writes within a row are transactional
– Independently of the number of columns touched
– But: no cross-row transactions possible

• META0 tablet is “root” for name resolution
– Filesystem meta stored in BigTable itself

• Use Chubby to elect master (META0 tablet server), and to
maintain list of tablet servers & schemas
– 5-way replicated Paxos consensus on data in Chubby

Google’s Spanner [2012]

• BigTable insufficient for some consistency needs

• Often have transactions across >1 datacenters

– May buy app on Play Store while travelling in the U.S.

– Hit U.S. server, but customer billing data is in U.K.

• Spanner offers transactional consistency: full RDBMS

power, ACID properties, at global scale!

• Wide-area consistency is hard

– Due to long delays and clock skew

• Secret sauce: hardware-assisted clock sync
– Using GPS and atomic clocks in datacenters

– Use global timestamps and Paxos to reach consensus

– Still have a period of uncertainty for write TX: wait it out!

Comparison

Dynamo BigTable Spanner

simple key-value full transactions

low latency
high throughput,

high latency
low throughput,

Availability

eventual strongConsistency

Expressivity

weak(ish)

row transactions

Summary + next time

• Strong, weak, and eventual consistency
• Quorum replication
• Session guarantees
• CAP theorem
• Amazon/Google case studies

• Distributed-system security
– Access control, capabilities, RBAC, single-system sign on

• Distributed storage system case studies
– NASD, AFS3, and Coda

26

