
Distributed systems
Lecture 13: Vector clocks, consistent cuts, process

groups, and distributed mutual exclusion

Michaelmas 2018
Dr Richard Mortier and
Dr Anil Madhavapeddy

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)

1

Last time
• Saw physical time can’t be kept exactly in sync;

instead use logical clocks to track ordering
between events:
– Defined a® b to mean ‘a happens-before b’
– Easy inside single process, & use causal ordering

(send® receive) to extend relation across processes
– If sendi(m1) ® sendj(m2)

then deliverk(m1) ® deliverk(m2)
• Lamport clocks, L(e): an integer
– Increment to (max of (sender, receiver)) + 1 on receipt
– But given L(a) < L(b), order of a and b is unknown

• The obvious question arises: How can we extend
logical time to work “in the other direction”?

2

Vector clocks

• With Lamport clocks, given L(a) and L(b), we
can’t tell if a® b or b® a or a ~ b

• One solution is vector clocks:
– An ordered list of logical clocks, one per-process
– Each process Pi maintains Vi[], initially all zeroes
– On a local event e, Pi increments Vi[i]

• If the event is message send, new Vi[] copied into packet
– If Pi receives a message from Pj then, for all k = 0, 1, …,

it sets Vi[k] := max(Vj[k], Vi[k]), and increments Vi[i]
• Intuitively Vi[k] captures the number of events at

process Pk that have been observed by Pi

3

Vector clocks: example

• When P2 receives m1, it merges entries from P1’s clock
– choose the maximum value in each position

• Similarly when P3 receives m2, it merges in P2’s clock
– this incorporates the changes from P1 that P2 already saw

• Vector clocks explicitly track transitive causal order:
timestamp of f captures the history of a, b, c & d

4

P1

P2 physical time

P3

c

e

a

(1,0,0)

b m1 (2,0,0)

f

d m2 (2,2,0)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

Using vector clocks for ordering

• Can compare vector clocks piecewise:
– Vi = Vj iff Vi[k] = Vj[k] for k = 0, 1, 2, …
– Vi ≤ Vj iff Vi[k] ≤ Vj[k] for k = 0, 1, 2, …
– Vi < Vj iff Vi ≤ Vj and Vi ≠ Vj
– Vi ~ Vj otherwise

• For any two event timestamps T(a) and T(b)
– if a® b then T(a) < T(b) ; and
– if T(a) < T(b) then a® b

• Hence can use timestamps to determine if there
is a causal ordering between any two events
– i.e. determine whether a® b, b® a, or a ~ b

5

e.g. [2,0,0] versus [0,0,1]

Does this seem familiar? Recall Time-Stamp Ordering
and Optimistic Concurrency Control for transactions

Consistent global state

• We have the notion of “a happens-before b” (a® b) or
“a is concurrent with b” (a ~ b)

• What about ‘instantaneous’ system-wide state?
– distributed debugging, GC, deadlock detection, ...

• Chandy/Lamport introduced consistent cuts:
– draw a (possibly wiggly) line across all processes
– this is a consistent cut if the set of events (on the LHS) is

closed under the happens-before relationship
– i.e. if the cut includes event x, then it also includes all

events e which happened before x
• In practical terms, this means every delivered message

included in the cut was also sent within the cut

6

Consistent cuts: example

• Vertical cuts are always consistent (due to the way we
draw these diagrams), but some curves are ok too:
– providing we don’t include any receive events without

their corresponding send events
• Intuition is that a consistent cut could have occurred

during execution (depending on scheduling etc)
7

P1

P2 physical time

P3

a b

i l

f g

c d

e

k

h

j

Observing consistent cuts – sketch
We will skip this material in lecture and it is not examinable
– but it is helpful in thinking about distributed algorithms:
• Chandy/Lamport Snapshot Algorithm (1985)
• Distributed algorithm to generate a snapshot of relevant

system-wide state (e.g. all memory, locks held, …)
• Flood a special marker message M to all processes; causal

order of flood defines the cut
• If Pi receives M from Pj and it has yet to snapshot:

– It pauses all communication, takes local snapshot & sets Cij to {}
– Then sends M to all other processes Pk and starts recording Cik =

{ set of all post local snapshot messages received from Pk }
• If Pi receives M from some Pk after taking snapshot

– Stops recording Cik, and saves alongside local snapshot
• Global snapshot comprises all local snapshots & Cij
• Assumes reliable, in-order messages, & no failures 8

Process groups

• Process groups are a key distributed-systems primitive:

– Set of processes on some number of machines

– Possible to multicast messages to all members

– Allows fault-tolerant systems even if some processes fail

• Membership can be fixed or dynamic
– If dynamic, have explicit join() and leave() primitives

• Groups can be open or closed:

– Closed groups only allow messages from members

• Internally can be structured (e.g. coordinator and set of

slaves), or symmetric (peer-to-peer)

– Coordinator makes e.g. concurrent join/leave easier…

– … but may require extra work to elect coordinator

9

When we use “multicast” in distributed systems, we mean something stronger

than conventional network datagram multicasting – do not confuse them

Group communication: assumptions

• Assume we have ability to send a message to
multiple (or all) members of a group
– Don’t care if ‘true’ multicast (single packet sent,

received by multiple recipients) or “netcast” (send set
of messages, one to each recipient)

• Assume also that message delivery is reliable,
and that messages arrive in bounded time
– But may take different amounts of time to reach

different recipients
• Assume (for now) that processes don’t crash
• What delivery orderings can we enforce?

10

FIFO ordering

• With FIFO ordering, messages from process Pi must be
received at each process Pj in the order they were sent
– E.g. in the above, each receiver must see m1 before it sees m3
– But other relative delivery orders are unconstrained – e.g., m1 vs

m2, m2 vs. m4, etc.
• Looks easy, but is non-trivial on delays/retransmissions

– E.g. what if message m1 to P2 takes a loooong time?
• Receivers may need to buffer messages to ensure order

– Must “hold back” m3 until m1 has been delivered to P2
11

P1

P2
physical time

P4

m1

P3
m2

m3

m4

?

Receiving versus delivering

• Group communication middleware provides extra
features above ‘basic’ communication
– e.g. providing reliability and/or ordering guarantees

on top of IP multicast or netcast
• Assume that OS provides receive() primitive:
– returns with a packet when one arrives on wire

• Received messages either delivered or held back:
– Delivered means inserted into delivery queue
– Held back means inserted into hold-back queue
– Held back messages are delivered later as the result of

the receipt of another message…

12

Implementing FIFO ordering

• Each process Pi maintains sequence number (SeqNo) Si
• New messages sent by Pi include Si, incremented after each send

– Not including retransmissions, which retransmit with the same SeqNo!
• Pj maintains Sji: the SeqNo of the last delivered message from Pi

– If receive message from Pi with SeqNo ≠ (Sji+1), hold back
– When receive message with SeqNo = (Sji+1), enqueue for delivery
– Also deliver consecutive messages in hold-back queue (if present)
– Update Sji

• Apps. receive asynchronously as they read from delivery queue 13

delivery queue

hold-back queue

receive(M from Pi) {
s = SeqNo(M);
if (s == (Sji+1)) {

deliver(M);
s = flush(hbq);
Sji = s;

} else holdback(M);
}

add M to delivery Q
anything deliverable?

can’t deliver – hold back

messages consumed by application

held back message delivered
Sji

Stronger orderings
• Can also implement FIFO ordering by just using a

reliable FIFO transport like TCP/IP
• But the general ‘receive versus deliver’ model also

allows us to provide stronger orderings:
– Causal ordering: if event multicast(g, m1) ® multicast(g,
m2), then all processes will see m1 before m2

– Total ordering: if any process delivers a message m1
before m2, then all processes will deliver m1 before m2

• Causal ordering implies FIFO ordering, since any two
multicasts by the same process are related by ®

• Total ordering (as defined) does not imply FIFO (or
causal) ordering, just says that all processes must agree
– Sometimes want FIFO-total ordering (combines the two)

14

Causal ordering

• Same example as before, but causal ordering requires:
(a) everyone must see m1 before m3 (as with FIFO), and
(b) everyone must see m1 before m2 (due to happens-before)

• Is this ok?
– No! m1®m2, but P2 sees m2 before m1
– To be correct, must hold back (delay) delivery of m2 at P2
– But how do we know this? 15

P1

P2
physical time

P4

m1

P3
m2

m3

m4

Have (0,0,0) != (1,0,2), so must
hold back m2 until missing

events seen

Once m1 received, can deliver
m1 and then m2

Implementing causal ordering
• Turns out this is pretty easy!
– Start with receive algorithm for FIFO multicast…
– and replace sequence numbers with vector clocks

16

• Some care needed with dynamic groups

P1

P2
m1

P3
m2

→(1,0,0)

→(1,0,1)

→(2,0,2)

→(1,0,2)

→(1,1,0)

Total ordering
• Sometimes we want all processes to see exactly the

same, FIFO, sequence of messages
– particularly for state machine replication (see later)

• One way is to have a ‘can send’ token:
– Token passed round-robin between processes
– Only process with token can send (if they want)

• Or use a dedicated sequencer process
– Other processes ask for global sequence no. (GSN), and

then send with this in packet
– Use FIFO ordering algorithm, but on GSNs

• Can also build non-FIFO total-order multicast by having
processes generate GSNs themselves and resolving ties

17

Ordering and asynchrony
• FIFO ordering allows quite a lot of asynchrony
– E.g. any process can delay sending a message until it has a

batch (to improve performance)
– Or can just tolerate variable and/or long delays

• Causal ordering also allows some asynchrony
– But must be careful queues don’t grow too large!

• Traditional total-order multicast not so good:
– Since every message delivery transitively depends on

every other one, delays holds up the entire system
– Instead tend to an (almost) synchronous model, but this

performs poorly, particularly over the wide area ;-)
– Some clever work on virtual synchrony (for the interested)

• Key insight: allow applications to define ordering operator(s)

18

Distributed mutual exclusion

• In first part of course, saw need to coordinate
concurrent processes / threads
– In particular considered how to ensure mutual exclusion:

allow only 1 thread in a critical section
• A variety of schemes possible:
– test-and-set locks; semaphores; monitors; active objects

• But most of these ultimately rely on hardware support
(atomic operations, or disabling interrupts…)
– not available across an entire distributed system

• Assuming we have some shared distributed resources,
how can we provide mutual exclusion in this case?

19

Solution #1: central lock server

• Nominate one process C as coordinator
– If Pi wants to enter critical section, simply sends lock

message to C, and waits for a reply
– If resource free, C replies to Pi with a grant message;

otherwise C adds Pi to a wait queue
– When finished, Pi sends unlock message to C
– C sends grant message to first process in wait queue

20

P1

P2 physical time

C

lock(L)

lock(L)

unlock(L)

gr
an

t(L
)

gr
an

t(L
)

ac
k(

L)

...execute critical section

Central lock server: pros and cons

• Central lock server has some good properties:
– Simple to understand and verify
– Live (providing delays are bounded, and no failure)
– Fair (if queue is fair, e.g. FIFO), and easily supports

priorities if we want them
– Decent performance: lock acquire takes one round-

trip, and release is ‘free’ with asynchronous messages
• But C can become a performance bottleneck…
• … and can’t distinguish crash of C from long wait
– can add additional messages, at some cost

21

Solution #2: token passing

• Avoid central bottleneck
• Arrange processes in a logical ring
– Each process knows its predecessor & successor
– Single token passes continuously around ring
– Can only enter critical section when possess token;

pass token on when finished (or if don’t need to enter
critical section) 22

P0

P4
P3

P1

P2

P5

Initial token
generated by P0 Passes clockwise

around ‘ring’
If e.g. P4 wants to

enter CS, holds onto
token for duration

Token passing: pros and cons
• Several advantages:
– Simple to understand: only 1 process ever has token =>

mutual exclusion guaranteed by construction
– No central server bottleneck
– Liveness guaranteed (in the absence of failure)
– So-so performance (between 0 and N messages until a

waiting process enters, 1 message to leave)
• But:
– Doesn’t guarantee fairness (FIFO order)
– If a process crashes must repair ring (route around)
– And worse: may need to regenerate token – tricky!

• And constant network traffic: an advantage???

23

Solution #3: Totally ordered multicast

• Scheme due to Ricart & Agrawala (1981)

• Consider N processes, where each process maintains local
variable state which is one of { FREE, WANT, HELD }

• Invariant: At most one process is in HELD state at a time.

• To obtain lock, a process Pi sets state := WANT, and then
multicasts lock request to all other processes

• When a process Pj receives a request from Pi:
– If Pj’s local state is FREE, then Pj replies immediately with OK
– If Pj’s local state is HELD, Pj queues the request to reply later

• A requesting process Pi waits for OK from N-1 processes

– Once received, sets state := HELD, and enters critical section

– Once done, sets state := FREE, & replies to any queued requests

• What about concurrent requests?

– By concurrent we mean: Pj is already in the WANT state when it
receives a request from Pi 24

Handling concurrent requests
• Need to decide upon a total order:
– Each process maintains a Lamport timestamp, Ti
– Processes put current Ti into request message
– Insufficient on its own (recall that Lamport timestamps can

be identical) => use process ID (or similar) to break ties
– Note: may not be “fair” as the same process always “wins”

• Hence if a process Pj receives a request from Pi and Pj is
also acquiring the lock (i.e. Pj’s local state is WANT)
– If (Tj, Pj) < (Ti, Pi) then queue request from Pi
– Otherwise, reply with OK, and continue waiting

• Note that using the total order ensures correctness,
but not fairness (i.e. no FIFO ordering)
– Q: can we fix this by using vector clocks?

25

Totally ordered multicast: example

• Imagine P1 and P2 simultaneously try to acquire lock…
– Both set state to WANT, and both send multicast message
– Assume that timestamps are 17 (for P1) and 9 (for P2)

• P3 has no interest (state is FREE), so replies Ok to both
• 9 < 17: P1 replies OK; P2 stays quiet & enqueues P1
• P2 enters the critical section and executes…
• and when done, replies to P1 (to enter critical section)

26

P3

17 17

17

9

9 9

P2

P1 P3
OK

P2

P1 P3

P2

P1

OKOK

OK

F HW

W

W F

FH

F

Additional details
• Completely decentralized solution ... but:

– Lots of messages (1 multicast + N-1 unicast)
– OK for most recent holder to re-enter CS without any messages

• Variant scheme (Lamport) - multicast for total ordering
– Processes each maintain (and collectively agree on) an ordered queue

of requests and ACKs, relying on total ordering
– To enter, process Pi multicasts request(Pi, Ti) [same as before]
– On receipt of a message, Pj replies with an ack(Pj,Tj) unless request(Pj,

Tj) is currently first in the queue and Pj is waiting for Pi to ACK
– Processes add all requests and ACKs to the queue in order
– If process Pi sees their request is earliest and ACK’d by all, can enter CS

… and when done, multicasts a release(Pi, Ti) message
– When Pj receives release, removes Pi’s request from queue
– If Pj’s request is now earliest in queue, can enter CS…

• Both Ricart & Agrawala and Lamport’s scheme have N points of
failure: doomed if any process dies :-(

27

Summary + next time
• Vector clocks
• Consistent global state + consistent cuts
• Process groups and reliable multicast
• Implementing order
• Distributed mutual exclusion

• Leader elections and distributed consensus
• Distributed transactions and commit protocols
• Replication and consistency

28

