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Last time
• Saw physical time can’t be kept exactly in sync; 

instead use logical clocks to track ordering 
between events:
– Defined a® b to mean ‘a happens-before b’
– Easy inside single process, & use causal ordering

(send® receive) to extend relation across processes
– If sendi(m1) ® sendj(m2) 

then deliverk(m1) ® deliverk(m2)
• Lamport clocks, L(e): an integer
– Increment to (max of (sender, receiver)) + 1 on receipt
– But given L(a) < L(b), order of a and b is unknown

• The obvious question arises: How can we extend 
logical time to work “in the other direction”?
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Vector clocks

• With Lamport clocks, given L(a) and L(b), we  
can’t tell if a® b or b® a or a ~ b

• One solution is vector clocks:
– An ordered list of logical clocks, one per-process
– Each process Pi maintains Vi[], initially all zeroes
– On a local event e, Pi increments Vi[i]

• If the event is message send, new Vi[] copied into packet
– If Pi receives a message from Pj then, for all k = 0, 1, …, 

it sets Vi[k] := max(Vj[k], Vi[k]), and increments Vi[i]
• Intuitively Vi[k] captures the number of events at 

process Pk that have been observed by Pi
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Vector clocks: example

• When P2 receives m1, it merges entries from P1’s clock
– choose the maximum value in each position

• Similarly when P3 receives m2, it merges in P2’s clock
– this incorporates the changes from P1 that P2 already saw

• Vector clocks explicitly track transitive causal order:
timestamp of f captures the history of a, b, c & d
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Using vector clocks for ordering

• Can compare vector clocks piecewise:
– Vi = Vj iff Vi[k] = Vj[k] for k = 0, 1, 2, …
– Vi ≤ Vj iff Vi[k] ≤ Vj[k] for k = 0, 1, 2, …
– Vi < Vj iff Vi ≤ Vj and Vi ≠ Vj
– Vi ~ Vj otherwise

• For any two event timestamps T(a) and T(b)
– if a® b then T(a) < T(b) ; and
– if T(a) < T(b) then a® b

• Hence can use timestamps to determine if there 
is a causal ordering between any two events
– i.e. determine whether a® b, b® a, or a ~ b
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e.g. [2,0,0] versus [0,0,1]

Does this seem familiar? Recall Time-Stamp Ordering
and Optimistic Concurrency Control for transactions



Consistent global state

• We have the notion of  “a happens-before b” (a® b) or 
“a is concurrent with b” (a ~ b)

• What about ‘instantaneous’ system-wide state?
– distributed debugging, GC, deadlock detection, ...

• Chandy/Lamport introduced consistent cuts:
– draw a (possibly wiggly) line across all processes
– this is a consistent cut if the set of events (on the LHS) is 

closed under the happens-before relationship
– i.e. if the cut includes event x, then it also includes all 

events e which happened before x
• In practical terms, this means every delivered message 

included in the cut was also sent within the cut
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Consistent cuts: example

• Vertical cuts are always consistent (due to the way we 
draw these diagrams), but some curves are ok too:
– providing we don’t include any receive events without 

their corresponding send events
• Intuition is that a consistent cut could have occurred 

during execution (depending on scheduling etc)
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Observing consistent cuts – sketch 
We will skip this material in lecture and it is not examinable 
– but it is helpful in thinking about distributed algorithms:
• Chandy/Lamport Snapshot Algorithm (1985) 
• Distributed algorithm to generate a snapshot of relevant 

system-wide state (e.g. all memory, locks held, …)
• Flood a special marker message M to all processes; causal 

order of flood defines the cut
• If Pi receives M from Pj and it has yet to snapshot: 

– It pauses all communication, takes local snapshot & sets Cij to {}
– Then sends M to all other processes Pk and starts recording Cik = 

{ set of all post local snapshot messages received from Pk }
• If Pi receives M from some Pk after taking snapshot

– Stops recording Cik, and saves alongside local snapshot
• Global snapshot comprises all local snapshots & Cij
• Assumes reliable, in-order messages, & no failures 8



Process groups

• Process groups are a key distributed-systems primitive:

– Set of processes on some number of machines

– Possible to multicast messages to all members

– Allows fault-tolerant systems even if some processes fail

• Membership can be fixed or dynamic
– If dynamic, have explicit join() and leave() primitives

• Groups can be open or closed:

– Closed groups only allow messages from members

• Internally can be structured (e.g. coordinator and set of 

slaves), or symmetric (peer-to-peer)

– Coordinator makes e.g. concurrent join/leave easier… 

– … but may require extra work to elect coordinator 
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When we use “multicast” in distributed systems, we mean something stronger 

than conventional network datagram multicasting – do not confuse them



Group communication: assumptions

• Assume we have ability to send a message to 
multiple (or all) members of a group
– Don’t care if ‘true’ multicast (single packet sent, 

received by multiple recipients) or “netcast” (send set 
of messages, one to each recipient)

• Assume also that message delivery is reliable, 
and that messages arrive in bounded time
– But may take different amounts of time to reach 

different recipients
• Assume (for now) that processes don’t crash
• What delivery orderings can we enforce?
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FIFO ordering

• With FIFO ordering, messages from process Pi must be 
received at each process Pj in the order they were sent
– E.g. in the above, each receiver must see m1 before it sees m3
– But other relative delivery orders are unconstrained – e.g., m1 vs 

m2, m2 vs. m4, etc.
• Looks easy, but is non-trivial on delays/retransmissions

– E.g. what if message m1 to P2 takes a loooong time?
• Receivers may need to buffer messages to ensure order

– Must “hold back” m3 until m1 has been delivered to P2
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Receiving versus delivering

• Group communication middleware provides extra 
features above ‘basic’ communication
– e.g. providing reliability and/or ordering guarantees 

on top of IP multicast or netcast
• Assume that OS provides receive() primitive: 
– returns with a packet when one arrives on wire

• Received messages either delivered or held back:
– Delivered means inserted into delivery queue
– Held back means inserted into hold-back queue
– Held back messages are delivered later as the result of 

the receipt of another message… 
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Implementing FIFO ordering

• Each process Pi maintains sequence number (SeqNo) Si
• New messages sent by Pi include Si, incremented after each send 

– Not including retransmissions, which retransmit with the same SeqNo!
• Pj maintains Sji: the SeqNo of the last delivered message from Pi

– If receive message from Pi with SeqNo ≠ (Sji+1), hold back
– When receive message with SeqNo = (Sji+1), enqueue for delivery
– Also deliver consecutive messages in hold-back queue (if present)
– Update Sji

• Apps. receive asynchronously as they read from delivery queue 13
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Stronger orderings
• Can also implement FIFO ordering by just using a 

reliable FIFO transport like TCP/IP
• But the general ‘receive versus deliver’ model also 

allows us to provide stronger orderings:
– Causal ordering: if event multicast(g, m1) ® multicast(g, 
m2), then all processes will see m1 before m2

– Total ordering: if any process delivers a message m1
before m2, then all processes will deliver m1 before m2

• Causal ordering implies FIFO ordering, since any two 
multicasts by the same process are related by ®

• Total ordering (as defined) does not imply FIFO (or 
causal) ordering, just says that all processes must agree
– Sometimes want FIFO-total ordering (combines the two)
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Causal ordering

• Same example as before, but causal ordering requires:
(a) everyone must see m1 before m3 (as with FIFO), and
(b) everyone must see m1 before m2 (due to happens-before)

• Is this ok?
– No! m1®m2, but P2 sees m2 before m1
– To be correct, must hold back (delay) delivery of m2 at P2
– But how do we know this? 15
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Have (0,0,0) != (1,0,2), so must 
hold back m2 until missing 

events seen

Once m1 received, can deliver 
m1 and then m2

Implementing causal ordering
• Turns out this is pretty easy!
– Start with receive algorithm for FIFO multicast…
– and replace sequence numbers with vector clocks
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Total ordering
• Sometimes we want all processes to see exactly the 

same, FIFO, sequence of messages
– particularly for state machine replication (see later)

• One way is to have a ‘can send’ token:
– Token passed round-robin between processes
– Only process with token can send (if they want)

• Or use a dedicated sequencer process
– Other processes ask for global sequence no. (GSN), and 

then send with this in packet
– Use FIFO ordering algorithm, but on GSNs

• Can also build non-FIFO total-order multicast by having 
processes generate GSNs themselves and resolving ties
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Ordering and asynchrony
• FIFO ordering allows quite a lot of asynchrony
– E.g. any process can delay sending a message until it has a 

batch (to improve performance)
– Or can just tolerate variable and/or long delays

• Causal ordering also allows some asynchrony
– But must be careful queues don’t grow too large!

• Traditional total-order multicast not so good:
– Since every message delivery transitively depends on 

every other one, delays holds up the entire system
– Instead tend to an (almost) synchronous model, but this 

performs poorly, particularly over the wide area ;-)
– Some clever work on virtual synchrony (for the interested)

• Key insight: allow applications to define ordering operator(s)
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Distributed mutual exclusion

• In first part of course, saw need to coordinate 
concurrent processes / threads
– In particular considered how to ensure mutual exclusion: 

allow only 1 thread in a critical section
• A variety of schemes possible:
– test-and-set locks; semaphores; monitors; active objects

• But most of these ultimately rely on hardware support 
(atomic operations, or disabling interrupts…)
– not available across an entire distributed system

• Assuming we have some shared distributed resources, 
how can we provide mutual exclusion in this case?
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Solution #1: central lock server

• Nominate one process C as coordinator
– If Pi wants to enter critical section, simply sends lock

message to C, and waits for a reply
– If resource free, C replies to Pi with a grant message; 

otherwise C adds Pi to a wait queue
– When finished, Pi sends unlock message to C
– C sends grant message to first process in wait queue
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Central lock server: pros and cons

• Central lock server has some good properties:
– Simple to understand and verify
– Live (providing delays are bounded, and no failure)
– Fair (if queue is fair, e.g. FIFO), and easily supports 

priorities if we want them
– Decent performance: lock acquire takes one round-

trip, and release is ‘free’ with asynchronous messages
• But C can become a performance bottleneck…
• … and can’t distinguish crash of C from long wait
– can add additional messages, at some cost
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Solution #2: token passing

• Avoid central bottleneck
• Arrange processes in a logical ring
– Each process knows its predecessor & successor
– Single token passes continuously around ring
– Can only enter critical section when possess token; 

pass token on when finished (or if don’t need to enter 
critical section) 22
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Token passing: pros and cons
• Several advantages:
– Simple to understand: only 1 process ever has token => 

mutual exclusion guaranteed by construction
– No central server bottleneck
– Liveness guaranteed (in the absence of failure)
– So-so performance (between 0 and N messages until a 

waiting process enters, 1 message to leave)
• But: 
– Doesn’t guarantee fairness (FIFO order)
– If a process crashes must repair ring (route around)
– And worse: may need to regenerate token – tricky!

• And constant network traffic: an advantage???
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Solution #3: Totally ordered multicast

• Scheme due to Ricart & Agrawala (1981)

• Consider N processes, where each process maintains local 
variable state which is one of { FREE, WANT, HELD }

• Invariant: At most one process is in HELD state at a time.

• To obtain lock, a process Pi sets state := WANT, and then 
multicasts lock request to all other processes

• When a process Pj receives a request from Pi:
– If Pj’s local state is FREE, then Pj replies immediately with OK
– If Pj’s local state is HELD, Pj queues the request to reply later

• A requesting process Pi waits for OK from N-1 processes

– Once received, sets state := HELD, and enters critical section

– Once done, sets state := FREE, & replies to any queued requests

• What about concurrent requests?

– By concurrent we mean: Pj is already in the WANT state when it 
receives a request from Pi 24



Handling concurrent requests
• Need to decide upon a total order:
– Each process maintains a Lamport timestamp, Ti
– Processes put current Ti into request message
– Insufficient on its own (recall that Lamport timestamps can 

be identical) => use process ID (or similar) to break ties
– Note: may not be “fair” as the same process always “wins”

• Hence if a process Pj receives a request from Pi and Pj is 
also acquiring the lock (i.e. Pj’s local state is WANT)
– If (Tj, Pj) < (Ti, Pi) then queue request from Pi
– Otherwise, reply with OK, and continue waiting

• Note that using the total order ensures correctness, 
but not fairness (i.e. no FIFO ordering)
– Q: can we fix this by using vector clocks?

25



Totally ordered multicast: example

• Imagine P1 and P2 simultaneously try to acquire lock…
– Both set state to WANT, and both send multicast message
– Assume that timestamps are 17 (for P1) and 9 (for P2)

• P3 has no interest (state is FREE), so replies Ok to both
• 9 < 17: P1 replies OK; P2 stays quiet & enqueues P1
• P2 enters the critical section and executes… 
• and when done, replies to P1 (to enter critical section)
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Additional details
• Completely decentralized solution ... but:

– Lots of messages (1 multicast + N-1 unicast)
– OK for most recent holder to re-enter CS without any messages

• Variant scheme (Lamport) - multicast for total ordering
– Processes each maintain (and collectively agree on) an ordered queue 

of requests and ACKs, relying on total ordering
– To enter, process Pi multicasts request(Pi, Ti) [same as before]
– On receipt of a message, Pj replies with an ack(Pj,Tj) unless request(Pj, 

Tj) is currently first in the queue and Pj is waiting for Pi to ACK
– Processes add all requests and ACKs to the queue in order
– If process Pi sees their request is earliest and ACK’d by all, can enter CS 

… and when done, multicasts a release(Pi, Ti) message 
– When Pj receives release, removes Pi’s request from queue
– If Pj’s request is now earliest in queue, can enter CS… 

• Both Ricart & Agrawala and Lamport’s scheme have N points of 
failure: doomed if any process dies :-(
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Summary + next time
• Vector clocks
• Consistent global state + consistent cuts
• Process groups and reliable multicast
• Implementing order
• Distributed mutual exclusion

• Leader elections and distributed consensus
• Distributed transactions and commit protocols
• Replication and consistency
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