
Distributed systems
Lecture 12: Clock synchronization and logical time

Michaelmas 2018
Dr Richard Mortier and 
Dr Anil Madhavapeddy

(With thanks to Dr Robert N. M. Watson 
and Dr Steven Hand)

1



Last time

• Object-Oriented Middleware (OOM)
• Started to look at time in distributed systems
– Coordinating actions between processes

• Physical clocks ‘tick’ based on physical 
processes (e.g. oscillations in quartz crystals, 
atomic transitions)
– Imperfect, so gain/lose time over time
– (wrt nominal perfect ‘reference’ clock (e.g., UTC))

• What clocks in computers are for…

2



The clock synchronization problem
• In distributed systems, we’d like all the different 

nodes to have the same notion of time, but
– quartz oscillators oscillate at slightly different 

frequencies (time, temperature, manufacture)
• Hence clocks tick at different rates:
– create ever-widening gap in perceived time
– this is called clock drift

• The difference between two clocks at a given 
point in time is called clock skew

• Clock synchronization aims to minimize clock 
skew between two (or a set of) different clocks

3



Clock skew and clock drift

February 18, 2012
08:00:00

4

08:00:00 08:00:00

NB: Steve Hand’s watches, not mine.



Clock skew and clock drift

5

March 23, 2012
08:00:00

08:01:24 08:01:48
Skew = 84 seconds
Drift = 84s / 34 days

= +2.47s per day

Skew = 108 seconds
Drift = 108s / 34 days

= +3.18s per day



Dealing with drift

• A clock can have positive or negative drift with 
respect to a reference clock (e.g. UTC)
– Need to [re]synchronize periodically

• Can’t just set clock to ‘correct’ time
– Jumps (particularly backward!) can confuse apps

• Instead aim for gradual compensation
– If clock fast, make it run slower until correct
– If clock slow, make it run faster until correct

6



Compensation
• Most systems relate real-time to cycle counters or 

periodic interrupt sources
– E.g. calibrate CPU Time-Stamp Counter (TSC) against 

CMOS Real-Time Clock (RTC) at boot, and compute scaling 
factor (e.g. cycles per ms)

– Can now convert TSC differences to real-time
– Similarly can determine how much real-time passes 

between periodic interrupts: call this delta
– On interrupt, add delta to software real-time clock

• Making small changes to delta gradually adjusts time
– Once synchronized, change delta back to original value
– (Or try to estimate drift & continually adjust delta)
– Minimise time discontinuities from stepping

7



Obtaining accurate time

• Of course, need some way to know correct time 
(e.g. UTC) in order to adjust clock!
– could attach a GPS receiver (or GOES receiver) to 

computer, and get ±1ms (or ±0.1ms) accuracy…
– …but too expensive/clunky for general use
– (RF in server rooms and data centres non-ideal)

• Instead can ask some machine with a more 
accurate clock over the network: a time server
– e.g. send RPC getTime() to server
– What’s the problem here?

8



Cristian’s Algorithm (1989)

• Attempt to compensate for network delays
– Remember local time just before sending: T0
– Server gets request, and puts Ts into response
– When client receives reply, notes local time: T1
– Correct time is then approximately (Ts + (T1- T0) / 2)

(assumes symmetric behaviour...)

9

client

server
time

request

T0

reply

T1

Ts



Cristian’s Algorithm: Example

• RTT = 460ms, so one way delay is [approx] 230ms.
• Estimate correct time as (08:02:04.325 + 230ms) = 08:02:04.555
• Client gradually adjusts local clock to gain 2.425 seconds

10

C08:02:01.670

S

C08:02:02.130

08:02:04.325

T0

T1

Ts

08:02
:04.3

25

What’s the time?

Tim
e



Berkeley Algorithm (1989)
• Don’t assume have an accurate time server
• Try to synchronize a set of clocks to the average
– One machine, M, is designated the master
– M periodically polls all other machines for their time
– (can use Cristian’s technique to account for delays)
– Master computes average (including itself, but ignoring 

outliers), and sends an adjustment to each machine

M

A B C

08:01:12

08
:0

2:
01

11:44:31

08:01:17 M

A B C

+0
0:00:18

-0
0:

00
:3

1 -03:43:01

Avg = (01:17+01:12+02:01)/3
= (04:30/3) = 01:30

11

+00:00:13



Network Time Protocol (NTP)

• Previous schemes designed for LANs; in practice 

today’s systems use NTP:

– Global service designed to enable clients to stay 

within (hopefully) a few ms of UTC

• Hierarchy of clocks arranged into strata
– Stratum0 = atomic clocks (or maybe GPS, GEOS)

– Stratum1 = servers directly attached to stratum0 clock

– Stratum2 = servers that synchronize with stratum1

– … and so on

• Timestamps made up of seconds and ‘fraction’

– e.g. 32 bit seconds-since-epoch; 32 bit ‘picoseconds’

12



NTP algorithm

• UDP/IP messages with slots for four timestamps
– systems insert timestamps at earliest/latest opportunity

• Client computes:
– Offset O = ((T1-T0) + (T2-T3)) / 2
– Delay D = (T3-T0) – (T2-T1)

• Relies on symmetric messaging delays to be correct 
(but now excludes variable processing delay at server)

13

client

server
timeT1

request

T0

reply

T3

T2

Measured difference in average 
timestamps: (T1+T2)/2 – (T0+T3)/2

Estimated two-way communication 
delay minus processing time



NTP example

• First request/reply pair: 
– Total message delay is ((6-3) - (38-37)) = 2 
– Offset is ((37-3) + (38-6)) / 2 = 33

• Second request/reply pair: 
– Total message delay is ((13-8) - (45-42)) = 2 
– Offset is ((42-8) + (45-13)) / 2 = 33

14

client

server
time

request reply

02 03 04 05 06 07 08 09 10 11 12 13

35 36 37 38 39 40 41 42 43 44 45 46



NTP: additional details (1)

• NTP uses multiple requests per server
– Remember <offset, delay> in each case
– Calculate the filter dispersion of the offsets & discard 

outliers
– Chooses remaining candidate with the smallest delay

• NTP can also use multiple servers
– Servers report synchronization dispersion = estimate 

of their quality relative to the root (stratum 0)
– Combined procedure to select best samples from best 

servers (see RFC 5905 for the gory details)
15



NTP: additional details (2)

• Various operating modes: 
– Broadcast (“multicast”): server advertises current 

time
– Client-server (“procedure call”): as described on 

previous slides
– Symmetric: between a set of NTP servers

• Security is supported
– Authenticate server, prevent replays
– Cryptographic cost compensated for

16



Physical clocks: summary

• Physical devices exhibit clock drift
– Even if initially correct, they tick too fast or too slow, 

and hence time ends up being wrong
– Drift rates depend on the specific device, and can vary 

with time, temperature, acceleration, …
• Instantaneous difference between clocks is clock 

skew
• Clock synchronization algorithms attempt to 

minimize the skew between a set of clocks
– Decide upon a target correct time (atomic, or average)
– Communicate to agree, compensating for delays
– In reality, will still have 1-10ms skew after sync ;-(

17



Ordering

• One use of time is to provide ordering
– If I withdrew £100 cash at 23:59.44… 
– And the bank computes interest at 00:00.00…
– Then interest calculation shouldn’t include the £100 

• But in distributed systems we can’t perfectly 
synchronize time => cannot use this for ordering
– Clock skew can be large, and may not be trusted
– And over large distances, relativistic events mean that 

ordering depends on the observer
– (similar effect due to finite ‘speed of Internet’ ;-)

18



The “happens-before” relation

• Often don’t need to know when event a occurred 
– Just need to know if a occurred before or after b

• Define the happens-before relation, a ® b
– If events a and b are within the same process, then 

a® b if a occurs with an earlier local timestamp
– Messages between processes are ordered causally, 

i.e. the event send(m)® the event receive(m)
– Transitivity: i.e. if a® b and b® c, then a® c

• Note that this only provides a partial order:
– Possible for neither a® b nor b® a to hold 
– We say that a and b are concurrent and write a ~ b

19



Example

• Three processes (each with 2 events), and 2 messages
– Due to process order, we know a® b, c® d and e® f
– Causal order tells us b® c and d® f 
– And by transitivity a® c, a® d, a® f, b® d, b® f, c® f

• However, event e is concurrent with a, b, c and d

20

P1

P2 physical time

P3

a b

e f

c d

m1

m2

? ?

? ?



Implementing Happens-Before

• One early scheme due to Lamport [1978]
– Each process Pi has a logical clock Li

• Li can simply be an integer, initialized to 0

– Li is incremented on every local event e
• We write Li(e) or L(e) as the timestamp of e

• Distributed time is implemented by propagating 
timestamps via messages on the network:
– When Pi sends a message, it increments Li and copies the 

value into the packet
– When Pi receives a message from Pj, it extracts Lj and sets 

Li := max(Li,Lj), and then increments Li
• Guarantees that if a® b, then L(a) < L(b)
• However if L(x) < L(y), this doesn’t imply x® y !

21



Lamport Clocks: Example

• When P2 receives m1, it extracts timestamp 2 and sets its 
clock to max(0, 2) before increment

• Possible for events to have duplicate timestamps
– E.g., event e has the same timestamp as event a

• If desired can break ties by looking at pids, IP addresses, … 
– This gives a total order, but doesn’t imply happens-before!

• Why might total order without happens-before be useful?
22

P1

P2 physical time

P3

a b

e f

c d

0→1 1→2

0→3 3→4

0→1 1→5

m1 (v=2)

m2 (v=4)



Summary + next time (ironically)

• Clock skew and drift
• The clock synchronization problem
• Cristian’s Algorithm, Berkeley Algorithm, NTP
• Logical time via the happens-before relation

• Vector clocks
• Consistent cuts
• Group communication
• Enforcing ordering vs. asynchrony
• Distributed mutual exclusion

23


