Still, there is something interesting to be said for *function problems* arising from *NP* problems. Suppose

\[L = \{ x \mid \exists y R(x, y) \}\]

where \(R \) is a polynomially-balanced, polynomial time decidable relation. A *witness function* for \(L \) is any function \(f \) such that:

- if \(x \in L \), then \(f(x) = y \) for some \(y \) such that \(R(x, y) \);
- \(f(x) = "no" \) otherwise.

The class \(\textbf{FNP} \) is a collection of witness functions for languages in \(\textbf{NP} \). \(\textbf{FP} \) is the subclass of \(\textbf{FNP} \) of those functions computable in *polynomial-time*.
A function which, for any given Boolean expression ϕ, gives a satisfying truth assignment if ϕ is satisfiable, and returns “no” otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time, then \(P = NP \).

If \(P = NP \), then for every language in NP, some witness function is computable in polynomial time, by a binary search algorithm.

\[
P = NP \text{ if, and only if, } FNP = FP
\]

Under a suitable definition of reduction, the witness functions for SAT are FNP-complete.
The *factorisation* function maps a number n to its prime factorisation:

$$2^{k_1} 3^{k_2} \ldots p_m^{k_m}.$$

This function is in \textit{FNP}. The corresponding decision problem (for which it is a witness function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in polynomial time.
Alice wishes to communicate with Bob without Eve eavesdropping.
In a private key system, there are two secret keys
\(e \) – the encryption key
\(d \) – the decryption key
and two functions \(D \) and \(E \) such that:

for any \(x \),

\[
D(E(x, e), d) = x.
\]

For instance, taking \(d = e \) and both \(D \) and \(E \) as exclusive or, we have the one time pad:

\[
(x \oplus e) \oplus e = x
\]
The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then so is the key:

$$e = x \oplus y$$
In public key cryptography, the encryption key e is public, and the decryption key d is private.

We still have,

$$D(E(x, e), d) = x$$

If E is polynomial time computable (and it must be if communication is not to be painfully slow), then the function that takes $y = E(x, e)$ to x (without knowing d), must be in FNP. Therefore, public key cryptography is not provably secure in the way that the one time pad is. It relies on the existence of functions in $\text{FNP} - \text{FP}$.
A function f is called a \textit{one way function} if it satisfies the following conditions:

1. f is one-to-one.
2. For each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.
3. $f \in \text{FP}$.
4. $f^{-1} \notin \text{FP}$.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq \text{NP}$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
Though one cannot hope to prove that the RSA function is one-way without separating P and NP, we might hope to make it as secure as a proof of NP-completeness.

Definition
A nondeterministic machine is *unambiguous* if, for any input x, there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.
Equivalently, \textbf{UP} is the class of languages of the form

$$\{ x \mid \exists y R(x, y) \}$$

Where R is polynomial time computable, polynomially balanced, and for each x, there is at most one y such that $R(x, y)$.
UP One-way Functions

We have

\[P \subseteq UP \subseteq NP \]

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P ≠ UP.
Suppose f is a \textit{one-way function}.

Define the language L_f by

$$L_f = \{(x, y) \mid \exists z (z \leq x \text{ and } f(z) = y)\}.$$

We can show that L_f is in \textsf{UP} but not in \textsf{P}.
Suppose that L is a language that is in UP but not in P. Let U be an unambiguous machine that accepts L.

Define the function f_U by

- if x is a string that encodes an accepting computation of U, then $f_U(x) = 1y$ where y is the input string accepted by this computation.
- $f_U(x) = 0x$ otherwise.

We can prove that f_U is a one-way function.