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Validity

VAL = {φ | φ 6∈ VAL}�the complement of VAL is in NP.

Guess a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether every truth assignment results
in true�a requirement that does not sit as well with the de�nition of
acceptance by a nondeterministic machine.
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Complementation

If we interchange accepting and rejecting states in a deterministic
machine that decides the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes de�ned in terms of nondeterministic machine models
are not necessarily closed under complementation of languages.

De�ne,
co-NP � the languages whose complements are in NP.

Anuj Dawar Complexity Theory



Succinct Certi�cates

The complexity class NP can be characterised as the collection of
languages of the form:

L = {x | ∃yR(x , y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p such
that if R(x , y) and the length of x is n, then the length of y is no
more than p(n).
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co-NP

As co-NP is the collection of complements of languages in NP, and P is
closed under complementation, co-NP can also be characterised as the
collection of languages of the form:

L = {x | ∀y |y | < p(|x |)→ R ′(x , y)}

NP � the collection of languages with succinct certi�cates of membership.
co-NP � the collection of languages with succinct certi�cates of
disquali�cation.
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NP co-NP

P

Any of the situations is consistent with our present state of knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP
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co-NP-complete

VAL � the collection of Boolean expressions that are valid is
co-NP-complete.
Any language L that is the complement of an NP-complete language is
co-NP-complete.
Any reduction of a language L1 to L2 is also a reduction of L̄1�the
complement of L1�to L̄2�the complement of L2.
There is an easy reduction from the complement of SAT to VAL, namely
the map that takes an expression to its negation.

VAL ∈ P⇒ P = NP = co-NP

VAL ∈ NP⇒ NP = co-NP
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Prime Numbers

Consider the decision problem PRIME:

Given a number x , is it prime?

This problem is in co-NP.

∀y(y < x → (y = 1 ∨ ¬(div(y , x))))

Note again, the algorithm that checks for all numbers up to
√
n

whether any of them divides n, is not polynomial, as
√
n is not

polynomial in the size of the input string, which is log n.
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Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct
certi�cates of primality based on:

A number p > 2 is prime if, and only if, there is a number r ,

1 < r < p, such that rp−1 = 1 mod p and r
p−1
q 6= 1 mod p for

all prime divisors q of p − 1.

Anuj Dawar Complexity Theory



Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

(x − a)p ≡ (xp − a) (mod p)

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the equivalence is
checked modulo a polynomial x r − 1, for �suitable� r .

The existence of suitable small r relies on deep results in number theory.
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Factors

Consider the language Factor

{(x , k) | x has a factor y with 1 < y < k}

Factor ∈ NP ∩ co-NP

Certi�cate of membership�a factor of x less than k .

Certi�cate of disquali�cation�the prime factorisation of x .
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Graph Isomorphism

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a bijection

ι : V1 → V2

such that for every u, v ∈ V1,

(u, v) ∈ E1 if, and only if, (ι(u), ι(v)) ∈ E2.
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Graph Isomorphism

Graph Isomorphism is

• in NP

• not known to be in P

• not known to be in co-NP

• not known (or expected) to be NP-complete

• recently shown to be in quasi-polynomial time, i.e. in

TIME(n(log n)k )

for a constant k .
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Optimisation

The Travelling Salesman Problem was originally conceived of as an
optimisation problem

to �nd a minimum cost tour.

We forced it into the mould of a decision problem � TSP � in order to �t
it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.
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This is still reasonable, as we are establishing the di�culty of the
problems.

A polynomial time solution to the optimisation version would give a
polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a
polynomial time algorithm for �nding the optimal value, using binary
search, if necessary.
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