Validity

\[\overline{\text{VAL}} = \{ \phi \mid \phi \not\in \text{VAL} \} \] — the complement of \text{VAL} is in \text{NP}.

Guess a \textit{falsifying} truth assignment and verify it.

Such an algorithm does not work for \text{VAL}.

In this case, we have to determine whether \textit{every} truth assignment results in \textit{true} — a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.
Complementation

If we interchange accepting and rejecting states in a deterministic machine that decides the language \(L \), we get one that accepts \(\overline{L} \).

If a language \(L \in \mathbf{P} \), then also \(\overline{L} \in \mathbf{P} \).

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

\(\text{co-NP} \) – the languages whose complements are in \(\mathbf{NP} \).
The complexity class \(\text{NP} \) can be characterised as the collection of languages of the form:

\[
L = \{ x \mid \exists y R(x, y) \}
\]

Where \(R \) is a relation on strings satisfying two key conditions

1. \(R \) is decidable in polynomial time.
2. \(R \) is \textit{polynomially balanced}. That is, there is a polynomial \(p \) such that if \(R(x, y) \) and the length of \(x \) is \(n \), then the length of \(y \) is no more than \(p(n) \).
As \(\text{co-NP} \) is the collection of complements of languages in \(\text{NP} \), and \(\text{P} \) is closed under complementation, \(\text{co-NP} \) can also be characterised as the collection of languages of the form:

\[
L = \{ x | \forall y |y| < p(|x|) \rightarrow R'(x, y) \}
\]

\(\text{NP} \) – the collection of languages with succinct certificates of membership.
\(\text{co-NP} \) – the collection of languages with succinct certificates of disqualification.
Any of the situations is consistent with our present state of knowledge:

- \(P = \text{NP} = \text{co-NP} \)
- \(P = \text{NP} \cap \text{co-NP} \neq \text{NP} \neq \text{co-NP} \)
- \(P \neq \text{NP} \cap \text{co-NP} = \text{NP} = \text{co-NP} \)
- \(P \neq \text{NP} \cap \text{co-NP} \neq \text{NP} \neq \text{co-NP} \)
VAL – the collection of Boolean expressions that are *valid* is *co-NP-complete*.

Any language L that is the complement of an NP-complete language is *co-NP-complete*.

Any reduction of a language L_1 to L_2 is also a reduction of $\overline{L_1}$–the complement of L_1–to $\overline{L_2}$–the complement of L_2.

There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

$$\text{VAL} \in P \Rightarrow P = \text{NP} = \text{co-NP}$$

$$\text{VAL} \in \text{NP} \Rightarrow \text{NP} = \text{co-NP}$$
Consider the decision problem **PRIME**:

Given a number x, is it prime?

This problem is in **co-NP**.

$$
\forall y (y < x \rightarrow (y = 1 \lor \neg(div(y, x))))
$$

*Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.***
Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct certificates of primality based on:

A number \(p > 2 \) is prime if, and only if, there is a number \(r \), \(1 < r < p \), such that \(r^{p-1} = 1 \mod p \) and \(r^{\frac{p-1}{q}} \neq 1 \mod p \) for all prime divisors \(q \) of \(p - 1 \).
In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

$$(x - a)^p \equiv (x^p - a) \pmod{p}$$

if, and only if, p is a prime.

Checking this equivalence would take too long. Instead, the equivalence is checked \emph{modulo} a polynomial $x^r - 1$, for “suitable” r.

The existence of suitable small r relies on deep results in number theory.
Consider the language \textbf{Factor}

\[\{(x, k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\} \]

\textbf{Factor} \in \text{NP} \cap \text{co-NP}

\textit{Certificate of membership}—a factor of \(x \) less than \(k \).

\textit{Certificate of disqualification}—the prime factorisation of \(x \).
Graph Isomorphism

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a bijection

$$\iota : V_1 \rightarrow V_2$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \quad \text{if, and only if,} \quad (\iota(u), \iota(v)) \in E_2.$$
Graph Isomorphism is

- in \text{NP}
- not known to be in \text{P}
- not known to be in \text{co-NP}
- not known (or \text{expected}) to be \text{NP}-complete
- recently shown to be in \text{quasi-polynomial time}, i.e. in \text{TIME}(n^{(\log n)^k}) for a constant \(k\).
The Travelling Salesman Problem was originally conceived of as an optimisation problem to find a minimum cost tour.

We forced it into the mould of a decision problem – TSP – in order to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.
This is still reasonable, as we are establishing the *difficulty* of the problems.

A polynomial time solution to the optimisation version would give a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a polynomial time algorithm for *finding the optimal value*, using binary search, if necessary.