Complexity Theory

Lecture 8

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1819/Complexity

Validity

 $\overline{VAL} = \{ \phi \mid \phi \notin VAL \}$ —the *complement* of VAL is in NP.

Guess a *falsifying* truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether *every* truth assignment results in true—a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

Complementation

If we interchange accepting and rejecting states in a deterministic machine that decides the language L, we get one that accepts \overline{L} .

If a language $L \in P$, then also $\overline{L} \in P$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define, co-NP – the languages whose complements are in NP.

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

 $L = \{x \mid \exists y R(x, y)\}$

Where R is a relation on strings satisfying two key conditions

- 1. *R* is decidable in polynomial time.
- 2. *R* is *polynomially balanced*. That is, there is a polynomial *p* such that if R(x, y) and the length of *x* is *n*, then the length of *y* is no more than p(n).

co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

 $L = \{x \mid \forall y \mid y \mid < p(|x|) \rightarrow R'(x, y)\}$

NP – the collection of languages with succinct certificates of membership. co-NP – the collection of languages with succinct certificates of disqualification.

Any of the situations is consistent with our present state of knowledge:

- P = NP = co-NP
- $P = NP \cap co-NP \neq NP \neq co-NP$
- $P \neq NP \cap co-NP = NP = co-NP$
- $P \neq NP \cap co-NP \neq NP \neq co-NP$

co-NP-complete

VAL – the collection of Boolean expressions that are *valid* is *co-NP-complete*.

Any language *L* that is the complement of an NP-complete language is *co-NP-complete*.

Any reduction of a language L_1 to L_2 is also a reduction of $\overline{L_1}$ -the complement of L_1 -to $\overline{L_2}$ -the complement of L_2 .

There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

 $\mathsf{VAL} \in \mathsf{P} \Rightarrow \mathsf{P} = \mathsf{NP} = \mathsf{co}\text{-}\mathsf{NP}$

 $\mathsf{VAL} \in \mathsf{NP} \Rightarrow \mathsf{NP} = \mathsf{co-NP}$

Prime Numbers

Consider the decision problem PRIME: Given a number x, is it prime?

This problem is in co-NP.

 $\forall y (y < x \rightarrow (y = 1 \lor \neg(\mathsf{div}(y, x))))$

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is log n.

Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct certificates of primality based on:

A number p > 2 is prime if, and only if, there is a number r, 1 < r < p, such that $r^{p-1} = 1 \mod p$ and $r^{\frac{p-1}{q}} \neq 1 \mod p$ for all prime divisors q of p - 1.

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

$$(x-a)^p \equiv (x^p-a) \pmod{p}$$

if, and only if, *p* is a prime.

Checking this equivalence would take to long. Instead, the equivalence is checked *modulo* a polynomial $x^r - 1$, for "suitable" *r*.

The existence of suitable small r relies on deep results in number theory.

Factors

Consider the language Factor

```
\{(x,k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\}
```

 $\mathsf{Factor} \in \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP}$

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of *x*.

Graph Isomorphism

Given two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, is there a *bijection* $\iota:V_1 \to V_2$

such that for every $u, v \in V_1$,

 $(u, v) \in E_1$ if, and only if, $(\iota(u), \iota(v)) \in E_2$.

Graph Isomorphism

Graph Isomorphism is

- in NP
- not known to be in P
- not known to be in co-NP
- not known (or *expected*) to be NP-complete
- recently shown to be in *quasi-polynomial time*, i.e. in

 $\mathrm{TIME}(n^{(\log n)^k})$

for a constant k.

Optimisation

The Travelling Salesman Problem was originally conceived of as an optimisation problem

to find a minimum cost tour.

We forced it into the mould of a decision problem -TSP – in order to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.

This is still reasonable, as we are establishing the *difficulty* of the problems.

A polynomial time solution to the optimisation version would give a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a polynomial time algorithm for *finding the optimal value*, using binary search, if necessary.