Complexity Theory
 Lecture 6

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1819/Complexity

Clique

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is called a clique, if for every $u, v \in X,(u, v)$ is an edge.

As with IND, we can define a decision problem:
CLIQUE is defined as:
The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains a clique with K or more vertices.

Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then verifies it.

CLIQUE is NP-complete, since IND \leq_{p} CLIQUE by the reduction that maps the pair (G, K) to (\bar{G}, K), where \bar{G} is the complement graph of G.

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

This gives rise to a decision problem for each k. 2-colourability is in P .
For all $k>2$, k-colourability is NP-complete.

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.
To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x, we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals I_{1}, l_{2} and l_{3} we have a gadget.

Gadget

With a further edge from a to b.

Hamiltonian Graphs

Recall the definition of HAM-the language of Hamiltonian graphs.
Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.
The language HAM is the set of encodings of Hamiltonian graphs.

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM
Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Travelling Salesman

Recall the travelling salesman problem
Given

- V - a set of nodes.
- $c: V \times V \rightarrow \mathbb{N}-$ a cost matrix.

Find an ordering v_{1}, \ldots, v_{n} of V for which the total cost:

$$
c\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)
$$

is the smallest possible.

Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

$$
(V, c: V \times V \rightarrow \mathbb{N}, t)
$$

such that there is a tour of the set of vertices V, which under the cost matrix c, has cost t or less.

Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V, E) to the triple ($V, c: V \times V \rightarrow \mathbb{N}, n$), where

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { otherwise }\end{cases}
$$

and n is the size of V.

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally hundreds of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose significance lies in that they have been used to prove a large number of other problems NP-complete, through reductions.

3D Matching

The decision problem of 3D Matching is defined as:
Given three disjoint sets X, Y and Z, and a set of triples $M \subseteq X \times Y \times Z$, does M contain a matching?
I.e. is there a subset $M^{\prime} \subseteq M$, such that each element of X, Y and Z appears in exactly one triple of M^{\prime} ?

We can show that 3DM is NP-complete by a reduction from 3SAT.

Reduction

If a Boolean expression ϕ in 3CNF has n variables, and m clauses, we construct for each variable v the following gadget.

In addition, for every clause c, we have two elements x_{c} and y_{c}. If the literal v occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, z_{v c}\right)
$$

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, \bar{z}_{v c}\right)
$$

in M.
Finally, we include extra dummy elements in X and Y to make the numbers match up.

