
Complexity Theory

Lecture 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1819/Complexity



Veri�ers

A veri�er V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that

L is polynomially veri�able.

Many natural examples arise, whenever we have to construct a solution

to some design constraints or speci�cations.

Anuj Dawar Complexity Theory



Nondeterminism

If, in the de�nition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a

nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still de�ne the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as

well as rejecting states.

Anuj Dawar Complexity Theory



Computation Trees

With a nondeterministic machine, each con�guration gives rise to a tree

of successive con�gurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

Anuj Dawar Complexity Theory



Nondeterministic Complexity Classes

We have already de�ned TIME(f ) and SPACE(f ).

NTIME(f ) is de�ned as the class of those languages L which are

accepted by a nondeterministic Turing machine M, such that for every

x ∈ L, there is an accepting computation of M on x of length O(f (n)),
where n is the length of x .

NP =
∞⋃
k=1

NTIME(nk)

Anuj Dawar Complexity Theory



Nondeterminism

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

For a language in NTIME(f ), the height of the tree can be bounded by

f (n) when the input is of length n.

Anuj Dawar Complexity Theory



NP

A language L is polynomially veri�able if, and only if, it is in NP.

To prove this, suppose L is a language, which has a veri�er V , which

runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x , c)

Anuj Dawar Complexity Theory



NP

In the other direction, suppose M is a nondeterministic machine that

accepts a language L in time nk .

We de�ne the deterministic algorithm V which on input (x , c) simulates

M on input x .
At the i th nondeterministic choice point, V looks at the i th character in

c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial veri�er for L.

Anuj Dawar Complexity Theory



Generate and Test

We can think of nondeterministic algorithms in the generate-and test

paradigm:

yes

no

generatex Vx verify

Where the generate component is nondeterministic and the verify

component is deterministic.

Anuj Dawar Complexity Theory



Reductions

Given two languages L1 ⊆ Σ?
1
, and L2 ⊆ Σ?

2
,

A reduction of L1 to L2 is a computable function

f : Σ?
1
→ Σ?

2

such that for every string x ∈ Σ?
1
,

f (x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar Complexity Theory



Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is

polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

Anuj Dawar Complexity Theory



Reductions 2

If L1 ≤P L2 we understand that L1 is no more di�cult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by �rst computing f , and then

using the polynomial time algorithm for L2.

Anuj Dawar Complexity Theory



Completeness

The usefulness of reductions is that they allow us to establish the relative

complexity of problems, even when we cannot prove absolute lower

bounds.

Cook (1972) �rst showed that there are problems in NP that are

maximally di�cult.

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar Complexity Theory



SAT is NP-complete

Cook and Levin independently showed that the language SAT of

satis�able Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there

is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only if, it is

accepted by M within nk steps.

Anuj Dawar Complexity Theory


