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Veri�ers

A veri�er V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that

L is polynomially veri�able.

Many natural examples arise, whenever we have to construct a solution

to some design constraints or speci�cations.
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Nondeterminism

If, in the de�nition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a

nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still de�ne the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as

well as rejecting states.
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Computation Trees

With a nondeterministic machine, each con�guration gives rise to a tree

of successive con�gurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)
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Nondeterministic Complexity Classes

We have already de�ned TIME(f ) and SPACE(f ).

NTIME(f ) is de�ned as the class of those languages L which are

accepted by a nondeterministic Turing machine M, such that for every

x ∈ L, there is an accepting computation of M on x of length O(f (n)),
where n is the length of x .

NP =
∞⋃
k=1

NTIME(nk)
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Nondeterminism

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

For a language in NTIME(f ), the height of the tree can be bounded by

f (n) when the input is of length n.
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NP

A language L is polynomially veri�able if, and only if, it is in NP.

To prove this, suppose L is a language, which has a veri�er V , which

runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x , c)
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NP

In the other direction, suppose M is a nondeterministic machine that

accepts a language L in time nk .

We de�ne the deterministic algorithm V which on input (x , c) simulates

M on input x .
At the i th nondeterministic choice point, V looks at the i th character in

c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial veri�er for L.
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Generate and Test

We can think of nondeterministic algorithms in the generate-and test

paradigm:

yes

no

generatex Vx verify

Where the generate component is nondeterministic and the verify

component is deterministic.
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Reductions

Given two languages L1 ⊆ Σ?
1
, and L2 ⊆ Σ?

2
,

A reduction of L1 to L2 is a computable function

f : Σ?
1
→ Σ?

2

such that for every string x ∈ Σ?
1
,

f (x) ∈ L2 if, and only if, x ∈ L1
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Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is

polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2
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Reductions 2

If L1 ≤P L2 we understand that L1 is no more di�cult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by �rst computing f , and then

using the polynomial time algorithm for L2.
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Completeness

The usefulness of reductions is that they allow us to establish the relative

complexity of problems, even when we cannot prove absolute lower

bounds.

Cook (1972) �rst showed that there are problems in NP that are

maximally di�cult.

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.
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SAT is NP-complete

Cook and Levin independently showed that the language SAT of

satis�able Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there

is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only if, it is

accepted by M within nk steps.
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