Complexity Theory

Lecture 11

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1819/Complexity

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.

 $O((\log n)^2)$ space Reachability algorithm:

```
Path(a, b, i)
if i = 1 and a \neq b and (a, b) is not an edge reject
else if (a, b) is an edge or a = b accept
else, for each node x, check:
```

- 1. Path($a, x, \lfloor i/2 \rfloor$)
- 2. Path(x, b, [i/2])

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Savitch's Theorem

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

 $\mathsf{NSPACE}(f) \subseteq \mathsf{SPACE}(f^2)$

for $f(n) \ge \log n$.

This yields

PSPACE = NPSPACE = co-NPSPACE.

Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \ge \log n$, then

NSPACE(f) = co-NSPACE(f)

In particular

 $\mathsf{NL}=\mathsf{co}\mathsf{-}\mathsf{NL}.$

Logarithmic Space Reductions

We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a *read-only* input tape and *write-only* output tape).

Note: We can compose \leq_{L} reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

Complexity Theory

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if SAT $\leq_L A$ for some problem A in L then not only P = NP but also L = NP.

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to *logarithmic space* reductions \leq_L . One example is CVP—the circuit value problem.

That is, for every language A in P,

 $A \leq_L CVP$

- If $CVP \in L$ then L = P.
- If $CVP \in NL$ then NL = P.

Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete. For any language $A \in NL$, we have $A \leq_L Reachability$

L = NL if, and only if, Reachability $\in L$

Note: it is known that the reachability problem for *undirected* graphs is in L.

Provable Intractability

Our aim now is to show that there are languages (*or, equivalently, decision problems*) that we can prove are not in P.

This is done by showing that, for every *reasonable* function f, there is a language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

Time Hierarchy Theorem

For any constructible function f, with $f(n) \ge n$, define the f-bounded halting language to be:

 $H_f = \{[M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$

where [M] is a description of M in some fixed encoding scheme. Then, we can show $H_f \in \mathsf{TIME}(f(n)^2)$ and $H_f \notin \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

Time Hierarchy Theorem

For any constructible function $f(n) \ge n$, TIME(f(n)) is properly contained in TIME $(f(2n+1)^2)$.