Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.
\(O((\log n)^2)\) space Reachability algorithm:

Path\((a, b, i)\)
if \(i = 1\) and \(a \neq b\) and \((a, b)\) is not an edge reject
else if \((a, b)\) is an edge or \(a = b\) accept
else, for each node \(x\), check:
1. Path\((a, x, \lfloor i/2 \rfloor)\)
2. Path\((x, b, \lceil i/2 \rceil)\)

if such an \(x\) is found, then accept, else reject.

The maximum depth of recursion is \(\log n\), and the number of bits of information kept at each stage is \(3 \log n\).
The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

$$\text{NSPACE}(f) \subseteq \text{SPACE}(f^2)$$

for $f(n) \geq \log n$.

This yields

$$\text{PSPACE} = \text{NPSPACE} = \text{co-NPSPACE}.$$
A still more clever algorithm for \textbf{Reachability} has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \geq \log n$, then

\[
\text{NSPACE}(f) = \text{co-NSPACE}(f)
\]

In particular

\[
\text{NL} = \text{co-NL}.
\]
We write

\[A \leq_L B \]

if there is a reduction \(f \) of \(A \) to \(B \) that is computable by a deterministic Turing machine using \(O(\log n) \) workspace (with a \textit{read-only} input tape and \textit{write-only} output tape).

\textbf{Note:} We can compose \(\leq_L \) reductions. So,

if \(A \leq_L B \) and \(B \leq_L C \) then \(A \leq_L C \)
Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that \textit{SAT} and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $\text{SAT} \leq_L A$ for some problem A in L then not only $P = NP$ but also $L = NP$.

NP-complete Problems
P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P.

There are problems that are complete for P with respect to logarithmic space reductions \leq_L. One example is CVP—the circuit value problem.

That is, for every language A in P,

$$A \leq_L CVP$$

- If $CVP \in L$ then $L = P$.
- If $CVP \in NL$ then $NL = P$.
Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete.

For any language $A \in \text{NL}$, we have $A \leq_L \text{Reachability}$

$L = \text{NL}$ if, and only if, Reachability $\in L$

Note: it is known that the reachability problem for undirected graphs is in L.
Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f, there is a language that is not in $\text{TIME}(f)$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.
Time Hierarchy Theorem

For any constructible function f, with $f(n) \geq n$, define the f-bounded halting language to be:

$$H_f = \{[M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$$

where $[M]$ is a description of M in some fixed encoding scheme.

Then, we can show $H_f \in \text{TIME}(f(n)^2)$ and $H_f \not\in \text{TIME}(f(\lfloor n/2 \rfloor))$

Time Hierarchy Theorem

For any constructible function $f(n) \geq n$, $\text{TIME}(f(n))$ is properly contained in $\text{TIME}(f(2n + 1)^2)$.