The main texts for the course are:

Computational Complexity.
Christos H. Papadimitriou.

Introduction to the Theory of Computation.
Michael Sipser.
References

Other useful references include:

Computers and Intractability: A guide to the theory of NP-completeness.
Michael R. Garey and David S. Johnson.

P, NP and NP-completeness.
Oded Goldreich.

Computability and Complexity from a Programming Perspective.
Neil Jones.

Computational Complexity - A Modern Approach.
Sanjeev Arora and Boaz Barak.
A rough lecture-by-lecture guide, with relevant sections from the text by Papadimitriou (or Sipser, where marked with an S).

- **Algorithms and problems.** 1.1–1.3.
- **Time and space.** 2.1–2.5, 2.7.
- **Time Complexity classes.** 7.1, S7.2.
- **Nondeterminism.** 2.7, 9.1, S7.3.
- **NP-completeness.** 8.1–8.2, 9.2.
- **Graph-theoretic problems.** 9.3
Outline - *contd.*

- *Sets, numbers and scheduling.* 9.4
- *coNP.* 10.1–10.2.
- *Cryptographic complexity.* 12.1–12.2.
- *Descriptive Complexity* 5.7, 8.3.
Insertion Sort runs in time $O(n^2)$, while **Merge Sort** is an $O(n \log n)$ algorithm.

The first half of this statement is short for:

*If we count the number of steps performed by the **Insertion Sort** algorithm on an input of size n, taking the largest such number, from among all inputs of that size, then the function of n so defined is eventually bounded by a constant multiple of n^2.***

It makes sense to compare the two algorithms, because they seek to solve the same problem.

But, what is the complexity of the **sorting problem**?
The complexity of an algorithm (whether measuring number of steps, or amount of memory) is usually described asymptotically:

Definition
For functions $f : \mathbb{N} \rightarrow \mathbb{N}$ and $g : \mathbb{N} \rightarrow \mathbb{N}$, we say that:

- $f = O(g)$, if there is an $n_0 \in \mathbb{N}$ and a constant c such that for all $n > n_0$, $f(n) \leq cg(n)$;
- $f = \Omega(g)$, if there is an $n_0 \in \mathbb{N}$ and a constant c such that for all $n > n_0$, $f(n) \geq cg(n)$.
- $f = \theta(g)$ if $f = O(g)$ and $f = \Omega(g)$.

Usually, O is used for upper bounds and Ω for lower bounds.
Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a list?

By the analysis of the Merge Sort algorithm, we know that this is no worse than $O(n \log n)$.

The complexity of a particular algorithm establishes an upper bound on the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm, including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of $\Omega(n \log n)$, showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.
Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a_1, \ldots, a_n.

To work for all permutations of the input list, the tree must have at least $n!$ leaves and therefore height at least $\log_2(n!) = \theta(n \log n)$.
Travelling Salesman

Given

- \(V \) — a set of nodes.
- \(c : V \times V \to \mathbb{N} \) — a cost matrix.

Find an ordering \(v_1, \ldots, v_n \) of \(V \) for which the total cost:

\[
c(v_n, v_1) + \sum_{i=1}^{n-1} c(v_i, v_{i+1})
\]

is the smallest possible.
Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with lowest cost. The worst case running time is $\theta(n!)$.

Lower bound: An analysis like that for sorting shows a lower bound of $\Omega(n \log n)$.

Upper bound: The currently fastest known algorithm has a running time of $O(n^22^n)$.

Between these two is the chasm of our ignorance.