1. Given a graph \(G = (V,E) \), a set \(U \subseteq V \) of vertices is called a vertex cover of \(G \) if, for each edge \((u,v) \in E\), either \(u \in U \) or \(v \in U \). That is, each edge has at least one end point in \(U \). The decision problem \(\text{V-COVER} \) is defined as:

\[
\text{given a graph } G = (V,E), \text{ and an integer } K, \text{ does } G \text{ contain a vertex cover with } K \text{ or fewer elements?}
\]

(a) Show a polynomial time reduction from \(\text{IND} \) to \(\text{V-COVER} \).

(b) Use (a) to argue that \(\text{V-COVER} \) is \(\text{NP} \)-complete.

2. The problem of four dimensional matching, \(4\text{DM} \), is defined analogously with \(3\text{DM} \):

Given four sets, \(W, X, Y \) and \(Z \), each with \(n \) elements, and a set of quadruples \(M \subseteq W \times X \times Y \times Z \), is there a subset \(M' \subseteq M \), such that each element of \(W, X, Y \) and \(Z \) appears in exactly one tuple in \(M' \).

Show that \(4\text{DM} \) is \(\text{NP} \)-complete.

3. Given a graph \(G = (V,E) \), a source vertex \(s \in V \) and a target vertex \(t \in V \), a Hamiltonian Path from \(s \) to \(t \) in \(G \) is a path that begins at \(s \), ends at \(t \) and visits every vertex in \(V \) exactly once. We define the decision problem \(\text{HamPath} \) as:

\[
\text{given a graph } G = (V,E) \text{ and vertices } s,t \in V, \text{ does } G \text{ contain a Hamiltonian path from } s \text{ to } t?
\]

(a) Give a polynomial time reduction from the Hamiltonian cycle problem to \(\text{HamPath} \).

(b) Give a polynomial time reduction from \(\text{HamPath} \) to the problem of determining whether a graph has a Hamiltonian cycle.

\text{Hint: } consider adding a vertex to the graph.

4. We know from the Cook-Levin theorem that every problem in \(\text{NP} \) is reducible to \(\text{SAT} \). Sometimes it is easy to give an explicit reduction. In this exercise you are asked to give such explicit reductions for two graph problems: \(3\text{-Col} \) and \(\text{HAM} \). That is,
(a) describe how to obtain, for any graph \(G = (V, E) \), a Boolean expression \(\phi_G \) so that \(\phi_G \) is satisfiable if, and only if, \(G \) is 3-colourable; and

(b) describe how to obtain, for any graph \(G = (V, E) \), a Boolean expression \(\phi_G \) so that \(\phi_G \) is satisfiable if, and only if, \(G \) contains a Hamiltonian cycle.

5. We use \(x; 0^n \) to denote the string that is obtained by concatenating the string \(x \) with a separator \(; \) followed by \(n \) occurrences of 0. If \([M]\) represents the string encoding of a non-deterministic Turing machine \(M \), show that the following language is \(\text{NP} \)-complete:

\[\{[M]; x; 0^n \mid M \text{ accepts } x \text{ within } n \text{ steps} \}. \]

Hint: rather than attempting a reduction from a particular \(\text{NP} \)-complete problem, it is easier to show this from first principles, i.e. construct a reduction for any NDTM \(M \), and polynomial bound \(p \).

6. **0-1 Integer Linear Programming.** An instance of a linear programming problem consists of a set \(X = \{x_1, \ldots, x_n\} \) of variables and a set of constraints, each of the form

\[\sum_{1 \leq i \leq n} c_i x_i \leq b, \]

where each \(c_i \) and \(b \) is an integer.

The 0-1 Integer Linear Programming Feasibility problem is, to determine, given such a linear programming problem, whether there is an assignment of values from the set \(\{0, 1\} \) to the variables in \(X \) so that substituting these values in the constraints leads to all constraints being simultaneously satisfied.

Prove that this problem is \(\text{NP} \)-complete.

7. **Self-Reducibility.** *Self-reducibility* refers to the property of some problems in \(L \in \text{NP} \), where the problem of finding a *witness* for the membership of an input \(x \) in \(L \) can be reduced to the decision problem for \(L \). This question asks you to give such arguments in two specific instances.

(a) Show that, given an oracle (i.e. a black box) for deciding whether a given graph \(G = (V, E) \) is Hamiltonian, there is a polynomial-time algorithm that, on input \(G \), outputs a Hamiltonian cycle in \(G \) if one exists.

(b) Show that, given an oracle for deciding whether a given graph \(G \) is 3-colourable, there is a polynomial-time algorithm that, on input \(G \), produces a valid 3-colouring of \(G \) if one exists.