
Complexity Theory
Easter 2019

Suggested Exercises 1

1. In the lecture, a proof was sketched showing a Ω(n log n) lower bound on the
complexity of the sorting problem. It was also stated that a similar analysis
could be used to establish the same bound for the Travelling Salesman
Problem. Give a detailed sketch of such an argument. Can you think of a
way to improve the lower bound?

2. Say we are given a set V = {v1, . . . , vn} of vertices and a cost matrix
c : V × V → IN. For a set S ⊆ V , let tS,i denote the cost of the shortest
path that starts at v1, visits all vertices in S and ends at vi. Describe a
dynamic programming algorithm that computes tS,i for all sets S and all
i. Show that your algorithm can be used to solve the Travelling Salesman
Problem in time O(n22n).

3. Consider the language Unary-Prime in the one letter alphabet {a} defined
by Unary-Prime = {an | n is prime}. Show that this language is in P.

4. Suppose S ⊆ N is a set of natural numbers and consider the language
Unary−S in the one letter alphabet {a} defined by Unary−S = {an | n ∈ S},
and the language Binary−S in the two letter alphabet {0, 1} consisting of
those strings starting with a 1 which are the binary representation of a
number in S. Show that if Unary−S is in P then Binary−S is in TIME(2cn)
for some constant c.

5. We say that a propositional formula φ is in 2CNF if it is a conjunction of
clauses, each of which contains exactly 2 literals. The point of this problem
is to show that the satisfiability problem for formulas in 2CNF can be solved
by a polynomial time algorithm.

First note that any clause with 2 literals can be written as an implication
in exactly two ways. For instance (p ∨ ¬q) is equivalent to (q → p) and
(¬p→ ¬q), and (p ∨ q) is equivalent to (¬p→ q) and (¬q → p).

For any formula φ, define the directed graph Gφ to be the graph whose set
of vertices is the set of all literals that occur in φ, and in which there is an
edge from literal x to literal y if, and only if, the implication (x → y) is
equivalent to one of the clauses in φ.

(a) If φ has n variables and m clauses, give an upper bound on the number
of vertices and edges in Gφ.

1



(b) Show that φ is unsatisfiable if, and only if, there is a literal x such that
there is a path in Gφ from x to ¬x and a path from ¬x to x.

(c) Give an algorithm for verifying that a graph Gφ satisfies the property
stated in (b) above. What is the complexity of your algorithm?

(d) From (c) deduce that there is a polynomial time algorithm for testing
whether or not a 2CNF propositional formula is satisfiable.

(e) Why does this idea not work if we have 3 literals per clause?

6. A clause (i.e. a disjunction of literals) is called a Horn clause, if it contains
at most one positive literal. Such a clause can be written as an implication:
(x ∨ (¬y) ∨ (¬w) ∨ (¬z)) is equivalent to ((y ∧ w ∧ z) → x)). HORNSAT
is the problem of deciding whether a given Boolean expression that is a
conjunction of Horn clauses is satisfiable.

(a) Show that there is a polynomial time algorithm for solving HORNSAT.
(Hint: if a variable is the only literal in a clause, it must be set to true;
if all the negative variables in a clause have been set to true, then the
positive one must also be set to true. Continue this procedure until
a contradiction is reached or a satisfying truth assignment is found).

(b) In the proof of the NP-completeness of SAT it was shown how to
construct, for every nondeterministic machine M , integer k and string
x a Boolean expression φ which is satisfiable if, and only if, M accepts
x within nk steps. Show that, if M is deterministic, than φ can be
chosen to be a conjunction of Horn clauses.

(c) Conclude from (b) that the problem HORNSAT is P-complete under
L-reductions.

7. We define the complexity class of quasi-polynomial-time problems Quasi-P
by:

Quasi-P =
∞⋃
k=1

Time(n(logn)k).

Show that if L1 ≤P L2 and L2 ∈ Quasi-P, then L1 ∈ Quasi-P.

8. In general k-colourability is the problem of deciding, given a graph G =
(V,E), whether there is a colouring χ : V → {1, . . . , k} of the vertices such
that if (u, v) ∈ E, then χ(u) 6= χ(v). That is, adjacent vertices do not have
the same colour.

(a) Show that there is a polynomial time algorithm for solving 2-colourability.

(b) Show that, for each k, k-colourability is reducible to k+ 1-colourability.
What can you conclude from this about the complexity of 4-colourability?

2


