The halting problem
Definition. A register machine \(H \) decides the Halting Problem if for all \(e, a_1, \ldots, a_n \in \mathbb{N} \), starting \(H \) with

\[
R_0 = 0 \quad R_1 = e \quad R_2 \leftarrow \lbrack a_1, \ldots, a_n \rbrack
\]

and all other registers zeroed, the computation of \(H \) always halts with \(R_0 \) containing 0 or 1; moreover when the computation halts, \(R_0 = 1 \) if and only if

the register machine program with index \(e \) eventually halts when started with \(R_0 = 0, R_1 = a_1, \ldots, R_n = a_n \) and all other registers zeroed.
Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \lceil [a_1, \ldots, a_n] \rceil$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- Let H' be obtained from H by replacing $START \rightarrow$ by

 $START \rightarrow \boxed{Z := R_1} \rightarrow \boxed{\text{push } Z \text{ to } R_2}$

 (where Z is a register not mentioned in H's program).

- Let C be obtained from H' by replacing each $HALT$ (and each erroneous halt) by

 $R_0^- \leftrightarrow R_0^+ \Downarrow \text{HALT}$

- Let $c \in \mathbb{N}$ be the index of C's program.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if

H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if

H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- **C** started with $R_1 = c$ eventually halts if & only if
- **H'** started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- **H** started with $R_1 = c, R_2 = [\neg c]$ halts with $R_0 = 0$ if & only if
- **$\text{prog}(c)$** started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- H started with $R_1 = c, R_2 = \lceil [c] \rceil$ halts with $R_0 = 0$ if & only if
- $\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
- C started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- H started with $R_1 = c, R_2 = \lceil \left[c \right] \rceil$ halts with $R_0 = 0$ if & only if
- $\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
- C started with $R_1 = c$ does not halt

—contradiction!
Computable functions

Recall:

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) **computable** if there is a register machine M with at least $n + 1$ registers R_0, R_1, \ldots, R_n (and maybe more) such that for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$, the computation of M starting with $R_0 = 0$, $R_1 = x_1$, \ldots, $R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \ldots, x_n) = y$.

Note that the same RM M could be used to compute a unary function ($n = 1$), or a binary function ($n = 2$), etc. From now on we will concentrate on the unary case...
Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program $\text{prog}(e)$. So for all $x, y \in \mathbb{N}$:

$\varphi_e(x) = y$ holds iff the computation of $\text{prog}(e)$ started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$$e \mapsto \varphi_e$$

defines an onto function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N}.

Enumerating computable functions

For each \(e \in \mathbb{N} \), let \(\varphi_e \in \mathbb{N} \rightarrow \mathbb{N} \) be the unary partial function computed by the RM with program \(\text{prog}(e) \). So for all \(x, y \in \mathbb{N} \):

\[
\varphi_e(x) = y \quad \text{holds iff the computation of } \text{prog}(e) \text{ started with } R_0 = 0, R_1 = x \text{ and all other registers zeroed eventually halts with } R_0 = y.
\]

Thus \(e \mapsto \varphi_e \) defines an onto function from \(\mathbb{N} \) to the collection of all computable partial functions from \(\mathbb{N} \) to \(\mathbb{N} \).

So \(\mathbb{N} \rightarrow \mathbb{N} \) (uncountable, by Cantor) contains uncomputable functions.
An uncomputable function

Let \(f \in \mathbb{N} \rightarrow \mathbb{N} \) be the partial function with graph \(\{(x, 0) \mid \varphi_x(x) \uparrow\} \).

Thus \(f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases} \)
An uncomputable function

Let \(f \in \mathbb{N} \rightarrow \mathbb{N} \) be the partial function with graph \(\{(x,0) \mid \varphi_x(x) \uparrow\} \).

Thus \(f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases} \)

\(f \) is not computable, because if it were, then \(f = \varphi_e \) for some \(e \in \mathbb{N} \) and hence

- if \(\varphi_e(e) \uparrow \), then \(f(e) = 0 \) (by def. of \(f \)); so \(\varphi_e(e) = 0 \) (since \(f = \varphi_e \)), hence \(\varphi_e(e) \downarrow \)

- if \(\varphi_e(e) \downarrow \), then \(f(e) \downarrow \) (since \(f = \varphi_e \)); so \(\varphi_e(e) \uparrow \) (by def. of \(f \)) —contradiction! So \(f \) cannot be computable.
(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is given by:

$$\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$$
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) *decidable* if its characteristic function $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ is a register machine computable function. Otherwise it is called *undecidable*.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...
Claim: \(S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \} \) is undecidable.

Proof (sketch): Suppose \(M_0 \) is a RM computing \(\chi_{S_0} \). From \(M_0 \)'s program (using the same techniques as for constructing a universal RM) we can construct a RM \(H \) to carry out:

\[
\begin{align*}
\text{let } e &= R_1 \text{ and } \llbracket [a_1, \ldots, a_n] \rrbracket \downarrow = R_2 \text{ in} \\
R_1 &::= \llbracket (R_1 ::= a_1) ; \cdots ; (R_n ::= a_n) ; \text{prog}(e) \rrbracket ; \\
R_2 &::= 0 ; \\
\text{run } M_0
\end{align*}
\]
Claim: \(S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \} \) is undecidable.

Proof (sketch): Suppose \(M_0 \) is a RM computing \(\chi_{S_0} \). From \(M_0 \)’s program (using the same techniques as for constructing a universal RM) we can construct a RM \(H \) to carry out:

\[
\text{let } e = R_1 \text{ and } \llbracket [a_1, \ldots, a_n] \rrbracket = R_2 \text{ in} \\
R_1 ::= \llbracket (R_1 ::= a_1); \cdots; (R_n ::= a_n); \text{prog}(e) \rrbracket \\
R_2 ::= 0; \\
\text{run } M_0
\]

\[E ::= R_1\]

\[M_0 \leftarrow R_2 ::= 0\]
Claim: $S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0}. From M_0’s program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

```
let e = R_1 and \llbracket a_1, \ldots, a_n \rrbracket \downarrow = R_2 in
  .
  R_1 ::= \llbracket R_1 ::= a_1 \rrbracket ; \cdots ; (R_n ::= a_n) ; \text{prog}(e) \downarrow ;
  R_2 ::= 0 ;
run M_0
```

Then by assumption on M_0, H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)'s program we can construct a RM \(M_0 \) to carry out:

\[
\text{let } e = R_1 \text{ in } R_1 ::= \left\lceil R_1 ::= 0 ; \text{prog}(e) \right\rceil ; \\
\text{run } M_1
\]

START

\[
E ::= R_1 \rightarrow R_1 ::= \left\lceil R_1 ::= 0 \rightarrow \text{prog}(E) \right\rceil \rightarrow M_1
\]
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)'s program we can construct a RM \(M_0 \) to carry out:

\[
\begin{align*}
\text{let } e = R_1 \text{ in } & \quad R_1 ::= \neg R_1 ::= 0 ; \text{prog}(e) \downarrow ; \\
\text{run } & \quad M_1
\end{align*}
\]

Then by assumption on \(M_1 \), \(M_0 \) decides membership of \(S_0 \) from previous example (i.e. computes \(\chi_{S_0} \))—contradiction. So no such \(M_1 \) exists, i.e. \(\chi_{S_1} \) is uncomputable, i.e. \(S_1 \) is undecidable.
Exercise 5 If $f : \mathbb{N} \rightarrow \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N}$ & $S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.
Exercise 5: If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \& S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.

For S_1 and S_2 as on Slides 57 & 58 we have:

$$e \in S_0 \iff \varphi_e(0) \downarrow$$

$$f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$$
Exercise 5 If $f : \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N}$ \& $S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.

For S_1 \& S_2 as on Slides 57 \& 58 we have:

$$e \in S_0 \iff \varphi_e(0) \downarrow$$

$$f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$$

So can apply the Exercise to deduce undecidability of S_1 from undecidability of S_0 by finding RM computable $f : \mathbb{N} \to \mathbb{N}$ with

$$\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)$$
Exercise 5 If \(f : \mathbb{N} \rightarrow \mathbb{N} \) is a RM computable function, \(S_0 \subseteq \mathbb{N} \) \& \(S_1 \subseteq \mathbb{N} \) satisfy
\[
\forall e \in \mathbb{N}, \ e \in S_0 \iff f(e) \in S_1
\]
then if \(S_1 \) is decidable, then so is \(S_0 \).

For \(S_1 \) \& \(S_2 \) as on Slides 57 \& 58 we have:
\[
e \in S_0 \iff \varphi_e(0) \downarrow
\]
\[
f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow
\]
So can apply the Exercise to deduce
\underline{undecidability of} \(S_1 \) \underline{from undecidability of} \(S_0 \)
by finding \(\text{RM computable} \ f : \mathbb{N} \rightarrow \mathbb{N} \) with
\[
\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)
\]

"Kleene equivalence" (p 82): either LHS \& RHS are undefined, or both are defined and equal.