Exercise 1. Show that the following arithmetic functions are all register machine computable.

(a) First projection function \(p \in \mathbb{N} \rightarrow \mathbb{N} \), where \(p(x, y) \triangleq x \)

(b) Constant function with value \(n \in \mathbb{N}, c \in \mathbb{N} \rightarrow \mathbb{N} \), where \(c(x) \triangleq n \)

(c) Truncated subtraction function, \(_{-} \in \mathbb{N}^{2} \rightarrow \mathbb{N} \), where \(x - y \triangleq \begin{cases} x - y & \text{if } y \leq x \\ 0 & \text{if } y > x \end{cases} \)

(d) Integer division function, \(_{\text{div}} \in \mathbb{N}^{2} \rightarrow \mathbb{N} \), where \(x \text{ div } y \triangleq \begin{cases} \text{integer part of } x/y & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases} \)

(e) Integer remainder function, \(_{\text{mod}} \in \mathbb{N}^{2} \rightarrow \mathbb{N} \), where \(x \text{ mod } y \triangleq x - y(x \text{ div } y) \)

(f) Exponentiation base 2, \(e \in \mathbb{N} \rightarrow \mathbb{N} \), where \(e(x) \triangleq 2^x \).

(g) Logarithm base 2, \(\log_2 \in \mathbb{N} \rightarrow \mathbb{N} \), where \(\log_2(x) \triangleq \begin{cases} \text{greatest } y \text{ such that } 2^y \leq x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases} \)

Exercise 2. Let \(\phi_e \in \mathbb{N} \rightarrow \mathbb{N} \) denote the unary partial function from numbers to numbers computed by the register machine with code \(e \). Show that for any given register machine computable unary partial function \(f \in \mathbb{N} \rightarrow \mathbb{N} \), there are infinitely many numbers \(e \) such that \(\phi_e = f \). (Two partial functions are equal if they are equal as sets of ordered pairs; which is equivalent to saying that for all numbers \(x \in \mathbb{N} \), \(\phi_e(x) \) is defined if and only if \(f(x) \) is, and in that case they are equal numbers.)

Exercise 3. In the following register machine program, assume that register \(Z \) holds 0 initially. What is its effect?

```
START \rightarrow A \rightarrow Z \rightarrow S \rightarrow \text{EXIT}
```

```
Z \rightarrow S \rightarrow Z \rightarrow \text{HALT}
```

Exercise 4. Show that there is a register machine computable partial function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that both \(\{ x \in \mathbb{N} \mid f(x) \downarrow \} \) and \(\{ y \in \mathbb{N} \mid (\exists x \in \mathbb{N}) f(x) = y \} \) are register machine undecidable.

Exercise 5. Suppose \(S_1 \) and \(S_2 \) are subsets of \(\mathbb{N} \). Suppose \(f \in \mathbb{N} \rightarrow \mathbb{N} \) is register machine computable function satisfying: for all \(x \in \mathbb{N} \), \(x \) is an element of \(S_1 \) if and only if \(f(x) \) is an element of \(S_2 \). Show that \(S_1 \) is register machine decidable if \(S_2 \) is.
Exercise 6. Show that the set of codes $\langle e, e' \rangle$ of pairs of numbers e and e' satisfying $\phi_e = \phi_{e'}$ is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine program implementing $(S, T, D) := \delta(S, T)$, as described on slide 70. [Tedious!—maybe just do a bit.]

Exercise 8. Show that the following functions are all primitive recursive.

(a) Exponentiation, $\exp \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $\exp(x, y) \triangleq x^y$.

(b) Truncated subtraction, $\text{minus} \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $\text{minus}(x, y) \triangleq \begin{cases} x - y & \text{if } x \geq y \\ 0 & \text{if } x < y \end{cases}$

(c) Conditional branch on zero, $\text{ifzero} \in \mathbb{N}^3 \rightarrow \mathbb{N}$, where $\text{ifzero}(x, y, z) \triangleq \begin{cases} y & \text{if } x = 0 \\ z & \text{if } x > 0 \end{cases}$

(d) Bounded summation: if $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive, then so is $g \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ where

$$g(\vec{x}, x) \triangleq \begin{cases} 0 & \text{if } x = 0 \\ f(\vec{x}, 0) & \text{if } x = 1 \\ f(\vec{x}, 0) + \cdots + f(\vec{x}, x - 1) & \text{if } x > 1. \end{cases}$$

Exercise 9. Recall the definition of Ackermann’s function ack (slide 102). Sketch how to build a register machine M that computes $\text{ack}(x_1, x_2)$ in $R0$ when started with x_1 in $R1$ and x_2 in $R2$ and all other registers zero. [Hint: here’s one way; the next question steers you another way to the computability of ack. Call a finite list $L = [(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots]$ of triples of numbers suitable if it satisfies

(i) if $(0, y, z) \in L$, then $z = y + 1$

(ii) if $(x + 1, 0, z) \in L$, then $(x, 1, z) \in L$

(iii) if $(x + 1, y + 1, z) \in L$, then there is some u with $(x + 1, y, u) \in L$ and $(x, u, z) \in L$.

The idea is that if $(x, y, z) \in L$ and L is suitable then $z = \text{ack}(x, y)$ and L contains all the triples $(x', y', \text{ack}(x, y'))$ needed to calculate $\text{ack}(x, y)$. Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing $\text{ack}(x, y)$ by searching for the code of a suitable list containing a triple with x and y in it’s first two components.]

Exercise 10. For each $n \in \mathbb{N}$, let g_n be the function mapping each $y \in \mathbb{N}$ to the value $\text{ack}(n, y)$ of Ackermann’s function at $(n, y) \in \mathbb{N}^2$.

(a) Show for all $(n, y) \in \mathbb{N}^2$ that $g_{n+1}(y) = (g_n)^{(y+1)}(1)$, where $h^{(k)}(z)$ is the result of k repeated applications of the function h to initial argument z.

(b) Deduce that each g_n is a primitive recursive function.

(c) Deduce that Ackermann’s function is total recursive.
Exercise 11. If you are still not fed up with Ackermann’s function \(\text{ack} \in \mathbb{N}^2 \rightarrow \mathbb{N} \), show that the \(\lambda \)-term \(\text{ack} \equiv \lambda x. x (\lambda f y. y f (f 1)) \) Succ represents \(\text{ack} \) (where Succ is as on slide 123).

Exercise 12. Let \(I \) be the \(\lambda \)-term \(\lambda x. x \). Show that \(\beta \) holds for every Church numeral \(n \).

Now consider
\[
B \equiv \lambda f g x. g x I (f (g x))
\]
Assuming the fact about normal order reduction mentioned on slide 115, show that if partial functions \(f, g \in \mathbb{N} \rightarrow \mathbb{N} \) are represented by closed \(\lambda \)-terms \(F \) and \(G \) respectively, then their composition \((f \circ g)(x) \equiv f(g(x)) \) is represented by \(B F G \).