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Topic 6 — Applications

Overview

Infrastructure Services (DNS)
Traditional Applications (web)
Multimedia Applications (SIP)

P2P Networks



Client-server paradigm

server.
— always-on host
— permanent IP address
— server farms for scaling

clients:
— communicate with server
— may be intermittently connected
— may have dynamic IP addresses

— do not communicate directly
with each other




Relationship Between
@ Names&Addresses

e Addresses can underneath
— Move www.bbc.co.uk to 212.58.246.92
— Humans/Apps should be unaffected

e Name could map to IP addresses
— www.bbc.co.uk to multiple replicas of the Web site
— Enables

* Load-balancing
* Reducing latency by picking nearby servers

. for the same address
— E.g., aliases like www.bbc.co.uk and bbc.co.uk

— Mnemonic stable name, and dynamic canonical name
e Canonical name = actual name of host
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Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

* Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.bbc.co.uk



Domain Name System (DNS)

* Top of hierarchy: Root
— Location hardwired into other servers

* Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.
— .uk, .au, .to, etc.
— Managed professionally

e Bottom Level: Authoritative DNS servers

— Actually do the mapping
— Can be maintained locally or by a service provider
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Distributed Hierarchical Database

unnamed root

.'..

generic domains country domains
@ Top-Level Domains (TLDs) @

my.east.bar.edu
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DNS Root

Located in Virginia, USA
How do we make the root scale?

Verisign, Dulles, VA




DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
e Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London

H ARL Aberdeen, MD
J Verisign | Autonomica, Stockholm
E NASA Mt View, CA
-
F Internet Software ’
consertium . / M WIDE Tokyo

Palo Alto, CA \

B USC-ISI Marina del Rey, CA S N
L ICANN Los Angeles, CA
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DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations) | Autonomica, Stockholm (plus

E NASA Mt View, CA 290ther locations)
.—r —
F Internet Software "
Consortium, =

Palo Alto, CA \
(and 37 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
- plus Seoul, Paris,
San Francisco

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA ‘
c 4
J
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Using DNS

* Two components
— Local DNS servers
— Resolver software on hosts

* Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g.,
/etc/resolv.conf) or learn server via DHCP

* Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code
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How Does Resolution Happen?
(Iterative example)

root DNS server
Hostatcl.cam.ac.uk n

wants IP address for
www.stanford. edu

2

TLD DNS server

local DNS server
dns.cam.ac.uk

iterated query:
r Host enquiry is delegated
to local DNS server

r Consider
transactions 2 — 7 only -
r contacted server replies M ﬂ
with name of next server @ authoritative DNS server
to contact dns.stanford.edu
r  “l don’ t know this name, requesting host
but ask this server” cl.cam.ac.uk

@ www.stanford.edu
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DNS name resolution recursive example

root DNS server

recursive query: 2 3
r puts burden of name
resolution on contacted 7 6

name server n TLD DNS server

heavy load? t1
' y local DNS server

dns.cam.ac.uk 5
T 4

@ authoritative DNS server
dns.stanford.edu

requesting host
cl.cam.ac.uk

www.stanford.edu
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Recursive and lterative Queries - Hybrid case

Recursive query

— Ask server to get
answer for you

— E.g., requests 1,2
and responses
9,10

Iterative query

— Ask server who
to ask next

— E.g., all other
request-
response pairs
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Site DNS server
dns.cam.ac.uk

Site DNS server
dns.cl.cam.ac.uk

2

requesting host
my-host.cl.cam.ac.uk

root DNS server

-
V4
4
TLD DNS server

2 >
O0l—E
A
2139
. BN\
7| o (

authoritative DNS server
dns.stanford.edu
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DNS Caching

* Performing all these queries takes time
— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
* (Caching can greatly reduce overhead
— The top-level servers very rarely change
— Popular sites (e.g., www.bbc.co.uk) visited often
— Local DNS server often has the information cached
* How DNS caching works
— DNS servers cache responses to queries
— Responses include a “time to live” (TTL) field
— Server deletes cached entry after TTL expires
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Negative Caching

e Remember things that don’ t work
— Misspellings like bbcc.co.uk and www.bbc.com.uk
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative caching is optional
— And not widely implemented
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Reliability

DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up
— Queries can be load-balanced between replicas

Usually, UDP used for queries

— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented

Try alternate servers on timeout
— Exponential backoff when retrying same server

Same identifier for all queries
— Don’t care which server responds



DNS and Security

* No way to verify answers

— Opens up DNS to many potential attacks
— DNSSEC fixes this

* Most obvious vulnerability: recursive resolution
— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control
— And can return whatever values it wants

 More subtle attack: Cache poisoning
— Those “additional” records can be anything!



Data flow through the DNS

Where are the vulnerable
points?

Registrars
& Registrants

Secondary
DNS



DNSSEC protects all these end-to-end

provides message authentication and integrity verification through
cryptographic signatures

— You know who provided the signature
— No modifications between signing and validation

It does not provide authorization
It does not provide confidentiality
It does not provide protection against DDOS



DNSSEC in practice

* Scaling the key signing and key distribution
Solution: Using the DNS to Distribute Keys

* Distributing keys through DNS hierarchy:
— Use one trusted key to establish authenticity of other keys
— Building chains of trust from the root down
— Parents need to sign the keys of their children

* Only the root key needed in ideal world
— Parents always delegate security to child



Why is the web so
@ successful?

 What do the web, youtube, facebook, twitter, instagram, .....
have in common?

— The ability to self-publish

e Self-publishing that is easy, independent, free

* No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

 Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....
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Web Components

e |nfrastructure:
— Clients
— Servers
— Proxies

* Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

* Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!
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HTML: HyperText Markup Language

A Web page has:
— Base HTML file
— Referenced objects (e.g., images)

e HTML has several functions:

— Format text
— Reference images
— Embed hyperlinks (HREF)
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URL Syntax

protocol : //hostname| : port] /directorypath /resource

protocol http, ftp, https, smtp, rtsp, etc.
hostname DNS name, IP address
port Defaults to protocol’ s standard port

e.g. http: 80 https: 443

resource |dentifies the desired resource

Can also extend to program executions:

http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B%40Bulk&MsgId=2604 1744106 29699 1123 1261 0 289
17 3552 1289957100&Search=&Nhead=f&YY=31454&order=

down&sort=date&pos=0&view=a&head=b
38 ............................................................................................................................................................................................................................................................................................................................



HyperText Transfer Protocol (HTTP)

* Request-response protocol
* Reliance on a global namespace

 Resource metadata
e Stateless
* ASCII format (ok this changed....)

$ telnet www.cl.cam.ac.uk 80
GET /win HTTP/1.0
<blank line, i.e., CRLF>
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Steps in HTTP Request

HTTP Client initiates TCP connection to server

— SYN
— SYNACK
— ACK

Client sends HTTP request to server
— Can be piggybacked on TCP’s ACK

HTTP Server responds to request
Client receives the request, terminates connection
TCP connection termination exchange

How many RTTs for a single request?



Client-Server Communication

* two types of HTTP messages: request, response
e HTTP request message: (GET POST HEAD ....)

request line

(GET, POST, \

HEAD commands) GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0 HTTP FESpoNse message

header Connection: close

lines Accept-language: fr status line
(protocol
— status code \ HTTP/1.1 200 OK
Carriage return (extra carriage return, line feed)  status phrase) Connection close
: / Date: Thu, 06 Aug 1998 12:00:15 GMT
. Il.ne feed Server: Apache/1.3.0 (Unix)
indicates end header Last-Modified: Mon, 22 Jun 1998 .....
of message lines Content-Length: 6821
Content-Type: text/html

data data data data data ..
data, e.g., /

requested
HTML file

41



Different Forms of Server

Response
 Return afile

— URL matches a file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

* Generate response dynamically

— URL triggers a program on the server
— Server runs program and sends output to client

* Return meta-data with no body
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HT TP Resource Meta-Data

e Meta-data
— Info about a resource, stored as a separate entity

 Examples:

— Size of resource, last modification time, type of
content

* Usage example: Conditional GET Request
— Client requests object “If-modified-since”
— If unchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header
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HTTP is Stateless

 Each request-response treated independently
— Servers not required to retain state

* Good: Improves scalability on the server-side
— Failure handling is easier
— Can handle higher rate of requests
— Order of requests doesn‘t matter

 Bad: Some applications need persistent state

— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...
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State in a Stateless Protocol:

Cookies

Client-side state maintenance
— Client stores small» state on behalf of server
— Client sends state in future requests to the server

Can provide authentication

—
—_
)
)

Request
&)
@ __/'Response
™/ -Cookie: XYZ
@\/L< Set-Cookie
S
J/%i: Request

Cookie: XYZ




HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

 How do you retrieve those objects (naively)?
— One item at a time

* Put stuff in the optimal place?

— Where is that precisely?
 Enter the Web cache and the CDN
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Fetch HTTP Iltems: Stop & Wait

47

Client

Start fetching
page

\ 4

Request item 1

Request item

Request jtem 3

Finish; display

W

page

Server

awil




Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in
parallel

* Does not necessarily maintain
order of responses

e Client=©
e Server = ©

e Network = ® Why?
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Improving HTTP Performance:

Pipelined Requests & Responses

* Batch requests and responses
— Reduce connection overhead

— Multiple requests sent in a single
batch

— Maintains order of responses

— ltem 1 always arrives before item 2

e How is this different from
concurrent requests/responses?

— Single TCP connection

49

Client Server

pests
%’
%’

W
— ransfert—
" ransfer s ——




Improving HTTP Performance:

Persistent Connections

* Enables multiple transfers per connection
— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page
— Client or server can tear down connection

* Performance advantages:
— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate
— Allow TCP congestion window to increase
— i.e., leverage previously discovered bandwidth

 Defaultin HTTP/1.1

50



HTTP evolution

1.0 — one object per TCP: simple but slow

Parallel connections - multiple TCP, one object
each: wastes b/w, may be svr limited, out of order

1.1 pipelining — aggregate retrieval time: ordered,
multiple objects sharing single TCP

1.1 persistent — aggregate TCP overhead: lower
overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)
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Scorecard: Getting n Small Objects

52

Time dominated by latency

One-at-a-time: ~2n RTT
Persistent: ~ (n+1)RTT

M concurrent: ~2[n/m] RTT
Pipelined: ~2 RTT

Pipelined/Persistent: ~2 RTT first time, RTT
ater




Scorecard: Getting n Large Objects

53

Time dominated by bandwidth

One-at-a-time: ~ nF/B
M concurrent: ~ [n/m] F/B
— assuming shared with large population of users

Pipelined and/or persistent: ~ nF/B

— The only thing that helps is getting more
bandwidth..



Improving HTTP Performance:

Caching

* Many clients transfer the same information
— Generates redundant server and network load
— Clients experience unnecessary latency

Backlone ISP

ISP-2

'

Clients
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Improving HTTP Performance:

Caching: How

* Modifier to GET requests:

— If-modified-since —returns “not modified” if
resource not modified since specified time

* Response header:
~ Expires —how long it’s safe to cache the resource

— No-cache —ignore all caches; always get resource
directly from server
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Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time

— Content providers get happier users
* Time is money, really!

— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlap in content
— But many unique requests
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Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request

57

Return resource only if it has changed at the server

Regue BV SRRVENISsources!

GET /~awm22/win HTTP/1.1

Host: www.cl.cam.ac.uk

User-Agent: Mozilla/4.03

If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

HOWY
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
— ....or a “200 OK” with the latest version otherwise



Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server

—> decrease server load
* Typically done by content providers

* Only works for static(*) content ]
i Server

(*) static can also be snapshots
of dynamic content

Reverse proxies -

Backkbone ISP

ISP-

{0
P

Clients
58



Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients
- reduce network traffic and decrease latency

e Typically done by ISPs or corporate LANs

Reverse proxies



Improving HTTP Performance:

Caching w/ Content Distribution Networks

* |ntegrate forward and reverse caching functionality
— One overlay network (usually) administered by one entity
— e.g., Akamai
* Provide document caching
— Pull: Direct result of clients’ requests
— Push: Expectation of high access rate
* Also do some processing
— Handle dynamic web pages
— Transcoding
— Maybe do some security function — watermark IP
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Improving HTTP Performance:

Caching with CDNs (cont.)

Forward proxies

Clients

61
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Improving HTTP Performance:

CDN Example — Akamai

Akamai creates new domain names for each client
content provider.

— €.8., a128.g.akamai.net

The CDN’s DNS servers are authoritative for the new
domains

The client content provider modifies its content so
that embedded URLs reference the new domains.

— “Akamaize” content

— €.8.: http://www.bbc.co.uk/popular-image.jpg becomes
http://al128.g.akamai.net/popular-image.jpg

Requests now sent to CDN’s infrastructure...



Hosting: Multiple Sites Per
Machine

 Multiple Web sites on a single machine

— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)

* Problem:GET /index.html

— www.foo.com/index.html Of www.bar.com/index.html?

e Solutions:

— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server

— Include site name in HTTP request
* Single Web server process with a single IP address

* Client includes “Host” header (e.g., Host: www.foo.com)
* Required header with HTTP/1.1
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Hosting: Multiple Machines Per Site

* Replicate popular Web site across many machines
— Helps to handle the load
— Places content closer to clients

* Helps when content isn’t cacheable

* Problem: Want to direct client to particular replica

— Balance load across server replicas
— Pair clients with nearby servers

64



Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

|
> | Load Balancer |

—

/ 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica
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Multi-Hosting at Several Locations

 Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas
— Configure DNS server to return closest address

‘ —
64.236.16.20

(]

|

W

6d 73.72.54.131



CDN examples round-up

* CDN using DNS
DNS has information on loading/distribution/location

* CDN using anycast
same address from DNS name but local routes

 CDN based on rewriting HTML URLs
(akami example just covered — akami uses DNS too)



After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

* Binary protocol
— More efficient to parse
— More compact on the wire
— Much less error prone as compared
— to textual protocols



After HTTP/1.1

SPDY (speedy) al - |
* Binary protocc &

* Multiplexing
— Interleaved

HTTP/1.1 Baseline

)

2

Time

HTTP/2 Multiplexing

é <+— Open Connection

B

=

o
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After HTTP/1.1

Loading a web page Server Push
Browser Browser Server

GET index-html GET index,htm’

Network
Idle

Server <S Server
builds ical resource egC builds
Push crit page

<hemi><head”

e Server Push
— Proactively push stuff to client that it will need



After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
* Binary protocol

* Multiplexing

* Priority control over Frames

 Header Compression

* Server Push



SPDY

* SPDY + HTTP/2: One single TCP connection

instead of multiple

* Downside: Head of line blocking
* In TCP, packets need to be processed in

| SPDY

ceCe0On

sesee | SPDY

@ ®m blockedon =



Add QUIC and stir...
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability

* Very hard to make changes to TCP

* Faster to implement new protocol on top of UDP
* Roll out features in TCP if they prove theory
QUIC:

e Reliable transport over UDP (seriously)

* Uses FEC

* Default crypto

* Restartable connections



3-Way Handshake

Sender Receiver Sender Receiver

.............................................................. -~
................................................................ = e L
e T L b L L R e —— e ————— >
<«
.............................................................. :.’.. T MmO
............................................................. >l
B e ——————————
............................................................. >
v R T e me—————
i L ————leaasnias
v v

Without TLS With TLS



UDP

Fl re a n d fO rget Sender Receiver

— Less time spent to
validate packets

— Downside - no reliability, \

has to be built on top of
UDP




QUIC

 UDP does NOT depend on order of arriving packets

* Lost packets will only impact an individual resource,
e.g., CSS or JS file.

* QUICis combining best parts of HTTP/2 over UDP:

— Multiplexing on top of non-blocking transport protocol

8 8- QUIC| & & --& a--8---8| QUIC |- EED
IA }\\\




QUIC — more than just UDP

* QUIC outshines TCP under poor network
conditions, shaving a full second off the
Google Search page load time for the slowest
1% of connections.

* These benefits are even more apparent for
video services like YouTube. Users report 30%
fewer rebuffers when watching videos over
QUIC.



K -

SIP — Session Initiation Protocol

Session?

Anyone smell an OSI / ISO standards document burning?
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SIP - VoIP

cisco.com " princeton.edu

proxy proxy

—~— bsd-pc.cisco.com lip-ph.cs.princeton.edu

bruce@cisco.com larry@princeton.edu

Establishing communication
through SIP proxies.




SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
— User location
— User availability
— User capabilities
— Session setup
—Session management

* (e.g. “call forwarding”)
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H.323 - ITU

* Why have one standard when there are at least two....

 The full H.323 is hundreds of pages

— The protocol is known for its complexity — an ITU hallmark

e SIP is not much better

— |ETF grew up and became the ITU....
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Multimedia Applications

cisco.com princeton.edu
bsd-pc.cisco.com proxy proxy llp-ph.cs.princeton.edu

100 trying W‘

180 ringing

| e —
ACK

< Media
BYE

180 ringing

Ny

200 OK

Message flow for a basic SIP session
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The (still?) missing piece:
Resource Allocation for Multimedia Applications

router Public
Internet

Customer
IP phone router

| can ‘differentiate’ VolP from data but...
| can only control data going into the Internet
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Multimedia Ap Jollcations

Resource Allocation for Multimedia Applications

Proxy or gatekeeper

Wide area

link Head office

IP phones at
branch office

Admission control using session control protocol.
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Resource Allocation for Multimedia Applications

Coming soon...

INVITE SDP1
183 Session Progress SDP2

»

200 OK

who are we kidding?? PATH Messages

__________________________________

Co-ordination of SIP signaling and L TTTIIIiiiimiiiziizozasescmeesesszzziiiind
resource reservation. CPDATE SDPS

200 OK (UPDATE) SDP4

| 0OK(UPDATE)SDRs |

180 Ringin
PRACK
200 OK (PRACK ——

So where does it happen?
Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?

Phone company controls the multiplexing on the line
and throughout their own network too......
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P2P — efficient network use that
annoys the ISP



Pure P2P architecture

@

no a Iways-on server

arbitrary end systems
directly communicate oeer-peer =

peers are intermittently
connected and change IP
addresses

Three topics:

— File distribution
— Searching for information
— Case Study: Skype

87



File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

u.: server upload

bandwidth
Server @
u;: peeriupload
i o\ \d, U g bandwidth
o d;: peer i download

File, size F bandwidth
dy
@ > Network (with o
¢ ) abundant bandwidth)
N
[
o
¢ [
¢ o
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File distribution time: server-client

Server

. = 7
* server sequentially n ﬁdl u%/

sends N copies:

. d Network (with
— NF/US time @—’ 'N abundant bandwidth)
e client i takes F/d "
time to download e,

Time to distribute F

to Nclients using = d_ = max { NF/u,, F/m/n(d) )
client/server approach /

./ . .
increases linearly in N
(for large N)
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File distribution time: P2P

Se rver

server must send one copy: -
. F n uz\ \d; Yz
F/u.time

client i takes F/d;time to

d Network (with
download @_’L abundant bandwidth)
NF bits must be e
downloaded (aggregate) )

r fastest possible upload rate: u, + Zui

dp,p = max { F/u, F/min(d.) , NF/(u, + Zui) }
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Server-client vs. P2P: example

Client upload rate =u, F/u =1 hour, u,=10u, d_., > u,

3.5

-5- P2P

3

-o— Client-Server

N
o

N

RN
(€)

Minimum Distribution Time

o
o

o
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Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name
— key: content type; value: IP address

Peers query DB with key

— DB returns values that match the key

Peers can also insert (key, value) peers



Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name
— key: content type; value: IP address

Peers query DB with key

— DB returns values that match the key

Peers can also insert (key, value) peers



DHT Identifiers

* Assign integer identifier to each peer in range
[0,2"-1].
— Each identifier can be represented by n bits.
* Require each key to be an integer in same range.
* To get integer keys, hash original key.
— eg, key = h(“Game of Thrones season 29”)
— This is why they call it a distributed “hash” table



How to assign keys to peers?

Central issue:
— Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the
closest ID.

Convention in lecture: closest is the
iImmediate successor of the key.

Ex: n=4; peers: 1,3,4,5,8,10,12,14;
— key = 13, then successor peer =14

— key = 15, then successor peer =1



Circular DHT (1)

1

15

12

10
3

* Each peer only aware of immediate successor
and predecessor.

* “Overlay network”



Circle DHT (2)

O(N) messages 0001 Who' s resp

on avg to resolve for key 1110 ?
query, when there

are N peers

1100

Define closest
as closest
successor




Circular DHT with Shortcuts

1 Who' s resp
3 for key 11107

15

12

10
8

Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

Reduced from 6 to 2 messages.

Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query
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12

Peer Churn

*To handle peer churn, require
3 each peer to know the IP address
of its two successors.
* Each peer periodically pings its
4 two successors to see if they

are still alive.

10
8

Peer 5 abruptly leaves

Peer 4 detects; makes 8 its immediate successor; asks 8
who its immediate successor is; makes 8 s immediate
successor its second successor.

What if peer 13 wants to join?



Summary.

Apps need protocols too

We covered examples from

— Traditional Applications (web)
— Scaling and Speeding the web (CDN/Cache tricks)

Infrastructure Services (DNS)
— Cache and Hierarchy

Multimedia Applications (SIP)
— Extremely hard to do better than worst-effort

P2P Network examples



