Computer Networking

Lent Term
M/W/F 11:00-12:00
LT1 in Gates Building

Handout 4 (Topic 6)
Andrew W. Moore

Andrew.Moore@cl.cam.ac.uk
2018-2019

Topic 6 — Applications

Overview

Infrastructure Services (DNS)
Traditional Applications (web)
Multimedia Applications (SIP)

P2P Networks

Client-server paradigm

server.
— always-on host
— permanent IP address
— server farms for scaling

clients:
— communicate with server
— may be intermittently connected
— may have dynamic IP addresses

— do not communicate directly
with each other

Relationship Between
@ Names&Addresses

e Addresses can underneath
— Move www.bbc.co.uk to 212.58.246.92
— Humans/Apps should be unaffected

e Name could map to IP addresses
— www.bbc.co.uk to multiple replicas of the Web site
— Enables

* Load-balancing
* Reducing latency by picking nearby servers

. for the same address
— E.g., aliases like www.bbc.co.uk and bbc.co.uk

— Mnemonic stable name, and dynamic canonical name
e Canonical name = actual name of host

17

Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

* Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.bbc.co.uk

Domain Name System (DNS)

* Top of hierarchy: Root
— Location hardwired into other servers

* Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.
— .uk, .au, .to, etc.
— Managed professionally

e Bottom Level: Authoritative DNS servers

— Actually do the mapping
— Can be maintained locally or by a service provider

19

Distributed Hierarchical Database

unnamed root

.'..

generic domains country domains
@ Top-Level Domains (TLDs) @

my.east.bar.edu

20

cl.cam.ac.uk

o

21

DNS Root

Located in Virginia, USA
How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
e Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London

H ARL Aberdeen, MD
J Verisign | Autonomica, Stockholm
E NASA Mt View, CA
-
F Internet Software ’
consertium . / M WIDE Tokyo

Palo Alto, CA \

B USC-ISI Marina del Rey, CA S N
L ICANN Los Angeles, CA

22

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations) | Autonomica, Stockholm (plus

E NASA Mt View, CA 290ther locations)
.—r —
F Internet Software "
Consortium, =

Palo Alto, CA \
(and 37 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
- plus Seoul, Paris,
San Francisco

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA ‘
c 4
J

23

Using DNS

* Two components
— Local DNS servers
— Resolver software on hosts

* Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g.,
/etc/resolv.conf) or learn server via DHCP

* Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code

24

How Does Resolution Happen?
(Iterative example)

root DNS server
Hostatcl.cam.ac.uk n

wants IP address for
www.stanford. edu

2

TLD DNS server

local DNS server
dns.cam.ac.uk

iterated query:
r Host enquiry is delegated
to local DNS server

r Consider
transactions 2 — 7 only -
r contacted server replies M ﬂ
with name of next server @ authoritative DNS server
to contact dns.stanford.edu
r “l don’ t know this name, requesting host
but ask this server” cl.cam.ac.uk

@ www.stanford.edu

25

DNS name resolution recursive example

root DNS server

recursive query: 2 3
r puts burden of name
resolution on contacted 7 6

name server n TLD DNS server

heavy load? t1
' y local DNS server

dns.cam.ac.uk 5
T 4

@ authoritative DNS server
dns.stanford.edu

requesting host
cl.cam.ac.uk

www.stanford.edu

26

Recursive and lterative Queries - Hybrid case

Recursive query

— Ask server to get
answer for you

— E.g., requests 1,2
and responses
9,10

Iterative query

— Ask server who
to ask next

— E.g., all other
request-
response pairs

27

Site DNS server
dns.cam.ac.uk

Site DNS server
dns.cl.cam.ac.uk

2

requesting host
my-host.cl.cam.ac.uk

root DNS server

-
V4
4
TLD DNS server

2 >
O0l—E
A
2139
. BN\
7| o (

authoritative DNS server
dns.stanford.edu

2

DNS Caching

* Performing all these queries takes time
— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
* (Caching can greatly reduce overhead
— The top-level servers very rarely change
— Popular sites (e.g., www.bbc.co.uk) visited often
— Local DNS server often has the information cached
* How DNS caching works
— DNS servers cache responses to queries
— Responses include a “time to live” (TTL) field
— Server deletes cached entry after TTL expires

28

Negative Caching

e Remember things that don’ t work
— Misspellings like bbcc.co.uk and www.bbc.com.uk
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative caching is optional
— And not widely implemented

29

30

Reliability

DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up
— Queries can be load-balanced between replicas

Usually, UDP used for queries

— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented

Try alternate servers on timeout
— Exponential backoff when retrying same server

Same identifier for all queries
— Don’t care which server responds

DNS and Security

* No way to verify answers

— Opens up DNS to many potential attacks
— DNSSEC fixes this

* Most obvious vulnerability: recursive resolution
— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control
— And can return whatever values it wants

 More subtle attack: Cache poisoning
— Those “additional” records can be anything!

Data flow through the DNS

Where are the vulnerable
points?

Registrars
& Registrants

Secondary
DNS

DNSSEC protects all these end-to-end

provides message authentication and integrity verification through
cryptographic signatures

— You know who provided the signature
— No modifications between signing and validation

It does not provide authorization
It does not provide confidentiality
It does not provide protection against DDOS

DNSSEC in practice

* Scaling the key signing and key distribution
Solution: Using the DNS to Distribute Keys

* Distributing keys through DNS hierarchy:
— Use one trusted key to establish authenticity of other keys
— Building chains of trust from the root down
— Parents need to sign the keys of their children

* Only the root key needed in ideal world
— Parents always delegate security to child

Why is the web so
@ successful?

 What do the web, youtube, facebook, twitter, instagram,
have in common?

— The ability to self-publish

e Self-publishing that is easy, independent, free

* No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

 Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....

35

Web Components

e |nfrastructure:
— Clients
— Servers
— Proxies

* Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

* Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!

36

HTML: HyperText Markup Language

A Web page has:
— Base HTML file
— Referenced objects (e.g., images)

e HTML has several functions:

— Format text
— Reference images
— Embed hyperlinks (HREF)

37

URL Syntax

protocol : //hostname| : port] /directorypath /resource

protocol http, ftp, https, smtp, rtsp, etc.
hostname DNS name, IP address
port Defaults to protocol’ s standard port

e.g. http: 80 https: 443

resource |dentifies the desired resource

Can also extend to program executions:

http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B%40Bulk&MsgId=2604 1744106 29699 1123 1261 0 289
17 3552 1289957100&Search=&Nhead=f&YY=31454&order=

down&sort=date&pos=0&view=a&head=b
38 ..

HyperText Transfer Protocol (HTTP)

* Request-response protocol
* Reliance on a global namespace

 Resource metadata
e Stateless
* ASCII format (ok this changed....)

$ telnet www.cl.cam.ac.uk 80
GET /win HTTP/1.0
<blank line, i.e., CRLF>

39

40

Steps in HTTP Request

HTTP Client initiates TCP connection to server

— SYN
— SYNACK
— ACK

Client sends HTTP request to server
— Can be piggybacked on TCP’s ACK

HTTP Server responds to request
Client receives the request, terminates connection
TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

* two types of HTTP messages: request, response
e HTTP request message: (GET POST HEAD)

request line

(GET, POST, \

HEAD commands) GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0 HTTP FESpoNse message

header Connection: close

lines Accept-language: fr status line
(protocol
— status code \ HTTP/1.1 200 OK
Carriage return (extra carriage return, line feed) status phrase) Connection close
: / Date: Thu, 06 Aug 1998 12:00:15 GMT
. Il.ne feed Server: Apache/1.3.0 (Unix)
indicates end header Last-Modified: Mon, 22 Jun 1998
of message lines Content-Length: 6821
Content-Type: text/html

data data data data data ..
data, e.g., /

requested
HTML file

41

Different Forms of Server

Response
 Return afile

— URL matches a file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

* Generate response dynamically

— URL triggers a program on the server
— Server runs program and sends output to client

* Return meta-data with no body

42

HT TP Resource Meta-Data

e Meta-data
— Info about a resource, stored as a separate entity

 Examples:

— Size of resource, last modification time, type of
content

* Usage example: Conditional GET Request
— Client requests object “If-modified-since”
— If unchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header

43

HTTP is Stateless

 Each request-response treated independently
— Servers not required to retain state

* Good: Improves scalability on the server-side
— Failure handling is easier
— Can handle higher rate of requests
— Order of requests doesn‘t matter

 Bad: Some applications need persistent state

— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...

44

45

State in a Stateless Protocol:

Cookies

Client-side state maintenance
— Client stores small» state on behalf of server
— Client sends state in future requests to the server

Can provide authentication

—
—_
)
)

Request
&)
@ __/'Response
™/ -Cookie: XYZ
@\/L< Set-Cookie
S
J/%i: Request

Cookie: XYZ

HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

 How do you retrieve those objects (naively)?
— One item at a time

* Put stuff in the optimal place?

— Where is that precisely?
 Enter the Web cache and the CDN

46

Fetch HTTP Iltems: Stop & Wait

47

Client

Start fetching
page

\ 4

Request item 1

Request item

Request jtem 3

Finish; display

W

page

Server

awil

Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in
parallel

* Does not necessarily maintain
order of responses

e Client=©
e Server = ©

e Network = ® Why?

48

Improving HTTP Performance:

Pipelined Requests & Responses

* Batch requests and responses
— Reduce connection overhead

— Multiple requests sent in a single
batch

— Maintains order of responses

— ltem 1 always arrives before item 2

e How is this different from
concurrent requests/responses?

— Single TCP connection

49

Client Server

pests
%’
%’

W
— ransfert—
" ransfer s ——

Improving HTTP Performance:

Persistent Connections

* Enables multiple transfers per connection
— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page
— Client or server can tear down connection

* Performance advantages:
— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate
— Allow TCP congestion window to increase
— i.e., leverage previously discovered bandwidth

 Defaultin HTTP/1.1

50

HTTP evolution

1.0 — one object per TCP: simple but slow

Parallel connections - multiple TCP, one object
each: wastes b/w, may be svr limited, out of order

1.1 pipelining — aggregate retrieval time: ordered,
multiple objects sharing single TCP

1.1 persistent — aggregate TCP overhead: lower
overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)

51

Scorecard: Getting n Small Objects

52

Time dominated by latency

One-at-a-time: ~2n RTT
Persistent: ~ (n+1)RTT

M concurrent: ~2[n/m] RTT
Pipelined: ~2 RTT

Pipelined/Persistent: ~2 RTT first time, RTT
ater

Scorecard: Getting n Large Objects

53

Time dominated by bandwidth

One-at-a-time: ~ nF/B
M concurrent: ~ [n/m] F/B
— assuming shared with large population of users

Pipelined and/or persistent: ~ nF/B

— The only thing that helps is getting more
bandwidth..

Improving HTTP Performance:

Caching

* Many clients transfer the same information
— Generates redundant server and network load
— Clients experience unnecessary latency

Backlone ISP

ISP-2

'

Clients

54

Improving HTTP Performance:

Caching: How

* Modifier to GET requests:

— If-modified-since —returns “not modified” if
resource not modified since specified time

* Response header:
~ Expires —how long it’s safe to cache the resource

— No-cache —ignore all caches; always get resource
directly from server

55

Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time

— Content providers get happier users
* Time is money, really!

— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlap in content
— But many unique requests

56

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request

57

Return resource only if it has changed at the server

Regue BV SRRVENISsources!

GET /~awm22/win HTTP/1.1

Host: www.cl.cam.ac.uk

User-Agent: Mozilla/4.03

If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

HOWY
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
—or a “200 OK” with the latest version otherwise

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server

—> decrease server load
* Typically done by content providers

* Only works for static(*) content]
i Server

(*) static can also be snapshots
of dynamic content

Reverse proxies -

Backkbone ISP

ISP-

{0
P

Clients
58

Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients
- reduce network traffic and decrease latency

e Typically done by ISPs or corporate LANs

Reverse proxies

Improving HTTP Performance:

Caching w/ Content Distribution Networks

* |ntegrate forward and reverse caching functionality
— One overlay network (usually) administered by one entity
— e.g., Akamai
* Provide document caching
— Pull: Direct result of clients’ requests
— Push: Expectation of high access rate
* Also do some processing
— Handle dynamic web pages
— Transcoding
— Maybe do some security function — watermark IP

60

Improving HTTP Performance:

Caching with CDNs (cont.)

Forward proxies

Clients

61

62

Improving HTTP Performance:

CDN Example — Akamai

Akamai creates new domain names for each client
content provider.

— €.8., a128.g.akamai.net

The CDN’s DNS servers are authoritative for the new
domains

The client content provider modifies its content so
that embedded URLs reference the new domains.

— “Akamaize” content

— €.8.: http://www.bbc.co.uk/popular-image.jpg becomes
http://al128.g.akamai.net/popular-image.jpg

Requests now sent to CDN’s infrastructure...

Hosting: Multiple Sites Per
Machine

 Multiple Web sites on a single machine

— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)

* Problem:GET /index.html

— www.foo.com/index.html Of www.bar.com/index.html?

e Solutions:

— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server

— Include site name in HTTP request
* Single Web server process with a single IP address

* Client includes “Host” header (e.g., Host: www.foo.com)
* Required header with HTTP/1.1

63

Hosting: Multiple Machines Per Site

* Replicate popular Web site across many machines
— Helps to handle the load
— Places content closer to clients

* Helps when content isn’t cacheable

* Problem: Want to direct client to particular replica

— Balance load across server replicas
— Pair clients with nearby servers

64

Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

|
> | Load Balancer |

—

/ 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica

65

Multi-Hosting at Several Locations

 Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas
— Configure DNS server to return closest address

‘ —
64.236.16.20

(]

|

W

6d 73.72.54.131

CDN examples round-up

* CDN using DNS
DNS has information on loading/distribution/location

* CDN using anycast
same address from DNS name but local routes

 CDN based on rewriting HTML URLs
(akami example just covered — akami uses DNS too)

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

* Binary protocol
— More efficient to parse
— More compact on the wire
— Much less error prone as compared
— to textual protocols

After HTTP/1.1

SPDY (speedy) al - |
* Binary protocc &

* Multiplexing
— Interleaved

HTTP/1.1 Baseline

)

2

Time

HTTP/2 Multiplexing

é <+— Open Connection

B

=

o

69

After HTTP/1.1

Loading a web page Server Push
Browser Browser Server

GET index-html GET index,htm’

Network
Idle

Server <S Server
builds ical resource egC builds
Push crit page

<hemi><head”

e Server Push
— Proactively push stuff to client that it will need

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
* Binary protocol

* Multiplexing

* Priority control over Frames

 Header Compression

* Server Push

SPDY

* SPDY + HTTP/2: One single TCP connection

instead of multiple

* Downside: Head of line blocking
* In TCP, packets need to be processed in

| SPDY

ceCe0On

sesee | SPDY

@ ®m blockedon =

Add QUIC and stir...
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability

* Very hard to make changes to TCP

* Faster to implement new protocol on top of UDP
* Roll out features in TCP if they prove theory
QUIC:

e Reliable transport over UDP (seriously)

* Uses FEC

* Default crypto

* Restartable connections

3-Way Handshake

Sender Receiver Sender Receiver

.. -~
.. = e L
e T L b L L R e —— e ————— >
<«
.. :.’.. T MmO
... >l
B e ——————————
... >
v R T e me—————
i L ————leaasnias
v v

Without TLS With TLS

UDP

Fl re a n d fO rget Sender Receiver

— Less time spent to
validate packets

— Downside - no reliability, \

has to be built on top of
UDP

QUIC

 UDP does NOT depend on order of arriving packets

* Lost packets will only impact an individual resource,
e.g., CSS or JS file.

* QUICis combining best parts of HTTP/2 over UDP:

— Multiplexing on top of non-blocking transport protocol

8 8- QUIC| & & --& a--8---8| QUIC |- EED
IA }\\\

QUIC — more than just UDP

* QUIC outshines TCP under poor network
conditions, shaving a full second off the
Google Search page load time for the slowest
1% of connections.

* These benefits are even more apparent for
video services like YouTube. Users report 30%
fewer rebuffers when watching videos over
QUIC.

K -

SIP — Session Initiation Protocol

Session?

Anyone smell an OSI / ISO standards document burning?

78

SIP - VoIP

cisco.com " princeton.edu

proxy proxy

—~— bsd-pc.cisco.com lip-ph.cs.princeton.edu

bruce@cisco.com larry@princeton.edu

Establishing communication
through SIP proxies.

SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
— User location
— User availability
— User capabilities
— Session setup
—Session management

* (e.g. “call forwarding”)

80

H.323 - ITU

* Why have one standard when there are at least two....

 The full H.323 is hundreds of pages

— The protocol is known for its complexity — an ITU hallmark

e SIP is not much better

— |ETF grew up and became the ITU....

81

Multimedia Applications

cisco.com princeton.edu
bsd-pc.cisco.com proxy proxy llp-ph.cs.princeton.edu

100 trying W‘

180 ringing

| e —
ACK

< Media
BYE

180 ringing

Ny

200 OK

Message flow for a basic SIP session

82

The (still?) missing piece:
Resource Allocation for Multimedia Applications

router Public
Internet

Customer
IP phone router

| can ‘differentiate’ VolP from data but...
| can only control data going into the Internet

83

Multimedia Ap Jollcations

Resource Allocation for Multimedia Applications

Proxy or gatekeeper

Wide area

link Head office

IP phones at
branch office

Admission control using session control protocol.

84

Resource Allocation for Multimedia Applications

Coming soon...

INVITE SDP1
183 Session Progress SDP2

»

200 OK

who are we kidding?? PATH Messages

Co-ordination of SIP signaling and L TTTIIIiiiimiiiziizozasescmeesesszzziiiind
resource reservation. CPDATE SDPS

200 OK (UPDATE) SDP4

| 0OK(UPDATE)SDRs |

180 Ringin
PRACK
200 OK (PRACK ——

So where does it happen?
Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?

Phone company controls the multiplexing on the line
and throughout their own network too......

85

P2P — efficient network use that
annoys the ISP

Pure P2P architecture

@

no a Iways-on server

arbitrary end systems
directly communicate oeer-peer =

peers are intermittently
connected and change IP
addresses

Three topics:

— File distribution
— Searching for information
— Case Study: Skype

87

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

u.: server upload

bandwidth
Server @
u;: peeriupload
i o\ \d, U g bandwidth
o d;: peer i download

File, size F bandwidth
dy
@ > Network (with o
¢) abundant bandwidth)
N
[
o
¢ [
¢ o

88

File distribution time: server-client

Server

. = 7
* server sequentially n ﬁdl u%/

sends N copies:

. d Network (with
— NF/US time @—’ 'N abundant bandwidth)
e client i takes F/d "
time to download e,

Time to distribute F

to Nclients using = d_ = max { NF/u,, F/m/n(d))
client/server approach /

./ . .
increases linearly in N
(for large N)

89

File distribution time: P2P

Se rver

server must send one copy: -
. F n uz\ \d; Yz
F/u.time

client i takes F/d;time to

d Network (with
download @_’L abundant bandwidth)
NF bits must be e
downloaded (aggregate))

r fastest possible upload rate: u, + Zui

dp,p = max { F/u, F/min(d.) , NF/(u, + Zui) }

90

Server-client vs. P2P: example

Client upload rate =u, F/u =1 hour, u,=10u, d_., > u,

3.5

-5- P2P

3

-o— Client-Server

N
o

N

RN
(€)

Minimum Distribution Time

o
o

o

91

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name
— key: content type; value: IP address

Peers query DB with key

— DB returns values that match the key

Peers can also insert (key, value) peers

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name
— key: content type; value: IP address

Peers query DB with key

— DB returns values that match the key

Peers can also insert (key, value) peers

DHT Identifiers

* Assign integer identifier to each peer in range
[0,2"-1].
— Each identifier can be represented by n bits.
* Require each key to be an integer in same range.
* To get integer keys, hash original key.
— eg, key = h(“Game of Thrones season 29”)
— This is why they call it a distributed “hash” table

How to assign keys to peers?

Central issue:
— Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the
closest ID.

Convention in lecture: closest is the
iImmediate successor of the key.

Ex: n=4; peers: 1,3,4,5,8,10,12,14;
— key = 13, then successor peer =14

— key = 15, then successor peer =1

Circular DHT (1)

1

15

12

10
3

* Each peer only aware of immediate successor
and predecessor.

* “Overlay network”

Circle DHT (2)

O(N) messages 0001 Who' s resp

on avg to resolve for key 1110 ?
query, when there

are N peers

1100

Define closest
as closest
successor

Circular DHT with Shortcuts

1 Who' s resp
3 for key 11107

15

12

10
8

Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

Reduced from 6 to 2 messages.

Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

15

12

Peer Churn

*To handle peer churn, require
3 each peer to know the IP address
of its two successors.
* Each peer periodically pings its
4 two successors to see if they

are still alive.

10
8

Peer 5 abruptly leaves

Peer 4 detects; makes 8 its immediate successor; asks 8
who its immediate successor is; makes 8 s immediate
successor its second successor.

What if peer 13 wants to join?

Summary.

Apps need protocols too

We covered examples from

— Traditional Applications (web)
— Scaling and Speeding the web (CDN/Cache tricks)

Infrastructure Services (DNS)
— Cache and Hierarchy

Multimedia Applications (SIP)
— Extremely hard to do better than worst-effort

P2P Network examples

