Computer Networking

Lent Term
M/W/F 11:00-12:00
LT1 in Gates Building

Handout 4 (Topic 6)

Andrew W. Moore

Andrew.Moore@cl.cam.ac.uk 2018-2019

Topic 6 – Applications

Overview

Infrastructure Services (DNS)

Traditional Applications (web)

Multimedia Applications (SIP)

P2P Networks

Client-server paradigm

server:

- always-on host
- permanent IP address
- server farms for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Relationship Between Names&Addresses

- Addresses can change underneath
 - Move www.bbc.co.uk to 212.58.246.92
 - Humans/Apps should be unaffected
- Name could map to multiple IP addresses
 - www.bbc.co.uk to multiple replicas of the Web site
 - Enables
 - Load-balancing
 - Reducing latency by picking nearby servers
- Multiple names for the same address
 - E.g., aliases like www.bbc.co.uk and bbc.co.uk
 - Mnemonic stable name, and dynamic canonical name
 - Canonical name = actual name of host

Mapping from Names to Addresses

- Originally: per-host file /etc/hosts
 - SRI (Menlo Park) kept master copy
 - Downloaded regularly
 - Flat namespace
- Single server not resilient, doesn't scale
 - Adopted a distributed hierarchical system
- Two intertwined hierarchies:
 - Infrastructure: hierarchy of DNS servers
 - Naming structure: www.bbc.co.uk

Domain Name System (DNS)

- Top of hierarchy: Root
 - Location hardwired into other servers
- Next Level: Top-level domain (TLD) servers
 - .com, .edu, etc.
 - uk, .au, .to, etc.
 - Managed professionally
- Bottom Level: Authoritative DNS servers
 - Actually do the mapping
 - Can be maintained locally or by a service provider

Distributed Hierarchical Database

DNS Root

- Located in Virginia, USA
- How do we make the root scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Does this scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Replication via any-casting (localized routing for addresses)

Using DNS

- Two components
 - Local DNS servers
 - Resolver software on hosts
- Local DNS server ("default name server")
 - Usually near the endhosts that use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn server via DHCP
- Client application
 - Extract server name (e.g., from the URL)
 - Do gethostbyname() to trigger resolver code

How Does Resolution Happen?

(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

local DNS server

dns.cam.ac.uk

iterated query:

- r Host enquiry is delegated to local DNS server
- r Consider transactions 2 7 only
- r contacted server replies with name of next server to contact
- r "I don't know this name, requesting host but ask this server" cl.cam.ac.uk

root DNS server

www.stanford.edu

DNS name resolution recursive example

recursive query:

- r puts burden of name resolution on contacted name server
- r heavy load?

Recursive and Iterative Queries - Hybrid case

Recursive query

- Ask server to get answer for you
- E.g., requests 1,2and responses9,10

Iterative query

- Ask server who to ask next
- E.g., all other request-response pairs

DNS Caching

- Performing all these queries takes time
 - And all this before actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can greatly reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.bbc.co.uk) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes cached entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like bbcc.co.uk and www.bbc.com.uk
 - These can take a long time to fail the first time
 - Good to remember that they don't work
 - ... so the failure takes less time the next time around
- But: negative caching is optional
 - And not widely implemented

Reliability

- DNS servers are replicated (primary/secondary)
 - Name service available if at least one replica is up
 - Queries can be load-balanced between replicas
- Usually, UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Spec supports TCP too, but not always implemented
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
 - Don't care which server responds

DNS and Security

- No way to verify answers
 - Opens up DNS to many potential attacks
 - DNSSEC fixes this
- Most obvious vulnerability: recursive resolution
 - Using recursive resolution, host must trust DNS server
 - When at Starbucks, server is under their control
 - And can return whatever values it wants
- More subtle attack: Cache poisoning
 - Those "additional" records can be anything!

Data flow through the DNS Where are the vulnerable points?

DNSSEC protects all these end-to-end

- provides message authentication and integrity verification through cryptographic signatures
 - You know who provided the signature
 - No modifications between signing and validation
- It does **not** provide authorization
- It does **not** provide confidentiality
- It does not provide protection against DDOS

DNSSEC in practice

- Scaling the key signing and key distribution
 Solution: Using the DNS to Distribute Keys
- Distributing keys through DNS hierarchy:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children
- Only the root key needed in ideal world
 - Parents always delegate security to child

Why is the web so successful?

- What do the web, youtube, facebook, twitter, instagram, have in common?
 - The ability to self-publish
- Self-publishing that is easy, independent, free
- No interest in collaborative and idealistic endeavor
 - People aren't looking for Nirvana (or even Xanadu)
 - People also aren't looking for technical perfection
- Want to make their mark, and find something neat
 - Two sides of the same coin, creates synergy
 - "Performance" more important than dialogue....

Web Components

- Infrastructure:
 - Clients
 - Servers
 - Proxies
- Content:
 - Individual objects (files, etc.)
 - Web sites (coherent collection of objects)
- Implementation
 - HTML: formatting content
 - URL: naming content
 - HTTP: protocol for exchanging content Any content not just HTML!

HTML: HyperText Markup Language

- A Web page has:
 - Base HTML file
 - Referenced objects (e.g., images)

- HTML has several functions:
 - Format text
 - Reference images
 - Embed hyperlinks (HREF)

URL Syntax

protocol://hostname[:port]/directorypath/resource

protocol	http, ftp, https, smtp, rtsp, etc.
hostname	DNS name, IP address
port	Defaults to protocol's standard port e.g. http: 80 https: 443
directory path	Hierarchical, reflecting file system
resource	Identifies the desired resource
	Can also extend to program executions: http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4 0B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_289 17_3552_1289957100&Search=&Nhead=f&YY=31454ℴ= down&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

- Request-response protocol
- Reliance on a global namespace
- Resource metadata
- Stateless
- ASCII format (ok this changed....)

\$ telnet www.cl.cam.ac.uk 80 GET /win HTTP/1.0

<blank line, i.e., CRLF>

Steps in HTTP Request

- HTTP Client initiates TCP connection to server
 - SYN
 - SYNACK
 - ACK
- Client sends HTTP request to server
 - Can be piggybacked on TCP's ACK
- HTTP Server responds to request
- Client receives the request, terminates connection
- TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

- two types of HTTP messages: request, response
- HTTP request message: (GET POST HEAD)

Different Forms of Server Response

- Return a file
 - URL matches a file (e.g., /www/index.html)
 - Server returns file as the response
 - Server generates appropriate response header

- Generate response dynamically
 - URL triggers a program on the server
 - Server runs program and sends output to client

Return meta-data with no body

HTTP Resource Meta-Data

- Meta-data
 - Info about a resource, stored as a separate entity
- Examples:
 - Size of resource, last modification time, type of content
- Usage example: Conditional GET Request
 - Client requests object "If-modified-since"
 - If unchanged, "HTTP/1.1 304 Not Modified"
 - No body in the server's response, only a header

HTTP is Stateless

- Each request-response treated independently
 - Servers not required to retain state
- Good: Improves scalability on the server-side
 - Failure handling is easier
 - Can handle higher rate of requests
 - Order of requests doesn't matter
- Bad: Some applications need persistent state
 - Need to uniquely identify user or store temporary info
 - e.g., Shopping cart, user profiles, usage tracking, ...

State in a Stateless Protocol:

Cookies

- *Client-side* state maintenance
 - Client stores small⁽²⁾ state on behalf of server
 - Client sends state in future requests to the server
- Can provide authentication

HTTP Performance

- Most Web pages have multiple objects
 - e.g., HTML file and a bunch of embedded images

- How do you retrieve those objects (naively)?
 - One item at a time
- Put stuff in the optimal place?
 - Where is that precisely?
 - Enter the Web cache and the CDN

Fetch HTTP Items: Stop & Wait

Improving HTTP Performance:

Concurrent Requests & Responses

- Use multiple connections *in* parallel
- Does not necessarily maintain order of responses

- Client = 🙂
- Server = 🙂
- Network = Why?

Improving HTTP Performance:

Pipelined Requests & Responses

- Batch requests and responses
 - Reduce connection overhead
 - Multiple requests sent in a single batch
 - Maintains order of responses
 - Item 1 always arrives before item 2
- How is this different from concurrent requests/responses?
 - Single TCP connection

Improving HTTP Performance: Persistent Connections

- Enables multiple transfers per connection
 - Maintain TCP connection across multiple requests
 - Including transfers subsequent to current page
 - Client or server can tear down connection
- Performance advantages:
 - Avoid overhead of connection set-up and tear-down
 - Allow TCP to learn more accurate RTT estimate
 - Allow TCP congestion window to increase
 - i.e., leverage previously discovered bandwidth
- Default in HTTP/1.1

HTTP evolution

- 1.0 one object per TCP: simple but slow
- Parallel connections multiple TCP, one object each: wastes b/w, may be svr limited, out of order
- 1.1 pipelining aggregate retrieval time: ordered, multiple objects sharing single TCP
- 1.1 persistent aggregate TCP overhead: lower overhead in time, increase overhead at ends (e.g., when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

- One-at-a-time: ~2n RTT
- Persistent: ~ (n+1)RTT
- M concurrent: ~2[n/m] RTT
- Pipelined: ~2 RTT
- Pipelined/Persistent: ~2 RTT first time, RTT later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

- One-at-a-time: ~ nF/B
- M concurrent: ~ [n/m] F/B
 - assuming shared with large population of users
- Pipelined and/or persistent: ~ nF/B
 - The only thing that helps is getting more bandwidth..

Improving HTTP Performance: Caching

- Many clients transfer the same information
 - Generates redundant server and network load
 - Clients experience unnecessary latency

Improving HTTP Performance:

Caching: How

- Modifier to GET requests:
 - If-modified-since returns "not modified" if resource not modified since specified time
- Response header:
 - Expires how long it's safe to cache the resource
 - No-cache ignore all caches; always get resource directly from server

Improving HTTP Performance:

Caching: Why

- Motive for placing content closer to client:
 - User gets better response time
 - Content providers get happier users
 - Time is money, really!
 - Network gets reduced load
- Why does caching work?
 - Exploits locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests

Improving HTTP Performance: Caching on the Client

Example: Conditional GET Request

Return resource only if it has changed at the server

— Save server resources!

```
GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>
```

- HOW!
 - Client specifies "if-modified-since" time in request
 - Server compares this against "last modified" time of desired resource
 - Server returns "304 Not Modified" if resource has not changed
 - or a "200 OK" with the latest version otherwise

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server

- → decrease server load
- Typically done by content providers

Improving HTTP Performance: Caching with Forward Proxies

Cache documents close to **clients**reduce network traffic and decrease latency

Typically done by ISPs or corporate LANs

Improving HTTP Performance:

Caching w/ Content Distribution Networks

- Integrate forward and reverse caching functionality
 - One overlay network (usually) administered by one entity
 - *e.g.,* Akamai
- Provide document caching
 - Pull: Direct result of clients' requests
 - Push: Expectation of high access rate
- Also do some processing
 - Handle dynamic web pages
 - Transcoding
 - Maybe do some security function watermark IP

Improving HTTP Performance: Caching with CDNs (cont.)

Improving HTTP Performance:

CDN Example – Akamai

- Akamai creates new domain names for each client content provider.
 - e.g., a128.g.akamai.net
- The CDN's DNS servers are authoritative for the new domains
- The client content provider modifies its content so that embedded URLs reference the new domains.
 - "Akamaize" content
 - e.g.: http://www.bbc.co.uk/popular-image.jpg becomes http://a128.g.akamai.net/popular-image.jpg
- Requests now sent to CDN's infrastructure...

Hosting: Multiple Sites Per Machine

- Multiple Web sites on a single machine
 - Hosting company runs the Web server on behalf of multiple sites (e.g., www.foo.com and www.bar.com)
- Problem: GET /index.html
 - www.foo.com/index.html Or www.bar.com/index.html?
- Solutions:
 - Multiple server processes on the same machine
 - Have a separate IP address (or port) for each server
 - Include site name in HTTP request
 - Single Web server process with a single IP address
 - Client includes "Host" header (e.g., Host: www.foo.com)
 - Required header with HTTP/1.1

Hosting: Multiple Machines Per Site

- Replicate popular Web site across many machines
 - Helps to handle the load
 - Places content closer to clients

- Helps when content isn't cacheable
- Problem: Want to direct client to particular replica
 - Balance load across server replicas
 - Pair clients with nearby servers

Multi-Hosting at Single Location

Single IP address, multiple machines

Run multiple machines behind a single IP address

Multi-Hosting at Several Locations

- Multiple addresses, multiple machines
 - Same name but different addresses for all of the replicas
 - Configure DNS server to return closest address

CDN examples round-up

CDN using DNS
 DNS has information on loading/distribution/location

 CDN using anycast same address from DNS name but local routes

CDN based on rewriting HTML URLs
 (akami example just covered – akami uses DNS too)

SPDY (speedy) and its moral successor HTTP/2

- Binary protocol
 - More efficient to parse
 - More compact on the wire
 - Much less error prone as compared
 - to textual protocols

SPDY (speedy) a

Binary protocc

- Multiplexing
 - Interleaved

- Server Push
 - Proactively push stuff to client that it will need

SPDY (speedy) and its moral successor HTTP/2

- Binary protocol
- Multiplexing
- Priority control over Frames
- Header Compression
- Server Push

SPDY

- SPDY + HTTP/2: One single TCP connection instead of multiple
- Downside: Head of line blocking
- In TCP, packets need to be processed in

Add QUIC and stir... Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with TCP's reliability

- Very hard to make changes to TCP
- Faster to implement new protocol on top of UDP
- Roll out features in TCP if they prove theory QUIC:
- Reliable transport over UDP (seriously)
- Uses FEC
- Default crypto
- Restartable connections

3-Way Handshake

UDP

Fire and forget

- Less time spent to validate packets
- Downside no reliability,
 has to be built on top of
 UDP

QUIC

- UDP does NOT depend on order of arriving packets
- Lost packets will only impact an individual resource,
 e.g., CSS or JS file.
- QUIC is combining best parts of HTTP/2 over UDP:
 - Multiplexing on top of non-blocking transport protocol

QUIC – more than just UDP

 QUIC outshines TCP under poor network conditions, shaving a full second off the Google Search page load time for the slowest 1% of connections.

 These benefits are even more apparent for video services like YouTube. Users report 30% fewer rebuffers when watching videos over QUIC.

SIP - Session Initiation Protocol

Session?

Anyone smell an OSI / ISO standards document burning?

SIP - VoIP

Establishing communication through SIP proxies.

SIP?

- SIP bringing the fun/complexity of telephony to the Internet
 - User location
 - User availability
 - User capabilities
 - Session setup
 - Session management
 - (e.g. "call forwarding")

H.323 - ITU

- Why have one standard when there are at least two....
- The full H.323 is hundreds of pages
 - The protocol is known for its complexity an ITU hallmark
- SIP is not much better
 - IETF grew up and became the ITU....

Multimedia Applications

Message flow for a basic SIP session

The (still?) missing piece: Resource Allocation for Multimedia Applications

I can 'differentiate' VoIP from data but...
I can only control data going into the Internet

Multimedia Applications Resource Allocation for Multimedia Applications

Admission control using session control protocol.

Resource Allocation for Multimedia Applications

Co-ordination of SIP signaling and resource reservation.

So where does it happen?

Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data? Phone company **controls** the multiplexing on the line and throughout their own network too......

P2P – efficient network use that annoys the ISP

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Three topics:

- File distribution
- Searching for information
- Case Study: Skype

File Distribution: Server-Client vs P2P

<u>Question</u>: How much time to distribute file from one server to *N* peers?

File distribution time: server-client

- server sequentially sends N copies:
 - $-NF/u_s$ time
- client i takes F/d_i
 time to download


```
Time to distribute F
to N clients using = d_{cs} = max \{ NF/u_s, F/min(d_i) \}
client/server approach
```

increases linearly in N (for large N)

File distribution time: P2P

- server must send one copy:
 F/u_s time
- client i takes F/d_i time to download
- NF bits must be downloaded (aggregate)

r fastest possible upload rate: $u_s + \sum u_i$

$$d_{P2P} = \max \left\{ F/u_s, F/\min(d_i), NF/(u_s + \sum_i u_i) \right\}$$

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

DHT Identifiers

- Assign integer identifier to each peer in range [0,2ⁿ-1].
 - Each identifier can be represented by n bits.
- Require each key to be an integer in same range.
- To get integer keys, hash original key.
 - eg, key = h("Game of Thrones season 29")
 - This is why they call it a distributed "hash" table

How to assign keys to peers?

- Central issue:
 - Assigning (key, value) pairs to peers.
- Rule: assign key to the peer that has the closest ID.
- Convention in lecture: closest is the immediate successor of the key.
- Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 - key = 13, then successor peer = 14
 - key = 15, then successor peer = 1

Circular DHT (1)

- Each peer *only* aware of immediate successor and predecessor.
- "Overlay network"

Circle DHT (2)

O(N) messages on avg to resolve query, when there are N peers

Define <u>closest</u> as closest successor

Circular DHT with Shortcuts

- Each peer keeps track of IP addresses of predecessor, successor, short cuts.
- Reduced from 6 to 2 messages.
- Possible to design shortcuts so O(log N) neighbors, O(log N) messages in query

Peer Churn

- •To handle peer churn, require each peer to know the IP address of its two successors.
- Each peer periodically pings its two successors to see if they are still alive.

- Peer 5 abruptly leaves
- Peer 4 detects; makes 8 its immediate successor; asks 8 who its immediate successor is; makes 8's immediate successor its second successor.
- What if peer 13 wants to join?

Summary.

- Apps need protocols too
- We covered examples from
 - Traditional Applications (web)
 - Scaling and Speeding the web (CDN/Cache tricks)
- Infrastructure Services (DNS)
 - Cache and Hierarchy
- Multimedia Applications (SIP)
 - Extremely hard to do better than worst-effort
- P2P Network examples