
1

Part 1b Computer Design

Lecture 6: CLARVI
Our RISC-V Implementation

Prof. Simon Moore

Copyright © Simon Moore, 2018

Processing an instruction

• Steps to process one instruction:
– Instruction fetch
– Decode
– Register fetch
– Branch (optional) – combined with decode or execute
– Execute (ALU operation)
– Memory access (optional)
– Write-back any result to destination register

often combined

Instruction Fetch

• Program counter (PC) used as an address to do a
memory access

• Takes time to do the memory access
• Result placed in an instruction register (IR) or similar
• PC=PC+4
– gets PC ready to fetch the next instruction

Decode & Register Fetch

• Decoding expands the instruction into a more usable
state, e.g.:
– 32-bit sign extended immediate
– is the instruction a branch/jump?
– does the instruction do memory access (load/store)?
– what arithmetic to do (e.g. add, sub, or, and, xor, etc.)

• lots of instructions end up being add, e.g. address calculation for
load or store instructions

– what are the source registers and the destination register
• easy to figure out on RISC-V

• Register fetch
– look up the source registers

Branch

• Branch (optional, may be done with decode or
execute)
– PC = PC + signExtend(immediate)
– return address may be stored in a register

Execute, Memory Access, Write-back

The following are usually performed as separate steps:
• Execute
– performs an integer or logical operation using an

arithmetic logic unit (ALU)
– pretty easy, but this is what does all the work!

• Memory access (optional)
– use the address calculated in Execute to either:

• load data (8-bits, 16-bits or 32-bits)

• store data (8-bits, 16-bits or 32-bits)

• Write-back
– write any result to Rd, the destination register

2

Example Instructions

• Add immediate: addi x5, x6, 8
• Action: x5=x6+8
• It is an I-type instruction:

• Load word: lw x5,8(x6)
• Action: x5=mem[x6+8]
• It is also an I-type instruction:

12-bits 5-bits 3-bits 5-bits 7-bits
imm[11:0] rs1 funct3 rd opcode
8 6 3’b000 5 7’b0010011

12-bits 5-bits 3-bits 5-bits 7-bits
imm[11:0] rs1 funct3 rd opcode
8 6 3’b010 5 7’b0000011

