# Compiler Construction Lent Term 2019 

Timothy G. Griffin tgg22@cam.ac.uk

Computer Laboratory University of Cambridge

## Why Study Compilers?

- Although many of the basic ideas were developed over 50 years ago, compiler construction is still an evolving and active area of research and development.
- Compilers are intimately related to programming language design and evolution.
- Compilers are a Computer Science success story illustrating the hallmarks of our field --- higherlevel abstractions implemented with lower-level abstractions.
- Every Computer Scientist should have a basic understanding of how compilers work.


## Compilation is a special kind of translation



Just text - no way to run program!


A good compiler should ...
This course!

- be correct in the sense that meaning is preserved
- produce usable error messages

OptComp, Part II • generate efficient code

- itself be efficient
- be well-structured and maintainable


## Mind The Gap

- "Machine" independent • "Machine" specific
- Complex syntax
- Simple syntax
- Complex type system
- Variables
- Nested scope
- Simple types
- memory, registers, words
- Single flat scope
- Procedures, functions
- Objects
- Modules

Help!!! Where do we begin???

## The Gap, illustrated

## public class Fibonacci \{

 public static long fib(int m) \{ if ( $m==0$ ) return 1; else if ( $m==1$ ) return 1; else return$$
f i b(m-1)+f i b(m-2) ;
$$

public static void
main(String[] args) \{
int $\mathrm{m}=$
Integer.parselnt(args[0]);
System.out.println( fib(m) + " n ");

javac Fibonacci.java javap -c Fibonacci.class
ublic class Fibonacci \{ public Fibonacci(); Code:
0: aload_0
1: invokespecial \#1
4: return
public static long fib(int); Code:
0: iload_0
1: ifne 6
4: Iconst_1
5: Ireturn
6: iload_0
7: iconst_1
8: if_icmpne 13
11: Iconst_1
12: Ireturn
13: iload_0
14: iconst_1
15: isub
16: invokestatic \#2 \}
19: iload_0
20: iconst_2
21: isub
22: invokestatic \#2
25: ladd
26: Ireturn
public static void main(java.lang.String[]); Code:
0: aload_0
1: iconst_0
2: aaload
3: invokestatic \#3
6: istore_1
7: getstatic \#4
10: new \#5
13: dup
14: invokespecial \#6
17: iload_1
18: invokestatic \#2
21: invokevirtual \#7
24: Idc \#8
26: invokevirtual \#9
29: invokevirtual \#10
32: invokevirtual \#11
35: return

## JVM bytecodes

## The Gap, illustrated

## fib.ml

```
(* fib : int -> int *)
let rec fib m =
    if m = 0
    then 1
    else if m = 1
        then 1
        else fib(m-1) + fib (m-2)
```


ocamlc -dinstr fib.ml

| L1: | branch L2 | L3: | acc 0 |
| :---: | :---: | :---: | :---: |
|  | acc 0 push |  | push |
|  | const 0 |  | offsetclosure 0 |
|  | eqint |  | apply 1 |
|  | branchifnot L4 |  | push |
|  | const 1 |  | acc 1 |
|  | return 1 |  | offsetint-1 |
| L4: | acc 0 |  | push |
|  | push |  | offsetclosure 0 |
|  | const 1 |  | apply 1 |
|  | eqint |  | addint |
|  | branchifnot L3 |  | return 1 |
|  | const 1 | L2: | closurerec 1, 0 |
|  | return 1 |  | acc 0 |
|  |  |  | makeblock 1, |
|  |  |  | pop 1 |
|  |  |  | setglobal Fib! |

OCaml VM bytecodes

## The Gap, illustrated

fib.c

```
#include<stdio.h>
int Fibonacci(int);
int main()
{
    int n;
    scanf("%d",&n);
    printf("%d\n", Fibonacci(n));
    return 0;
}
int Fibonacci(int n)
{
    if ( }\textrm{n}==0\mathrm{ ) return 0;
    else if ( }\textrm{n}==1\mathrm{ ) return 1;
    else return ( Fibonacci(n-1) + Fibonacci(n-2) );
}
```


## The Gap, illustrated



## Conceptual view of a typical compiler



Key to bridging The Gap : divide and conquer. The Big Leap is broken into small steps. Each step broken into yet smaller steps ...

## The shape of a typical "front end"



Lexical theory based on finite automaton and regular expressions

Enforce "static sematics" of language: type checking, def/use rules, and so on (SPL!)

The AST output from the front-end should represent a legal program in the source language. ("Legal" of course does not mean "bug-free"!)

SPL = Semantics of Programming Languages, Part 1B

## The middle

 info

Trade-off: with more optimisations the generated code is (normally) faster, but the compiler is slower

## Our view of the middle a sequence of small transformations

## Intermediate Languages

## IL-1 $\boldsymbol{\rightarrow I L}$ IL $\rightarrow \cdots \rightarrow$ IL-k v v

Of course industrial-strength compilers may collapse
many small-steps ...

- Each IL has its own semantics (perhaps informal)
- Each transformation ( $\longrightarrow$ ) preserves semantics (SPL!)
- Each transformation eliminates only a few aspects of the gap
- Each transformation is fairly easy to understand
- Some transformations can be described as "optimizations"
- We will associate each IL with its own interpreter/VM. (Again, not something typically done in "industrial-strength" compilers.)


## The back-end

- JVM bytecodes
- x86/Linux
- x86/MacOS
- x86/FreeBSD
- x86/Windows
- ARM/Android
- ....
- ....
- Requires intimate knowledge of instruction set and details of target machine
- When generating assembler, need to understand details of OS interface
- Target-dependent optimisations happen here!


## Compilers must be compiled



How was the compiler compiled?

## Approach Taken

- We will develop a compiler for a fragment of L3 introduced in Semantics of Programming Languages, Part 1B.
- We will pay special attention to the correctness.
- We will compile only to Virtual Machines (VMs) of various kinds. See Part II optimising compilers for generating lower-level code.
- Our toy compiler is available on the course web site.
- We will be using the OCaml dialect of ML.
- Install from https://ocaml. org.
- See OCaml Labs : http://www.cl.cam.ac.uk/projects/
- A side-by-side comparison of SML and OCaml Syntax:


## SML Syntax

## OCaml Syntax

```
datatype 'a tree =
    Leaf of 'a
    | Node of 'a * ('a tree) * ('a tree)
```

fun map_tree f (Leaf a) = Leaf (f a)
| map_tree f $($ Node (a, left, right) $)=$
Node(f a, map_tree f left, map_tree fright)
let val I =
map_tree (fn a => [a]) [Leaf 17, Leaf 21]
in
List.rev I
end

```
type 'a tree =
```

type 'a tree =
Leaf of 'a
Leaf of 'a
| Node of 'a * ('a tree) * ('a tree)
| Node of 'a * ('a tree) * ('a tree)
let rec map_tree f = function
let rec map_tree f = function
| Leaf a -> Leaf (f a)
| Leaf a -> Leaf (f a)
| Node (a, left, right) ->
| Node (a, left, right) ->
Node(f a, map_tree f left, map_tree f right)
Node(f a, map_tree f left, map_tree f right)
let I =
let I =
map_tree (fun a -> [a]) [Leaf 17; Leaf 21]
map_tree (fun a -> [a]) [Leaf 17; Leaf 21]
in
in
List.rev I

```
    List.rev I
```


## The Shape of this Course

1. Overview
2. Slang Front-end, Slang demo. Code tour.
3. Lexical analysis : application of Theory of Regular Languages and Finite Automata
4. Generating Recursive descent parsers
5. Beyond Recursive Descent Parsing I
6. Beyond Recursive Descent Parsing II
7. High-level "definitional" interpreter (interpreter 0). Make the stack explicit and derive interpreter 2
8. Flatten code into linear array, derive interpreter 3
9. Move complex data from stack into the heap, derive the Jargon Virtual Machine (interpreter 4)
10. More on Jargon VM. Environment management. Static links on stack. Closures.
11. A few program transformations. Tail Recursion Elimination (TRE), Continuation Passing Style (CPS). Defunctionalisation (DFC)
12. CPS+TRE+DFC provides a formal way of understanding how we went from interpreter 0 to interpreter 2. We fill the gap with interpreter 1
13. Assorted topics : compilation units, linking. From Jargon to x86
14. Assorted topics : simple optimisations, OOP object representation
15. Run-time environments, automated memory management ("garbage collection")
16. Bootstrapping a compiler

## LECTURE 2 Slang Front End

- Slang (= Simple LANGuage)
- A subset of L3 from Semantics ...
- ... with very ugly concrete syntax
- You are invited to experiment with improvements to this concrete syntax.
- Slang : concrete syntax, types
- Abstract Syntax Trees (ASTs)
- The Front End
- A short in-lecture demo of slang and a brief tour of the code ...


## Clunky Slang Syntax (informal)

uop := - | ~
bop ::= + |-|*|<|=|\&\&|||
$t::=$ bool | int | unit $|(t)| t * t|t+t|->t \mid t r e f ~$
e ::= () | $\mathrm{n} \mid$ true | false |x|(e)|?|
e bop e| uop e|
if $e$ then else $e$ end $\mid$
e e|fun (x:t) -> e end |
let $x: t=e$ in $e$ end |
let $f(x: t): t=e$ in $e$ end $\mid$
!e | ref e |e:= e | while e do e end |
begin e; e; ... e end |
(e, e) | snd e | fst e |
inl te|inrte|
case $e$ of inl(x : t) -> e |inr(x:t) -> e end
( $\sim$ is boolean negation)
(? requests an integer input from terminal)
(notice type annotation on inl and inr constructs)

## From slang/examples

let fib( m : int) : int = if $\mathrm{m}=0$
then 1
else if $m=1$
then 1
else fib $(m-1)+$ fib ( $m-2$ )
end
end
in
fib(?)
end

```
let \(\operatorname{gcd}(\mathrm{p}:\) int * int) \(:\) int \(=\)
    let m : int \(=\mathrm{fst} \mathrm{p}\)
    in let n : int \(=\mathrm{snd} \mathrm{p}\)
    in if \(m=n\)
        then \(m\)
        else if \(m<n\)
                                then \(\operatorname{gcd}(m, n-m)\)
                        else \(\operatorname{gcd}(m-n, n)\)
                        end
            end
        end
    end
in \(\operatorname{gcd}(?\), ?) end
```


## Slang Front End

Input file foo.slang


Parse (we use Ocaml versions of LEX and YACC, covered in Lectures 3 --- 6)
Parsed AST (Past.expr)


Static analysis : check types, and contextsensitive rules, resolve overloaded operators

Parsed AST (Past.expr)


Remove "syntactic sugar", file location information, and most type information
Intermediate AST (Ast.expr)

Parsed AST (past.ml)

```
type var = string
type loc = Lexing.position
type type_expr =
    | TEint
    | TEbool
    | TEunit
    | TEref of type_expr
    | TEarrow of type_expr * type_expr
    | TEproduct of type_expr * type_expr
    | TEunion of type_expr * type_expr
type oper = ADD | MUL | SUB | LT |
    AND | OR | EQ | EQB | EQI
```

type unary_oper = NEG | NOT

## Locations (loc) are used in generating error messages.

type expr =
| Unit of loc
| What of loc
| Var of loc * var
| Integer of loc * int
Boolean of loc * bool
| UnaryOp of loc * unary_oper * expr
| Op of loc * expr* oper * expr
| If of loc * expr * expr * expr
Pair of loc * expr * expr
Fst of loc * expr
Snd of loc * expr
Inl of loc * type_expr * expr
Inr of loc * type_expr * expr
Case of loc* expr * lambda * lambda
While of loc * expr * expr
Seq of loc * (expr list)
Ref of loc * expr
Deref of loc * expr
| Assign of loc * expr * expr Lambda of loc * lambda
App of loc * expr * expr
Let of loc * var * type_expr * expr * expr
| LetFun of loc * var * lambda

* type_expr* expr

LetRecFun of loc * var* lambda

* type_expr* expr


## static.mli, static.ml

val infer : (Past.var * Past.type_expr) list -> (Past.expr * Past.type_expr)
val check : Past.expr -> Past.expr (* infer on empty environment *)

- Check type correctness
- Rewrite expressions to resolve EQ to EQI (for integers) or EQB (for bools).
- Only LetFun is returned by parser. Rewrite to LetRecFun when function is actually recursive.

Lesson : while enforcing "context-sensitive rules" we can resolve ambiguities that cannot be specified in context-free grammars.

# Internal AST (ast.ml) 

type var = string
type oper = ADD | MUL | SUB | LT | AND | OR | EQB | EQI
type unary_oper = NEG | NOT | READ

No locations, types. No Let, EQ.

Is getting rid of types a bad idea? Perhaps a full answer would be language-dependent...
type expr =
| Unit
| Var of var
| Integer of int
Boolean of bool
| UnaryOp of unary_oper * expr
| Op of expr * oper * expr
If of expr * expr * expr
Pair of expr * expr
Fst of expr
| Snd of expr
| Inl of expr
| Inr of expr
Case of expr * lambda * lambda
While of expr * expr
| Seq of (expr list)
| Ref of expr
| Deref of expr
| Assign of expr * expr
| Lambda of lambda
| App of expr * expr
| LetFun of var * lambda * expr | LetRecFun of var * lambda * expr

## past_to_ast.ml

## val translate_expr : Past.expr -> Ast.expr

let $x: t=e 1$ in e2 end


This is done to simplify some of our code. Is it a good idea? Perhaps not.

## Lecture 3, 4, 5, 6 Lexical Analysis and Parsing

1. Theory of Regular Languages and Finite Automata applied to lexical analysis.
2. Context-free grammars
3. The ambiguity problem
4. Generating Recursive descent parsers
5. Beyond Recursive Descent Parsing I
6. Beyond Recursive Descent Parsing II

## What problem are we solving?

Translate a sequence of characters
if $m=0$ then 1 else if $m=1$ then 1 else fib $(m-1)+$ fib $(m-2)$
into a sequence of tokens
IF, IDENT "m", EQUAL, INT 0, THEN, INT 1, ELSE, IF, IDENT "m", EQUAL, INT 1, THEN, INT 1, ELSE, IDENT "fib", LPAREN, IDENT "m", SUB, INT 1, RPAREN, ADD, IDENT "fib", LPAREN, IDENT "m", SUB, INT 2, RPAREN implemented with some data type
type token =
INT of int| IDENT of string | LPAREN | RPAREN ADD | SUB | EQUAL | IF | THEN | ELSE

## Recall from Discrete Mathematics (Part 1A)

## Regular expressions (concrete syntax)

over a given alphabet $\boldsymbol{\Sigma}$. $\{\varepsilon, \varnothing, \mid, *,()$,
Let $\Sigma^{\prime}$ be the 4 -element set $\left.\left\{\bar{\epsilon}, \otimes,{ }^{*}\right\}\right\}$ (assumed disjoint from $\Sigma$ )
$U=\left(\Sigma \cup \Sigma^{\prime}\right)^{*}$
axioms: $\bar{a}$

$\varnothing$
rules: $\frac{r}{(r)} \quad \frac{r}{r \mid s} \quad \frac{r}{r s} \quad \frac{r}{r^{*}}$
(where $\boldsymbol{a} \in \boldsymbol{\Sigma}$ and $r, s \in U$ )

## Recall from Discrete Mathematics (Part 1A)

## Example of a finite automaton



- set of states: $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- input alphabet: $\{a, b\}$
- transitions, labelled by input symbols: as indicated by the above directed graph
- start state: $\boldsymbol{q}_{0}$
- accepting state(s): $\boldsymbol{q}_{3}$


## Recall from Discrete Mathematics (Part 1A)

## Kleene's Theorem

Definition. A language is regular iff it is equal to $L(M)$, the set of strings accepted by some deterministic finite automaton $M$.

## Theorem.

(a) For any regular expression $r$, the set $L(r)$ of strings matching $r$ is a regular language.
(b) Conversely, every regular language is the form $\mathbf{L}(\boldsymbol{r})$ for some regular expression $\boldsymbol{r}$.

## Traditional Regular Language Problem

Given a regular expression,
$e$
and an input string $w$, determine if $w \in L(e)$

Construct a DFA M from $e$ and test if it accepts $w$.

Recall construction : regular expression $\rightarrow$ NFA $\rightarrow$ DFA

## Something closer to the "lexing problem"

Given an ordered list of regular expressions,

$$
\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{k}
\end{array}
$$

and an input string $w$, find a list of pairs

$$
\left(i_{1}, w_{1}\right),\left(i_{2}, w_{2}\right), \ldots\left(i_{n}, w_{n}\right)
$$

such that

$$
\text { 1) } w=w_{1} w_{2} \ldots w_{n}
$$

Why ordered? Is "if" a variable or a keyword? Need priority to resolve ambiguity.

Why longest match?
Is "ifif" a variable or two "if" keywords?
2) $w_{j} \in L\left(e_{i_{j}}\right)$
3) $w_{j} \in L\left(e_{s}\right) \rightarrow i_{j} \leq s \quad$ (priority rule)
4) $\forall j: \forall u \in \operatorname{prefix}\left(w_{j+1} w_{j+2} \cdots w_{n}\right): u \neq \varepsilon$

$$
\left.\mapsto \forall s: w_{j} u \notin L\left(e_{s}\right) \quad \text { (longest match }\right)
$$

# Define Tokens with Regular Expressions (Finite Automata) 

## Keyword: if



This FA is really shorthand for:


## Define Tokens with Regular Expressions (Finite Automata)

| Regular Expression |  |  |
| :--- | :--- | :--- |
| Keyword: <br> if | Finite Automata | Token |
| Keyword: <br> then |  |  |
| Identifier: |  |  |
| [a-zA-Z][a-zA-Z0-9]* |  |  |

## Define Tokens with Regular Expressions (Finite Automata)

| Regular Expression | Finite Automata | Token |
| :---: | :---: | :---: |
| number: [0-9][0-9]* |  | NUM ( n ) |
| real: $\begin{aligned} & \left([0-9]+\ddots \cdot[0-9]^{*}\right) \\ & \mid\left([0-9]^{*} \because \cdot[0-9]+\right) \end{aligned}$ |  | NUM( n ) |

## No Tokens for "White-Space"



## Constructing a Lexer

INPUT:
an ordered list of regular expressions
$e_{1}$
Construct all corresponding finite automata $\mathrm{NFA}_{1}$ $\mathrm{NFA}_{2}$ $\vdots$

Construct a single non-deterministic finite automata

Construct a single deterministic finite automata
(1) Keyword : then
(2) Ident: [a-z][a-z]*
(2) White-space:


## What about longest match?

Start in initial state, Repeat:
(1) read input until dead state is reached. Emit token associated with last accepting state.
(2) reset state to start state



## Concrete vs. Abstract Syntax Trees

parse tree = derivation tree $=$ concrete syntax tree


Abstract Syntax Tree (AST)


An AST contains only the information
needed to generate an intermediate
representation

Normally a compiler constructs the concrete syntax tree only implicitly (in the parsing process) and explicitly constructs an AST.

## On to Context Free Grammars (CFGs)

$$
\begin{aligned}
& E::=I D \\
& E::=N U M \\
& E::=E * E \\
& E::=E / E \\
& E::=E+E \\
& E::=E-E \\
& E::=(E)
\end{aligned}
$$

E is a non-terminal symbol
ID and NUM are lexical classes
*, (, ), +, and - are terminal symbols.
$E::=E+E$ is called a production rule.

Usually will write this way

$$
E::=I D|N U M| E * E|E / E| E+E|E-E|(E)
$$

## CFG Derivations

(G1) E::=ID|NUM|ID|E*E|E/E|E+E|E-E|(E)


## More formally, ...

- A CFG is a quadruple $G=(N, T, R, S)$ where
- N is the set of non-terminal symbols
- T is the set of terminal symbols ( N and T disjoint)
- $S \in N$ is the start symbol
- $R \subseteq N \times(N \cup T)^{*}$ is a set of rules
- Example: The grammar of nested parentheses $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{R}, \mathrm{S})$ where
- $N=\{S\}$
$-\mathrm{T}=\{()$,
- $R=\{(S,(S)),(S, S S),(S)$,

We will normally write $R$ as

$$
S::=(S)|S S|
$$

## Derivations, more formally...

- Start from start symbol (S)
- Productions are used to derive a sequence of tokens from the start symbol
- For arbitrary strings $\alpha, \beta$ and $\gamma$ comprised of both terminal and non-terminal symbols, and a production $A \rightarrow \beta$, a single step of derivation is
$\alpha A \gamma \Rightarrow \alpha \beta \gamma$
- i.e., substitute $\beta$ for an occurrence of $A$
$\forall \alpha \Rightarrow{ }^{*} \beta$ means that $\mathbf{b}$ can be derived from a in 0 or more single steps
$\forall \alpha \Rightarrow+\beta$ means that $b$ can be derived from a in 1 or more single steps


## $\mathrm{L}(\mathrm{G})=$ The Language Generated by Grammar G

The language generated by $G$ is the set of all terminal strings derivable from the start symbol S :

$$
L(G)=\{w \in T * \mid S \Rightarrow+w\}
$$

For any subset $W$ of $T^{*}$, if there exists a CFG G such that $L(G)=W$, then $W$ is called a Context-Free Language (CFL) over T .

## Ambiguity

(G1) $E::=I D|N U M| I D|E * E| E / E|E+E| E-E \mid(E)$


This type of ambiguity will cause problems when we try to go from strings to derivation trees!

## Problem: Generation vs. Parsing

- Context-Free Grammars (CFGs) describe how to to generate
- Parsing is the inverse of generation,
- Given an input string, is it in the language generated by a CFG?
- If so, construct a derivation tree (normally called a parse tree).
- Ambiguity is a big problem

Note : recent work on Parsing Expression Grammars (PEGs) represents an attempt to develop a formalism that describes parsing directly. This is beyond the scope of these lectures ...

## We can often modify the grammar in order to eliminate ambiguity

| $\begin{aligned} & \text { (G2) } \\ & \mathrm{S}::=\mathrm{E} \$ \end{aligned}$ | (start, \$ = EOF) |
| :---: | :---: |
| $\begin{aligned} & \mathrm{E}::=\mathrm{E}+\mathrm{T} \\ & \mid \mathrm{E}-\mathrm{T} \\ & \\ & \mid \mathrm{T} \end{aligned}$ | (expressions) |
| $\begin{gathered} \mathrm{T}::=\mathrm{T} * \mathrm{~F} \\ \mid \mathrm{T} / \mathrm{F} \\ \mid \mathrm{F} \end{gathered}$ | (terms) |
| $\begin{aligned} & F::=\text { NUM } \\ & \mid I D \\ & \mid(E) \\ & \hline \end{aligned}$ | (factors) |

Note: L(G1) = L(G2). Can you prove it?


This is the unique derivation tree for the string

## Famously Ambiguous

## (G3) $S$ ::= if $E$ then $S$ else $S \mid$ if $E$ then $S \mid$ blah-blah

What does

if e 1 then if e 2 then s 1 else s 3
mean?


## Rewrite?

## (G4)

S ::= WE | NE
WE ::= if $E$ then WE else WE | blah-blah NE ::= if $E$ then $S$
if $E$ then WE else NE

Now,
if e1 then if e2 then s1 else s3
has a unique derivation.


## Fun Fun Facts

See Hopcroft and Ullman, "Introduction to Automata Theory, Languages, and Computation"
(1) Some context free languages are inherently ambiguous --- every context-free grammar for it will be ambiguous. For example:

$$
L=\left\{a^{n} b^{n} c^{m} d^{m} \mid m \geq 1, n \geq 1\right\} \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid m \geq 1, n \geq 1\right\}
$$

(2) Checking for ambiguity in an arbitrary context-free grammar is not decidable! Ouch!
(3) Given two grammars G1 and G2, checking $L(G 1)=L(G 2)$ is not decidable! Ouch!

## Generating Lexical Analyzers



The idea : use regular expressions as the basis of a lexical specification. The core of the lexical analyzer is then a deterministic finite automata (DFA)

## Predictive (Recursive Descent) Parsing Can we automate this?

```
(G5)
S :: = if E then S else S
    | begin S L
    | print E
E ::= NUM = NUM
L ::= end
    | ; S L
```

```
int tok = getToken();
void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else error();}
void S() {switch(tok) {
    case IF: eat(IF); E(); eat(THEN);
        S(); eat(ELSE); S(); break;
    case BEGIN: eat(BEGIN); S(); L(); break;
    case PRINT: eat(PRINT); E(); break;
    default: error();
    }}
void L() {switch(tok) {
    case END: eat(END); break;
    case SEMI: eat(SEMI); S(); L(); break;
    default: error();
    }}
void E() {eat(NUM) ; eat(EQ); eat(NUM); }
    Parse corresponds to a left-most derivation
    constructed in a "top-down" manner

From Andrew Appel, "Modern Compiler Implementation in Java" page 46

\section*{Eliminate Left-Recursion}

Immediate left-recursion
\[
\begin{gathered}
A::=A \alpha 1|A \alpha 2| \ldots|A \alpha k| \\
\beta 1|\beta 2| \ldots \mid \beta n
\end{gathered}
\]

\[
A::=\beta 1 A^{\prime}\left|\beta 2 A^{\prime}\right| \ldots \mid \beta n A^{\prime}
\]
\[
\mathrm{A}^{\prime}::=\alpha 1 \mathrm{~A}^{\prime}\left|\alpha 2 \mathrm{~A}^{\prime}\right| \ldots\left|\alpha k \mathrm{~A}^{\prime}\right| \varepsilon
\]


For eliminating left-recursion in general, see Aho and Ullman. \({ }^{53}\)

\section*{Eliminating Left Recursion}


\section*{FIRST and FOLLOW}

For each non-terminal \(X\) we need to compute

FIRST[X] = the set of terminal symbols that can begin strings derived from \(X\)

FOLLOW \([X]=\) the set of terminal symbols that can immediately follow \(X\) in some derivation
nullable \([\mathrm{X}]=\) true of \(X\) can derive the empty string, false otherwise
```

nullable[Z] = false, for Z in T
nullable[Y1 Y2 ... Yk] = nullable[Y1] and ... nullable[Yk], for Y(i) in N union T.
FIRST[Z] = {Z}, for Z in T
FIRST[ X Y1 Y2 .. Yk] = FIRST[X] if not nullable[X]
FIRST[ X Y1 Y2 ... Yk] =FIRST[X] union FIRST[Y1 .. Yk] otherwise

```

\section*{Computing First, Follow, and nullable}
```

For each terminal symbol $Z$
FIRST[Z] := \{Z\};
nullable[Z] := false;
For each non-terminal symbol $X$
FIRST[X] := FOLLOW[X] := \{\};
nullable[X] := false;
repeat
for each production $\mathrm{X} \rightarrow \mathrm{Y} 1 \mathrm{Y} 2 \ldots \mathrm{Yk}$
if $\mathrm{Y} 1, \ldots$ Yk are all nullable, or $\mathrm{k}=0$
then nullable[X]:= true
for each $i$ from 1 to $k$, each $j$ from $i+l$ to $k$
if $\mathrm{Y} 1 \ldots \mathrm{Y}(\mathrm{i}-1)$ are all nullable or $\mathrm{i}=1$
then FIRST[X]:= FIRST[X] union FIRST[Y(i)]
if $Y(i+1) \ldots Y k$ are all nullable or if $i=k$
then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
if $\mathrm{Y}(\mathrm{i}+1) \ldots \mathrm{Y}(\mathrm{j}-1)$ are all nullable or $\mathrm{i}+1=\mathrm{j}$
then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

```

\section*{First, Follow, nullable table for G6}
\begin{tabular}{|c|c|c|c|c|}
\hline & Nullable & FIRST & FOLLOW & \[
\begin{aligned}
& (\mathrm{G} 6) \\
& \mathrm{S}::=\mathrm{ES}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{S} & False & \{ (, ID & \{ & E : : \(=\) T E' \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& E^{\prime}::=+ \text { T E' } \\
& \\
&-T E^{\prime}
\end{aligned}
\]} \\
\hline E & False & \{ (, ID, NUM \} & \{), \$ \} & \\
\hline \(E^{\prime}\) & True & \{ + , - \(\}\) & \{), \$ \} & \\
\hline \multirow[t]{2}{*}{T} & \multirow[t]{2}{*}{False} & \multirow[t]{2}{*}{\{ (, ID, NUM \}} & \multirow[t]{2}{*}{\{), +, -, \$ \}} & \multirow[b]{2}{*}{T' :: = F T'} \\
\hline & & & & \\
\hline T' & True & \(\left\{{ }^{*} / 1\right\}\) & \{), +, -, \$ \} & |/FT' \\
\hline \multirow[t]{3}{*}{F} & \multirow[t]{3}{*}{False} & \multirow[t]{3}{*}{\{ (, ID, NUM \}} & \multirow[t]{3}{*}{\{), *,, , +, -, \$ \}} & \\
\hline & & & & \[
\begin{gathered}
\mathrm{F}::=\mathrm{NUM} \\
\\
\\
\text { | ID }
\end{gathered}
\] \\
\hline & & & & |(E) \\
\hline
\end{tabular}

\section*{Predictive Parsing Table for G6}

Table[ \(\mathrm{X}, \mathrm{T}]=\) Set of productions
\(\mathrm{X}::=\mathrm{Y} 1 . . \mathrm{Yk}\) in Table[ \(\mathrm{X}, \mathrm{T}\) ]
if T in FIRST[Y1 ... Yk]
or if (T in FOLLOW[X] and nullable[Y1 ... Yk])

NOTE: this could lead to more than one entry! If so, out of luck --- can' t do recursive descent parsing!
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & + & * & \((\) & ) & ID & NUM & \$ \\
\hline S & & & S ::= E\$ & & S : : = E\$ & S ::= E\$ & \\
\hline E & & & E : \(=\) T E' & & E : \(=\) T E' & E : \(:=\) T E' & \\
\hline E' & \(E^{\prime}::=+\) T \({ }^{\prime}\) & & & \(E^{\prime}\) : \(:=\) & & & E' : \(=\) \\
\hline T & & & T : \(:=\mathrm{F}\) T' & & T : \(=\) F T' & T : \(:=\mathrm{F}\) ' \({ }^{\prime}\) & \\
\hline T' & T' : \(=\) & \(\mathrm{T}^{\prime}::=\) * F T' & & T' : \(=\) & & & T' : \(=\) \\
\hline F & & & \(F::=(E)\) & & F : \(:=1 \mathrm{D}\) & F :: \(=\) NUM & \\
\hline
\end{tabular}
(entries for /, - are similar...)

\title{
Left-most derivation is constructed by recursive descent
}


Left-most derivation
\[
\begin{aligned}
& S \rightarrow E \$ \\
& \rightarrow \text { TE'\$ } \\
& \rightarrow \text { F T' } \mathrm{E}^{\prime} \$ \\
& \rightarrow \text { (E) T' } \mathrm{E}^{\prime} \$ \\
& \rightarrow \text { (TE') T' E' \$ } \\
& \rightarrow\left(F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow \text { ( } 17 \text { T' } \mathrm{E}^{\prime} \text { ) } \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow \text { ( } 17 \mathrm{E}^{\prime} \text { ) } \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+T E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17+F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17+4 \text { T' }^{\prime} E^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+4 E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4) \text { T' }^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow(17+4)^{*} \mathrm{~F} \mathrm{~T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow \text {... } \\
& \rightarrow \text {... } \\
& \rightarrow(17+4)^{*}(2-10) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4) *(2-10) E^{\prime} \$ \\
& \rightarrow(17+4) *(2-10)
\end{aligned}
\]
```

call S()
on '(' call E()
on '(' call T()
.I..

```

\section*{As a stack machine}
```

S -> E\$
T T E'\$
->F T' E'\$
->(E)T' E'\$
->(TE') T' E'\$
->(F T' E') T' E'\$
->(17 T' E') T' E'\$
->(17 E') T' E'\$
->(17 + TE' ) T' E'\$
->(17+F T' E') T' E'\$
->(17+4 T' E') T' E'\$
->(17+4 E') T' E'\$
->(17 + 4) T' E'\$
->(17+4)** T' E'\$
->
->..
->(17+4)* (2-10) T' E'\$
->(17+4)*(2-10)E'\$
->(17+4)* (2-10)

```


\section*{But wait! What if there are conflicts in the predictive parsing table?}
\begin{tabular}{|l|}
\hline (G7) \\
\(S::=d \mid X Y S\) \\
\(Y::=c \mid\) \\
\(X::=Y \mid a\) \\
\hline
\end{tabular}
\begin{tabular}{l|lll|} 
& \multicolumn{1}{l}{ Nullable } & FIRST & FOLLOW \\
S & false & \(\{c, d, a\}\) & \(\}\) \\
\(Y\) & true & \(\{c\}\) & \(\{c, d, a\}\) \\
\(X\) & true & \(\{c, a\}\) & \(\{c, a, d\}\) \\
\cline { 2 - 4 } & & &
\end{tabular}

The resulting "predictive" table is not so predictive....
\begin{tabular}{|c|c|c|c|}
\hline & a & c & d \\
\hline \multirow[t]{2}{*}{S
\(Y\)} & \{ S : \(:=X Y\) S \(\}\) & \{ S : \(:=\times\) & \(s:=X\) \\
\hline & \{ \(\mathrm{Y}::=\) \} & Y & \{ Y : \(=\) \\
\hline & \(\{\mathrm{X}:: \mathrm{=a}, \mathrm{X}:\) & \(\{X::=Y\) & \(\{\mathrm{X}::=\mathrm{Y}\}\) \\
\hline
\end{tabular}

\section*{LL(1), LL(k), LR(0), LR(1), ...}
- LL(k) : (L)eft-to-right parse, (L)eft-most derivation, k-symbol lookahead. Based on looking at the next \(k\) tokens, an \(\operatorname{LL}(k)\) parser must predict the next production. We have been looking at LL(1).
- LR(k) : (L)eft-to-right parse, (R)ight-most derivation, k-symbol lookahead. Postpone production selection until the entire right-handside has been seen (and as many as k symbols beyond).
- LALR(1) : A special subclass of LR(1).

\section*{Example}
\[
\begin{aligned}
& \text { (G8) } \\
& S::=S ; S|I D=E| \operatorname{print}(L) \\
& E::=I D|N U M| E+E \mid(S, E) \\
& L::=E \mid L, E
\end{aligned}
\]

To be consistent, I should write the following, but I won't...
```

(G8)
S ::= S SEMI S|ID EQUAL E | PRINT LPAREN L RPAREN
E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN
L ::= E | L COMMA E

```

\section*{A right-most derivation}
\begin{tabular}{|c|c|}
\hline & \(\frac{\mathrm{S}}{}\) \\
\hline \multirow[t]{2}{*}{(G8)} & \(\rightarrow\) S ; S \\
\hline & \(\rightarrow\) S; ID = E \\
\hline S : \(:=\mathrm{S} ; \mathrm{S}\) & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+\underline{\mathrm{E}}\) \\
\hline \(I D=E\) & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\mathrm{S}, \underline{\mathrm{E}})\) \\
\hline print (L) & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\mathrm{S}, \underline{\mathrm{ID}})\) \\
\hline print (L) & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\underline{S}, \mathrm{~d})\) \\
\hline \multirow[t]{2}{*}{E : \(:=1 \mathrm{D}\)} & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\mathrm{ID}=\underline{E}, \mathrm{~d})\) \\
\hline & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\mathrm{ID}=\underline{E}+\underline{E}, \mathrm{~d})\) \\
\hline NUM & \(\rightarrow S ; I D=E+(I D=E+\underline{N U M}, d)\) \\
\hline \(E+E\) & \(\rightarrow S ; I D=E+(I D=E+\overline{6, d})\) \\
\hline \((\mathrm{S}, \mathrm{E})\) & \(\rightarrow \mathrm{S} ; \mathrm{ID}=\mathrm{E}+(\mathrm{ID}=\underline{\mathrm{NUM}}+6, \mathrm{~d})\) \\
\hline & \(\rightarrow S ; \mathrm{ID}=\mathrm{E}+(\underline{\mathrm{ID}}=5+6, \mathrm{~d})\) \\
\hline \(L::=E\) & \(\rightarrow\) S ; ID \(=\underline{E}+(\mathrm{d}=5+6, d)\) \\
\hline L, E & \(\rightarrow S ; I D=I D+(d=5+6, d)\)
\(\rightarrow\) S \(;\) ID \(=\) c \((d=5+6, d)\) \\
\hline & \[
\begin{aligned}
& \rightarrow S ; \underline{I D}=c+(d=5+6, d) \\
& \rightarrow \underline{S} ; b=c+(d=5+6, d)
\end{aligned}
\] \\
\hline & \(\rightarrow \mathrm{ID}=\underline{E} ; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) \\
\hline & \(\rightarrow \mathrm{ID}=\) NUM ; \(\mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) \\
\hline & \(\rightarrow \underline{\mathrm{I}}=7 ; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) \\
\hline & \(\rightarrow \mathrm{a}=7 ; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, d)\) \\
\hline
\end{tabular}

\section*{Now, turn it upside down}
\[
\begin{aligned}
& \rightarrow a=7 ; b=c+(d=5+6, d) \\
& \rightarrow I D=7 ; b=c+(d=5+6, d) \\
& \rightarrow I D=N U M ; b=c+(d=5+6, d) \\
& \rightarrow I D=E ; b=c+(d=5+6, d) \\
& \rightarrow S ; b=C+(d=5+6, d) \\
& \rightarrow S ; I D=C+(d=5+6, d) \\
& \rightarrow S ; I D=I D+(d=5+6, d) \\
& \rightarrow S ; I D=E+(d=5+6, d) \\
& \rightarrow S ; I D=E+(I D=5+6, d) \\
& \rightarrow S ; I D=E+(I D=N U M+6, d) \\
& \rightarrow S ; I D=E+(I D=E+6, d) \\
& \rightarrow S ; I D=E+(I D=E+N U M, d) \\
& \rightarrow S ; I D=E+(I D=E+E, d) \\
& \rightarrow S ; I D=E+(I D=E, d) \\
& \rightarrow S ; I D=E+(S, d) \\
& \rightarrow S ; I D=E+(S, I D) \\
& \rightarrow S ; I D=E+(S, E) \\
& \rightarrow S ; I D=E+E \\
& \rightarrow S ; I D=E \\
& \rightarrow S ; S
\end{aligned}
\]

\section*{Now, slice it down the middle...}
\begin{tabular}{|c|c|}
\hline & \(a=7 ; b=c+(d=5+6, d)\) \\
\hline ID & = 7; b \(=c+(d=5+6, d)\) \\
\hline ID = NUM & \(; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, d)\) \\
\hline ID = E & \(; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) \\
\hline S & ; b = c + ( d = 5 + 6, d ) \\
\hline S; ID & \(=c+(d=5+6, d)\) \\
\hline S ; ID = ID & \(+(\mathrm{d}=5+6, \mathrm{~d})\) \\
\hline S; ID = E & \(+(d=5+6, d)\) \\
\hline S ; ID = E + ( ID & \(=5+6, d)\) \\
\hline S ; ID = E + ( ID = NUM & + 6, d) \\
\hline S; ID = E + (ID = E & + 6, d) \\
\hline S; ID = E + (ID = E + NUM & , d) \\
\hline S; ID \(=E+\) (ID \(=E+E\) & d) \\
\hline S; ID = E + (ID = E & d) \\
\hline S; ID = E + ( S & d) \\
\hline S; ID = E + ( S, ID & ) \\
\hline S; ID = E + (S, E ) & \\
\hline S; ID = E + E & \\
\hline S; ID = E & \\
\hline S; S & \\
\hline S & \\
\hline A stack of terminals and non-terminals & \\
\hline
\end{tabular}

\section*{Now, add some actions. \(s=\) SHIFT, \(r=\) REDUCE}
\begin{tabular}{|c|c|c|}
\hline & \(a=7 ; b=c+(d=5+6, d)\) & s \\
\hline ID & \(=7 ; b=c+(d=5+6, d)\) & s, s \\
\hline \(\mathrm{ID}=\mathrm{NUM}\) & \(; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) & r E :: = NUM \\
\hline \(\mathrm{ID}=\mathrm{E}\) & ; b \(=\mathrm{c}+(\mathrm{d}=5+6, \mathrm{~d})\) & rS \(::=\mathrm{ID}=\mathrm{E}\) \\
\hline S & \(; \mathrm{b}=\mathrm{c}+(\mathrm{d}=5+6, d)\) & s, s \\
\hline S ; ID & \(=c+(d=5+6, d)\) & S, s \\
\hline \(S ; I D=I D\) & \(+(d=5+6, d)\) & r E :: = ID \\
\hline S ; ID = E & \(+(d=5+6, d)\) & s, s, s \\
\hline \(S ; I D=E+(I D\) & = \(5+6, \mathrm{~d})\) & S, s \\
\hline \(S ; I D=E+(I D=N U M\) & +6, d) & r E :: = NUM \\
\hline \(S ; I D=E+(I D=E\) & + 6, d) & s, s \\
\hline \(S ; I D=E+(I D=E+N U M\) & , d) & r E : \(=\) NUM \\
\hline \(S ; I D=E+(I D=E+E\) & , d) & r E : \(:=\mathrm{E}+\mathrm{E}, \mathrm{s}, \mathrm{s}\) \\
\hline \(S ; I D=E+(I D=E\) & , d) & rS \(::=1 \mathrm{D}=\mathrm{E}\) \\
\hline \(S ; I D=E+(S\) & ) & R E: \(=1 \mathrm{D}\) \\
\hline \(S ; I D=E+(S, I D\) & ) & s, r E : \(=(\mathrm{S}, \mathrm{E})\) \\
\hline \(S ; I D=E+(S, E)\) & & r E : \(:=E+E\) \\
\hline \(S ; I D=E+E\) & & rS \(::=1 \mathrm{D}=\mathrm{E}\) \\
\hline \(S ; I D=E\) & & rS : \(:=\) S ; S \\
\hline
\end{tabular}

\section*{LL(k) vs. LR(k) reductions}
\[
\begin{array}{c|c}
A \rightarrow \beta \Rightarrow w^{\prime} \quad\left(\beta \in(T \cup N), \quad w^{\prime} \in T\right) \\
\hline L L(k) & L R(k) \\
\hline
\end{array}
\]


\section*{Q: How do we know when to shift and when to reduce? A: Build a FSA from LR(0) Items!}

\section*{(G10)}

S ::=A \$

A::= (A)
\| ( )
If
\[
X::=\alpha \beta
\]
is a production, then
\[
X::=\alpha \bullet \beta
\]
is an \(\operatorname{LR}(0)\) item.
\[
\begin{aligned}
& \text { S ::= aA \$ } \\
& \text { S::=A•\$ } \\
& \text { A ::= • (A) } \\
& A::=(\cdot A) \\
& A::=(A \cdot) \\
& \text { A ::= (A) • } \\
& \text { A::= • ( ) } \\
& \text { A ::=( • ) } \\
& A::=(\quad) \quad \text { - }
\end{aligned}
\]

LR(0) items indicate what is on the stack (to the left of the •) and what is still in the input stream (to the right of the •)

\section*{LR(k) states (non-deterministic)}

The state
\[
\left(A \rightarrow \alpha \cdot \beta, a_{1} a_{2} \cdots a_{k}\right)
\]
should represent this situation:

with
\[
\beta a_{1} a_{2} \cdots a_{k} \Rightarrow w^{\prime}
\]

\section*{Key idea behind LR(0) items}
- If the "current state" contains the item
\(\mathrm{A}::=\alpha \cdot \mathrm{c} \beta\) and the current symbol in the input buffer is c
- the state prompts parser to perform a shift action
- next state will contain \(A::=\alpha c \cdot \beta\)
- If the "state" contains the item A ::= \(\alpha\) •
- the state prompts parser to perform a reduce action
- If the "state" contains the item \(S::=\boldsymbol{\alpha} \cdot \$\) and the input buffer is empty
- the state prompts parser to accept
- But How about \(A::=\alpha \cdot X \beta\) where \(X\) is a nonterminal?

\section*{The NFA for LR(0) items}
- The transition of \(\mathrm{LR}(0)\) items can be represented by an NFA, in which
- 1. each \(\operatorname{LR}(0)\) item is a state,
- 2. there is a transition from item \(A::=\alpha \cdot c \beta\) to item \(A::=\alpha c \cdot \beta\) with label \(c\), where \(c\) is a terminal symbol
- 3. there is an \(\varepsilon\)-transition from item \(\mathrm{A}::=\alpha \cdot X \beta\) to \(X::=\bullet \gamma\), where \(X\) is a non-terminal
- 4. \(S::=\cdot A \$\) is the start state
-5 . \(A::=\alpha \cdot\) is a final state.

\section*{Example NFA for Items}
\[
\begin{array}{lcc}
S::=\bullet \text { A } \$ & S::=\mathbf{A} \cdot \$ & \mathbf{A}::=\bullet(\mathbf{A}) \\
\mathbf{A}::=(\cdot \mathbf{A}) & \mathbf{A}::=(\mathbf{A} \cdot) & \mathbf{A}::=(\mathbf{A}) \cdot \\
\mathbf{A}::=\cdot() & \mathbf{A}::=(\cdot) & \mathbf{A}::=() \cdot
\end{array}
\]


\section*{The DFA from LR(0) items}
- After the NFA for LR( 0 ) is constructed, the resulting DFA for \(\operatorname{LR}(0)\) parsing can be obtained by the usual NFA2DFA construction.
- we thus require
- \(\varepsilon\)-closure (I)
- move(S, a)

Fixed Point Algorithm for Closure(I)
- Every item in I is also an item in Closure(I)
- If \(A::=\alpha \cdot B \beta\) is in Closure(I) and \(B::=\bullet \gamma\) is an item, then add \(B::=\bullet \gamma\) to Closure(I)
- Repeat until no more new items can be added to Closure(I)

\section*{Examples of Closure}

Closure \((\{A::=(\cdot A)\})=\)
\[
\left\{\begin{array}{l}
A::=\quad(\cdot A) \\
A::=\cdot(A) \\
A::=\cdot()
\end{array}\right.
\]
\[
\}
\]
- closure(\{S ::= • A \$\})
\[
\left\{\begin{array}{l}
S::=\cdot \boldsymbol{A} \$ \\
A:=\cdot(A) \\
A::=\cdot()
\end{array}\right.
\]
\[
\begin{aligned}
& \text { S ::= • A \$ } \\
& \text { S ::=A•\$ } \\
& \mathrm{A}::=\text { • (A) } \\
& \mathrm{A}::=(\text { • } \mathrm{A}) \\
& A::=(A \cdot) \\
& A::=(A) \cdot \\
& \mathrm{A}::=\text { • ( ) } \\
& \text { A ::=( • ) } \\
& A::=(\quad) \quad \text { • }
\end{aligned}
\]

\section*{Goto() of a set of items}
- Goto finds the new state after consuming a grammar symbol while in the current state
- Algorithm for Goto(I, X) where \(I\) is a set of items
\(\operatorname{Goto}(\mathrm{I}, \mathrm{X})=\operatorname{Closure}(\{\mathrm{A}::=\alpha \mathrm{X} \cdot \beta \mid \mathrm{A}::=\alpha \cdot \mathrm{X} \beta\) in I\(\})\)
- goto is the new set obtained by "moving the dot" over X

\section*{Examples of Goto}
- Goto (\{A ::= • (A) \}, ()
\[
\left\{\begin{array}{l}
A::=(\cdot A) \\
A::=\cdot(A) \\
A::=\cdot()
\end{array}\right.
\]

- Goto ( \(\{\boldsymbol{A}::=(\boldsymbol{A})\}, \boldsymbol{A})\)
\[
\{A::=(A \cdot)
\]
\[
\begin{aligned}
& S::=\text { • A \$ } \\
& S::=A \cdot \$ \\
& A::=\text { • (A) } \\
& A::=(\cdot A) \\
& A::=(A \cdot) \\
& A::=(A) \\
& A::=\text { • ( ) } \\
& A::=(\cdot) \\
& A::=() \quad .
\end{aligned}
\]

\section*{Building the DFA states}
- Essentially the usual NFA2DFA construction!!
- Let A be the start symbol and S a new start symbol.
- Create a new rule \(S\) ::= A \$
- Create the first state to be Closure(\{ S ::= • A \$\})
- Pick a state I
- for each item \(A::=\alpha \cdot X \beta\) in I
- find Goto(I, X)
- if Goto( \(\mathbf{I}, \mathbf{X}\) ) is not already a state, make one
- Add an edge X from state I to Goto(I, X) state
- Repeat until no more additions possible

DFA Example


\section*{Creating the Parse Table(s)}


\section*{Parsing with an LR Table}

Use table and top-of-stack and input symbol to get action:
If action is
shift sn : advance input one token, push sn on stack
reduce \(X::=\alpha\) : pop stack \(2 *|\alpha|\) times (grammar symbols are paired with states). In the state now on top of stack, use goto table to get next state sn, push it on top of stack accept : stop and accept error : weep (actually, produce a good error message)

\section*{Parsing, again...}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & ACTION & & Goto \\
\hline \multicolumn{2}{|l|}{(G10)} & State & \((\) & ) & \$ & A \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(1) S : \(:=\mathrm{A}\) \$}} & s0 & shift to s2 & & & goto s1 \\
\hline & & s1 & & & accept & \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { A : : }= \\
& \text { (A ) }
\end{aligned}
\]} & s2 & shift to s2 & shift to s5 & & goto s3 \\
\hline & & s3 & & shift to s4 & & \\
\hline \multirow[t]{2}{*}{} & A : \(=\) & s4 & reduce (2) & reduce (2) & reduce (2) & \\
\hline & ( ) & s5 & reduce (3) & reduce (3) & reduce (3) & \\
\hline \multicolumn{3}{|l|}{} & (())\$ & & shift s2 & \\
\hline \multicolumn{3}{|c|}{s0 ( s2} & ())\$ & & shift s2 & \\
\hline \multicolumn{3}{|c|}{s0 ( s2 ( s2} & ))\$ & & shift s5 & \\
\hline \multicolumn{3}{|r|}{s0 ( s2 ( s2 ) s5} & )\$ & & reduce A ::= & \\
\hline \multicolumn{3}{|c|}{s0 ( s2 A} & )\$ & & goto s3 & \\
\hline \multicolumn{3}{|r|}{s0 ( s2 A s3} & )\$ & & shift s4 & \\
\hline \multicolumn{3}{|r|}{s0 ( s2 A s3 ) s4} & \$ & & reduce \(\mathrm{A}:\) : = & \\
\hline \multicolumn{3}{|c|}{s0 A} & \$ & & goto s1 & \\
\hline \multicolumn{3}{|c|}{s0 A s1} & \$ & & ACCEPT! & 82 \\
\hline
\end{tabular}

\section*{LR Parsing Algorithm}


\section*{Problem With LR(0) Parsing}
- No lookahead
- Vulnerable to unnecessary conflicts
- Shift/Reduce Conflicts (may reduce too soon in some cases)
- Reduce/Reduce Conflicts
- Solutions:
- LR(1) parsing - systematic lookahead

\section*{LR(1) Items}
- An \(\operatorname{LR}(1)\) item is a pair:
\[
(X::=\alpha \cdot \beta, a)
\]
\(-X::=\alpha \beta\) is a production
- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- \([X::=\alpha \cdot \beta, a]\) describes a context of the parser
- We are trying to find an \(X\) followed by an a, and
- We have (at least) \(\alpha\) already on top of the stack
- Thus we need to see next a prefix derived from \(\beta\) a

\section*{The Closure Operation}
- Need to modify closure operation:.

Closure(Items) =
repeat
\[
\text { for each }[\mathrm{X}::=\alpha, Y \beta, a] \text { in Items }
\]
for each production \(Y::=\gamma\) for each b in First( \(\beta \mathrm{a}\) )
add [Y::= . \(\gamma\), b] to Items
until Items is unchanged

\section*{Constructing the Parsing DFA (2)}
- A DFA state is a closed set of LR(1) items
- The start state contains (S' ::= .S\$, dummy)
- A state that contains \([\mathrm{X}::=\alpha ., \mathrm{b}]\) is labeled with "reduce with \(\mathrm{X}::=\alpha\) on lookahead b"
- And now the transitions ...

\section*{The DFA Transitions}
- A state \(s\) that contains \([\mathrm{X}::=\alpha . \mathrm{Y} \beta\), b] has a transition labeled \(y\) to the state obtained from Transition(s, Y)
- \(Y\) can be a terminal or a non-terminal

Transition(s, Y)
Items \(=\{ \}\)
for each \([\mathrm{X}::=\alpha . Y \beta, b]\) in \(s\) add [X! \(\alpha \mathrm{Y} . \beta\), b] to Items return Closure(Items)

\section*{LR(1)-the parse table}
- Shift and goto as before
- Reduce
- state I with item ( \(A \rightarrow \alpha ., z\) ) gives a reduce \(A \rightarrow \alpha\) if \(z\) is the next character in the input.
- LR(1)-parse tables can be very large

\section*{Use tools (LEX, YACC) or write by hand?}

Some problems with auto-generation tools:
- Often slow
- Hard to generate good error messages for compiler users
- Often need to tweak grammar, but tool messages can be very obscure

This has led many to write lexers/parsers by hand and declare YACC IS DEAD!

My opinion: no "right answer" --- tools will continue to to improve (see Menhir for example), but demand for increased compiler speed will also increase ...

\section*{Compiler Construction Lent Term 2018}

\title{
Part II : Lectures 7 - 12 (of 16)
}

Timothy G. Griffin tgg22@cam.ac.uk

Computer Laboratory University of Cambridge

\section*{Roadmap}

Starting from a direct implementation of Slang/L3 semantics, we will DERIVE a Virtual Machine in a step-by-step manner. The correctness of each step is (more or less) easy to check.


Lecture 7:
We make this leap using intuition.

Later we will understand it more formally...

\section*{LECTURE 7 Interpreter 0, Interpreter 2}
1. Interpreter 0 : The high-level "definitional" interpreter
1. Slang/L3 values represented directly as OCaml values
2. Recursive interpreter implements a denotational semantics
3. The interpreter implicitly uses OCaml's runtime stack
2. Interpreter 2: A high-level stack-oriented machine
1. Makes the Ocaml runtime stack explicit
2. Complex values pushed onto stacks
3. One stack for values and environments
4. One stack for instructions
5. Heap used only for references
6. Instructions have tree-like structure

\section*{Approaches to Mathematical Semantics}
- Axiomatic: Meaning defined through logical specifications of behaviour.
- Hoare Logic (Part II)
- Separation Logic
- Operational: Meaning defined in terms of transition relations on states in an abstract machine.
- Semantics (Part 1B)
- Denotational: Meaning is defined in terms of mathematical objects such as functions.
- Denotational Semantics (Part II)

\section*{A denotational semantics for L3?}
\(N=\) set of integers \(\quad B=\) set of booleans \(\quad A=\) set of addresses I = set of identifiers Expr = set of L3 expressions
\(\mathrm{E}=\) set of environments \(=\mathrm{I} \rightarrow \mathrm{V} \quad \mathrm{S}=\) set of stores \(=\mathrm{A} \rightarrow \mathrm{V}\)
\(V=\) set of value
\[
\approx A
\]
\[
+\mathrm{N}
\]
\[
+B
\]
\[
+\{()\}
\]
\[
+\mathrm{V} \times \mathrm{V}
\]
\[
+(V+V)
\]
\[
+(\mathrm{V} \times \mathrm{S}) \rightarrow(\mathrm{V} \times \mathrm{S})
\]

\(M=\) the meaning function
M : (Expr \(\times \mathrm{E} \times \mathrm{S}) \rightarrow(\mathrm{V} \times \mathrm{S})\)

\section*{Our shabby OCaml approximation}

A = set of addresses
\(\mathrm{S}=\) set of stores \(=\mathrm{A} \rightarrow \mathrm{V}\)
\(\mathrm{V}=\) set of value
\(\approx \mathrm{A}\)
\(+\mathrm{N}\)
\(+B\)
\(+\{()\}\)
\(+\mathrm{V} \times \mathrm{V}\)
\(+(V+V)\)
\(+(\mathrm{V} \times \mathrm{S}) \rightarrow(\mathrm{V} \times \mathrm{S})\)
\(\mathrm{E}=\) set of environments \(=\mathrm{A} \rightarrow \mathrm{V}\)
\(\mathrm{M}=\) the meaning function \(\mathrm{M}:(\mathrm{Expr} \times \mathrm{E} \times \mathrm{S}) \rightarrow(\mathrm{V} \times \mathrm{S})\)
type address
type store = address -> value
and value \(=\)
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
-> (value * store))
type env = Ast.var -> value
val interpret :
\[
\begin{aligned}
& \text { Ast.expr * env * store } \\
& \qquad->\text { (value * store) }
\end{aligned}
\]

\section*{Most of the code is obvious!}
let rec interpret (e, env, store) =
match e with
```

| If(e1, e2, e3) ->
let ( v , store') $=$ interpret(e1, env, store) in
(match v with
| BOOL true -> interpret(e2, env, store')
| BOOL false -> interpret(e3, env, store')
| V -> complain "runtime error. Expecting a boolean!")
| Pair(e1, e2) ->
let (v1, store1) $=$ interpret(e1, env, store) in
let (v2, store2) $=$ interpret(e2, env, store1) in (PAIR(v1, v2), store2)
| Fst e ->
(match interpret(e, env, store) with
| (PAIR (v1, _), store') -> (v1, store')
| (v, _) -> complain "runtime error. Expecting a pair!")
| Snd e ->
(match interpret(e, env, store) with
| (PAIR (_, v2), store') -> (v2, store')
| (v, _) -> complain "runtime error. Expecting a pair!")
| Inl e -> let (v, store') = interpret(e, env, store) in (INL v, store')
Inr e -> let (v, store') = interpret(e, env, store) in (INR v, store')

## Tricky bits: Slang functions mapped to OCaml functions!

let rec interpret (e, env, store) = match e with

```
:
Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
App(e1, e2) -> (* I chose to evaluate argument first! *)
let (v2, store1) = interpret(e2, env, store) in
let (v1, store2) = interpret(e1, env, store1) in
    (match v1 with
    | FUN f -> f (v2, store2)
    | v -> complain "runtime error. Expecting a function!")
| LetFun(f, (x, body), e) ->
    let new_env =
        update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s))))
    in interpret(e, new_env, store)
| LetRecFun(f, (x, body), e) ->
    let rec new_env g = (* a recursive environment!!! *)
    if g = f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s))
        else env g
    in interpret(e, new_env, store)
```


## Typical implementation of function calls

```
let fun f(x)=x + 1
    fun g(y)=f(y+2)+2
    fun h(w) = g(w+1)+3
in
    h(h(17))
end
```

The run-time data structure is the call stack containing an activation record for each function invocation.


## interpret is implicitly using Ocaml's runtime stack

```
let rec interpret (e, env, store) =
    match e with
    | Integer n -> (INT n, store)
    | Op(e1, op, e2) ->
        let (v1, store1) = interpret(e1, env, store) in
        let (v2, store2) = interpret(e2, env, store1) in
            (do_oper(op, v1, v2), store2)
    :
    :
```

- Every invocation of interpret is building an activation record on Ocaml's runtime stack.
- We will now define interpreter 2 which makes this stack explicit


## Inpterp_2 data types

type address
type store = address -> value

## and value $=$

| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
$->$ (value * store))
type env = Ast.var -> value

Interp_0
type address = int
type value $=$
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| CLOSURE of bool * closure
and closure $=$ code $*$ env
and instruction $=$ | PUSH of value | LOOKUP of var | UNARY of unary_oper | OPER of oper | ASSIGN
| SWAP
| POP
| BIND of var
| FST
| SND
DEREF
APPLY
MK_PAIR
MK_INL
MK_INR
MK_REF
MK_CLOSURE of code MK_REC of var * code TEST of code * code
CASE of code * code | WHILE of code * code

## Interp_2.ml : The Abstract Machine

and code $=$ instruction list
and binding $=$ var $*$ value
and env $=$ binding list
type env_or_value $=$ EV of env | V of value
type env_value_stack = env_or_value list
type state $=$ code $*$ env_value_stack
val step : state -> state
val driver : state -> value
val compile : expr -> code
val interpret : expr -> value

The state is actually comprised of a heap --- a global array of values --- a pair of the form
(code, evn_value_stack)

## Interpreter 2: The Abstract Machine

> type state = code * env_value_stack
val step : state -> state

## The state transition function.

```
let step = function
(* (code stack,
    (POP :: ds,
    (SHAP : : ds,
    ((BIND x) : : ds,
    ((UNARY op) :: ds,
    ((OPER op) :: ds,
    (MK_PAIR : : ds,
    (FS\overline{T}:: ds,
    (SND : : ds,
    (MK_INL ::'ds,
```




```
    ((TEST(c\overline{1}, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
    ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
    (ASSIGN :: ds, (V v) :: (V (REF a)) :: evs) -> (heap. (a) <- v; (ds, V(UNIT) : : evs))
    (DEREF :: ds, (V (REF a)) :: evs) -> (ds, V(heap. (a)) :: evs)
    (MK_REF :: ds, (V v) :: evs) -> let a = allocate () in (heap.(a) <- v;
    (ds, V(REF a) :: evs))
    ((WHILE (c1, c2)) :: ds,V(BOOL false) :: evs) -> (ds, V(RE, evs)
    ((WHILE (c1, c2)) : : ds, V(BOOL true) : : evs) -> (c1@ [WHILE(c1, c2)] @ ds, evs)
    ((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)
    (MK_\overline{REC (f, c) : : ds, evs) -> (ds, v(mk_rec(f, c, evs_to_env evs)) :: evs)}
    (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)
                                > (c@ds, (V v) :: (EV env) :: evs)
| state -> complain ("step : bad state = " ^ (string_of_state state) ^ "\n")
```


## The driver. Correctness

(* val driver : state -> value *)
let rec driver state $=$ match state with
([], [V v]) -> v
-> driver (step state)
val compile : expr -> code
The idea: if e passes the frond-end and Interp_0.interpret e = v then driver (compile e, [] $=\mathrm{v}^{\prime}$ where $\mathrm{v}^{\prime}$ (somehow) represents v .

## Implement inter_0 in interp_2

let rec interpret (e, env, store) $=$ match e with
interp_0.ml
| Pair(e1, e2) ->
let (v1, store1) $=$ interpret(e1, env, store) in
let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)
Fst e->
(match interpret(e, env, store) with
| (PAIR (v1, _), store') -> (v1, store')
| (v, _) -> complain "runtime error. Expecting a pair!")

```
let step = function
    (MK_PAIR :: ds, (V v2) :: (V v1) :: evs) -> (ds, V(PAIR(v1, v2)) :: evs)
    (FST :: ds, V(PAIR (v, _)) :: evs) -> (ds, (V v) :: evs)
let rec compile = function
    Pair(e1, e2) -> (compile e1) @ (compile e2) @ [MK_PAIR]
    Fst e -> (compile e) @ [FST]
```


## Implement inter_0 in interp_2

```
let rec interpret (e, env, store) =
    match e with
    interp_0.ml
    | If(e1, e2, e3) ->
        let (v, store') = interpret(e1, env, store) in
        (match v with
        | BOOL true -> interpret(e2, env, store')
        | BOOL false -> interpret(e3, env, store')
        | v -> complain "runtime error. Expecting a boolean!")
    :
let step = function
    | ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
    ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
let rec compile = function
    | If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)]
interp_2.ml
```


## Tricky bits again!

let rec interpret (e, env, store) =

## interp_0.ml

 match e with| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
| App(e1, e2) -> (* I chose to evaluate argument first! *)

```
let (v2, store1) = interpret(e2, env, store) in
```

let (v1, store2) = interpret(e1, env, store1) in
(match v1 with
| FUN f -> f (v2, store2)
| v -> complain "runtime error. Expecting a function!")
let step = function

$$
\begin{aligned}
& s:: \text { evs) -> (ds, evs) } \\
& \text { s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs) } \\
& \text { (V v) :: evs) -> (ds, EV([(x, v)]) :: evs) } \\
& \text { evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs) } \\
& \text {-> (c @ ds, (V v) :: (EV env) :: evs) }
\end{aligned}
$$

| (SWAP :: ds,
| ((BIND x) :: ds,
| ((MK_CLOSURE c) :: ds,
interp_2.ml | (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)
let rec compile $=$ function
| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]

## Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int $=($ snd $p$, fst $p)$ in rev_pair $(21,17)$
end

MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]); BIND rev_pair;
PUSH 21;
PUSH 17;
MK_PAIR;
LOOKUP rev_pair;
APPLY;
SWAP;
POP;

## DEMO TIME!!!

SWAP;
POP

## LECTURE 8 <br> Derive Interpreter 3

1. "Flatten" code into linear array
2. Add "code pointer" (cp) to machine state
3. New instructions : LABEL, GOTO, RETURN
4. "Compile away" conditionals and while loops

## Linearise code

Interpreter 2 copies code on the code stack. We want to introduce one global array of instructions indexed by a code pointer (cp). At runtime the $\mathbf{c p}$ points at the next instruction to be executed.


This will require two new instructions:
LABEL L: Associate label L with this location in the code array
GOTO L : Set the cp to the code address associated with L

## Compile conditionals, loops

If(e1, e2, e3)
While(e1, e2)

| code for e1 |
| :--- |
| TEST $k$ |
| code for e2 |
| GOTO m |
| $k:$ code for e3 |
| $m:$ |

## If $?=0$ Then 17 else 21 end

## interp_2

PUSH UNIT;
UNARY READ; PUSH 0;
OPER EQI;
TEST(
[PUSH 17],
[PUSH 21]
interp_3

PUSH UNIT;
UNARY READ;
PUSH 0;
OPER EQI;
TEST LO;
PUSH 17;
GOTO L1;
LABEL LO;
PUSH 21;
LABEL L1;
HALT
Symbolic code locations
interp_3 (loaded)
0: PUSH UNIT;
1: UNARY READ;
2: PUSH 0;
3: OPER EQI;
4: TEST LO = 7;
5: PUSH 17;
6: GOTO L1 = 9;
7: LABEL LO;
8: PUSH 21;
9: LABEL L1; 10: HALT

Numeric code locations

## Implement inter_2 in interp_3



Code locations are represented as
("L", None) : not yet loaded (assigned numeric address)
("L", Some i) : label " L " has been assigned numeric address i

## Tricky bits again!


let step (cp, evs) =
interp_3.ml
match (get_instruction $\mathrm{cp}, \mathrm{evs}$ ) with

```
                                s :: evs) -> (cp + 1, evs)
s1 :: s2 :: evs) -> (cp + 1, s2 :: s1 :: evs)
(V v) :: evs) -> (cp + 1, EV([(x, v)]) :: evs)
evs) -> (cp + 1,
```

V(CLOSURE(loc, evs_to_env
evs)) :: evs)
(RETURN, ( V v ) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)
| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)
Note that in interp_2 the body of a closure is consumed from the code stack. But in interp_3 we need to save the return address on the stack (here i is the location of the closure's code).

## Tricky bits again!

let rec compile $=$ function
interp_2.ml
| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]
let rec comp $=$ function
Interp_3.ml
| App(e1, e2) ->
let (defs1, c1) $=$ comp e1 in
let (defs2, c2) $=$ comp e2 in
(defs1 @ defs2, c2 @ c1 @ [APPLY])
| Lambda(x, e) ->
let (defs, c) = comp e in
let $\mathrm{f}=$ new_label () in
let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in (def @ defs, [MK_CLOSURE((f, None))])
let compile e $=$
let (defs, c) $=$ comp e in
Interp_3.ml
C
(* body of program *)
@ [HALT] (* stop the interpreter *)
@ defs (* function definitions *)

## Interpreter 3 <br> (very similar to interpreter 2)

```
let step (cp, evs) =
```

match (get_instruction cp, evs) with


evs) $->$ (cp + 1, $\operatorname{EV}([(\mathrm{x}, \mathrm{v})]):: ~ e v s)$
evs) $->$ (cp + 1, V(search(evs, x)) : : evs)
evs) -> (cp + 1, v(do_unary (op, v)) : : evs)
OPER Op
(MK_PAIR,
(FST,
(SND,
(MK_INL,

, Some -), $\quad$ V(INL v) $\quad$ Vome i),
| (MK_CLOSURE loc,
evs) $->$ (cp + 1, v(CLOSURE(loc, evs_to_env evs)) :: evs)
(APP̄LY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)
$\rightarrow>(i,(V$ v) $:=(E v$ env) $::(R A(c p+1)):: ~ e v s)$
(* new intructions *)

(HALT,
(GOTO' (_, Some i), evs) -> (i, evs)
evs) -> (cp + 1, evs)
| _ -> complain ("step : bad state = " ^ (string_of_state (cp, evs)) ^ "\n")

## Some observations

- A very clean machine!
- But it still has a very inefficient treatment of environments.
- Also, pushing complex values on the stack is not what most virtual machines do. In fact, we are still using OCaml's runtime memory management to manipulate complex values.


## Example : Compiled code for rev_pair.slang

## let rev_pair (p : int * int) : int * int = (snd p, fst p)

 in```
        rev_pair (21, 17)
```

end

```
MK CLOSURE(
    [BIND p; LOOKUP p; SND;
    LOOKUP p; FST; MK_PAIR;
    SWAP; POP]);
BIND rev_pair;
PUSH 21;
PUSH 17;
MK PAIR;
LOOKKUP rev_pair;
APPLY;
SWAP;
POP;
SWAP;
POP
Interp_2
```

| SURE(rev_pair) | LABEL rev pair |
| :---: | :---: |
| BIND rev_pair | BIND p |
| PUSH 21 | LOOKUP p |
| PUSH 17 | SND |
| MK_PAIR | LOOKUP p |
| LOŌKUP rev_pair | FST |
| APPLY | MK_PAIR |
| SWAP | SWAP |
| POP | POP |
| HALT Interp 3 | RETURN |

## DEMO TIME!!!

## LECTURES 9, 10 Deriving The Jargon VM (interpreter 4)

1. First change: Introduce an addressable stack.
2. Replace variable lookup by a (relative) location on the stack or heap determined at compile time.
3. Relative to what? A frame pointer (fp) pointing into the stack is needed to keep track of the current activation record.
4. Second change: Optimise the representation of closures so that they contain only the values associated with the free variables of the closure and a pointer to code.
5. Third change: Restrict values on stack to be simple (ints, bools, heap addresses, etc). Complex data is moved to the heap, leaving pointers into the heap on the stack.
6. How might things look different in a language without firstclass functions? In a language with multiple arguments to function calls?

## Jargon Virtual Machine



## The stack in interpreter 3

A stack in interpreter 3

| $(1,(2,17))$ |
| :---: |
| $\ln (\operatorname{inr}(99))$ |
| $:$ |
| $:$ |

"All problems in computer science can be solved by another level of indirection, except of course for the problem of too many indirections."
--- David Wheeler

Stack elements in interpreter 3 are not of fixed size.

Virtual machines (JVM, etc) typically restrict stack elements to be of a fixed size

We need to shift data from the high-level stack of interpreter 3 to a lower-level stack with fixed size elements.

Solution : put the data in the heap. Place pointers to the heap on the stack.

interp_3.mli

```
type instruction =
```

type instruction =
| PUSH of value
| PUSH of value
| LOOKUP of Ast.var
| LOOKUP of Ast.var
| UNARY of Ast.unary_oper
| UNARY of Ast.unary_oper
| OPER of Ast.oper
| OPER of Ast.oper
| ASSIGN
| ASSIGN
| SWAP
| SWAP
| POP
| POP
| BIND of Ast.var
| BIND of Ast.var
| FST
| FST
| SND
| SND
| DEREF
| DEREF
| APPLY
| APPLY
| RETURN
| RETURN
| MK_PAIR
| MK_PAIR
| MK_INL
| MK_INL
| MK_INR
| MK_INR
| MK_REF
| MK_REF
| MK_CLOSURE of location
| MK_CLOSURE of location
| TEST of location
| TEST of location
| CASE of location
| CASE of location
| GOTO of location
| GOTO of location
| LABEL of label
| LABEL of label
| HALT

```
    | HALT
```

Small change to instructions

## A word about implementation

## Interpreter 3

type value $=\mid$ REF of address $\mid$ INT of int $\mid$ BOOL of bool | UNIT
| PAIR of value * value | INL of value | INR of value | CLOSURE of location * env type env_or_value =|EV of env |V of value | RA of address type env_value_stack = env_or_value list


## MK_INR (MK_INL is similar)

In interpreter 3

> (MK_INR,

$$
\begin{array}{r|l}
(\mathrm{V} v):: ~ e v s) \quad-> \\
& \text { Jargon } \mathrm{VM} \\
\hline
\end{array}
$$

The stack before

The stack after

Newly allocated locations in the heap
V

Note: The header types are not really required. We could instead add an extra field here (for example, 0 or 1). However, header types aid in understanding the code and traces of runtime execution.

CASE (TEST is similar)
(CASE (_, Some _), V(INL v)::evs) -> (cp + 1, (V v) :: evs) (CASE (_, Some i), V(INR v)::evs) -> (i, (V v) :: evs)
cp $=\mathrm{t}$

$\mathbf{c p}=\mathrm{i}$

$\mathbf{c p}=\mathrm{t}$


$$
\mathbf{c p}=t+1
$$



## MK_PAIR

In interpreter 3:
(MK_PAIR, (V v2) :: (V v1) :: evs) -> (cp + 1, V(PAIR(v1, v2)) :: evs)

In Jargon VM:

The stack before

| v 2 |
| :---: |
| v 1 |
| $:$ |
| $:$ |$\quad: \quad$.

The stack after


Newly allocated locations in

## FST (similar for SND)

In interpreter 3:

$$
\text { (FST, } \quad V(P A I R(v 1, v 2)):: ~ e v s) \quad->\quad(c p+1, v 1:: ~ e v s)
$$

In Jargon VM:

The stack before

Somewhere in the heap

The stack after


Note that v1 could be a simple value (int or bool), or aother heap address.

## These require more care

## In interpreter 3:

let step (cp, evs) $=$
match (get_instruction cp, evs) with
| (MK_CLOSURE loc, evs)
$->\left(c p+1, V\left(C L O S U R E\left(l o c, ~ e v s \_t o \_e n v ~ e v s\right)\right):: ~ e v s\right)$
| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)
-> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)
| (RETURN, (V v) :: _ :: (RA i) :: evs)

$$
->(i, \quad(V \mathrm{v}):: \mathrm{evs})
$$

## MK_CLOSURE(c, n)

c = code location of start of instructions for closure, $\mathrm{n}=$ number of free variables in the body of closure.

Put values associated with free variables on stack, then construct the closure on the heap

The stack before


The stack after

Newly allocated locations in the heap


## A stack frame



Return address
Saved frame pointer
Pointer to closure
Argument value
Stack frame. (Boundary
May vary in the literature.)

Currently executing code for the closure at heap address " $a$ " after it was applied to argument v .

## APPLY

Interpreter 3:
(APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)
-> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

## Jargon VM:

## BEFORE <br> $-\mathbf{c p}=k$ $\mathrm{f} p=\mathrm{j}$



## AFTER

$-\mathrm{cp}=\mathrm{i}$
$\mathrm{f} p=\mathrm{m}$


Interpreter 3:
(RETURN, (V v) ::_ :: (RA i) :: evs) -> (i, (V v) :: evs)

BEFORE Jargon VM:
cp $=\mathrm{i}$


Replace stack frame with return value

AFTER
$\bar{c} \mathbf{p}=\mathrm{t}$
(return address)


## Finding a variable's value at runtime

Suppose we are executing code associated with this closure. Then every free variable in the body of the closure can be found from the frame pointer fp :

- Formal parameter: at stack location fp-2
- Other free variables :
- Follow heap pointer found at $\mathrm{fp}-1$
- Each free variable can be associated with a fixed offset from this heap address


## LOOKUP (HEAP_OFFSET k)

Interpreter 3:
(LOOKUP $x$, evs) -> (cp + 1, V(search(evs, $x))::$ evs)


## LOOKUP (STACK_OFFSET -2)

Interpreter 3:
(LOOKUP x ,
evs) -> (cp + 1, V(search(evs, x)) :: evs)


## Oh, one problem

## let rec comp $=$ function

| LetFun(f, (x, e1), e2) ->

```
                                let (defs1, c1) = comp el in
```

                                let (defs2, c2) \(=\) comp e2 in
                                let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in
                            (def @ defs1 @ defs2,
                            [MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])
    Problem: Code c2 can be anything --- how are we going to find the closure for $f$ when we need it? It has to be a fixed offset from a frame pointer --- we no longer scan the stack for bindings! let rec comp vmap = function Solution in Jargon VM

LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

## LOOKUP (STACK_OFFSET -1)

For recursive function calls, push current closure on to the stack.

Jargon VM:
BEFORE


AFTER


## Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int $=($ snd $p$, fst $p)$ in rev_pair $(21,17)$
end
After the front-end, compile treats this as follows.
App(
Lambda(
"rev_pair",
App(Var "rev_pair", Pair (Integer 21, Integer 17))), Lambda("p", Pair(Snd (Var "p"), Fst (Var "p"))))

## Example : Compiled code for rev_pair.slang

## App(

Lambda("rev_pair", "first lambda" App(Var "rev_pair", Pair (Integer 21, Integer 17))), Lambda("p", Pair(Snd (Var "p"), Fst (Var "p")))) "second lambda"

```
            MK_CLOSURE(L1, 0)
    MK_CLOSURE(LO, 0)
    APPLY
    HALT
    LO: PUSH STACK_INT 21
    PUSH STACK_INT 17
    MK_PAIR
    LOOKUP STACK_LOCATION -2
    APPLY
    RETURN
L1: LOOKUP STACK_LOCATION -2
SND
LOOKUP STACK_LOCATION -2
FST
MK_PAIR
RETURN
```


## MK_CLOSURE(L1, 0)

MK_CLOSURE(LO, 0)
APPLY
HALT
LO: PUSH STACK_INT 21
PUSH STACK_INT 17
MK_PAIR
LOOKUP STACK LOCATION -2
APPLY
RETURN
L1:
LOOKUP STACK_LOCATION -2
SND
LOOKUP STACK_LOCATION -2
FST
MK_PAIR
RETURN
-- Make closure for second lambda
-- Make closure for first lambda
-- do application
-- the end!
-- code for first lambda, push 21
-- push 17
-- make the pair on the heap
-- push closure for second lambda on stack
-- apply first lambda
-- return from first lambda
-- code for second lambda, push arg on stack
-- extract second part of pair
-- push arg on stack again
-- extract first part of pair
-- construct a new pair
-- return from second lambda

## Example : trace of rev_pair.slang execution

```
Installed Code =
0: MK_CLOSURE(L1 = 11,0)
1: MK_CLOSURE(LO = 4, 0)
2: APPLY
3: HALT
4: LABEL LO
5: PUSH STACK_INT 21
6: PUSH STACK_INT 17
7: MK_PAIR
8: LOOKUP STACK_LOCATION-2
9: APPLY
10: RETURN
11: LABEL L1
12: LOOKUP STACK_LOCATION-2
13: SND
14: LOOKUP STACK_LOCATION-2
15: FST
16: MK_PAIR
17: RETURN
```

```
========== state \(1=========\)
cp = 0 -> MK_CLOSURE (L1 = 11, 0)
\(\mathrm{fp}=0\)
Stack =
1: STACK RA 0
0: STACK_FP 0
\(==========\) state \(2=========\)
\(\mathrm{cp}=1\)-> MK_CLOSURE \((\mathrm{LO}=4,0)\)
\(\mathrm{fp}=0\)
Stack =
2: STACK HI 0
1: STACK_RA 0
0: STACK_FP 0
Heap =
0 -> HEAP_HEADER(2, HT_CLOSURE)
1 -> HEAP_CI 11
```


## Example : trace of rev_pair.slang execution

```
========== state 15 ==========
cp = 16 -> MK_PAIR
fp = 8
Stack =
11: STACK_INT 21
10: STACK INT 17
9: STACK_\overline{RA }10
8: STACK_FP 4
7: STACK_HI O
6: STACK_HI }
5: STACK_RA 3
4: STACK_FP 0
3: STACK_HI }
2: STACK_HI O
1: STACK_RA 0
0: STACK_FP 0
Heap =
0 -> HEAP_HEADER(2, HT_CLOSURE)
1 -> HEAP-Cl }1
2 - > ~ H E A P - H E A D E R ( 2 , H T \ C L O S U R E )
3 -> HEAP_CI }
4 -> HEAP_HEADER(3, HT_PAIR)
5 -> HEAP_INT 21
6 -> HEAP_INT 17
Jargon VM :
output> (17, 21)
```

```
========== state 19 ===========
```

========== state 19 ===========
cp = 3 -> HALT
cp = 3 -> HALT
fp = 0
fp = 0
Stack =
Stack =
2: STACK_HI }
2: STACK_HI }
1: STACK_RA 0
1: STACK_RA 0
0: STACK_FP 0
0: STACK_FP 0
Heap =
Heap =
0 -> HEAP_HEADER(2, HT_CLOSURE)
0 -> HEAP_HEADER(2, HT_CLOSURE)
1 -> HEAP_Cl 11
1 -> HEAP_Cl 11
2 -> HEAP_HEADER(2, HT_CLOSURE)
2 -> HEAP_HEADER(2, HT_CLOSURE)
3 -> HEAP_Cl 4
3 -> HEAP_Cl 4
4 -> HEAP_HEADER(3, HT_PAIR)
4 -> HEAP_HEADER(3, HT_PAIR)
5 -> HEAP INT 21
5 -> HEAP INT 21
6 -> HEAP_INT 17
6 -> HEAP_INT 17
7 -> HEAP_HEADER(3, HT_PAIR)
7 -> HEAP_HEADER(3, HT_PAIR)
8 -> HEAP_INT 17
8 -> HEAP_INT 17
9 -> HEAP_INT 21

```
9 -> HEAP_INT 21
```


## Example : closure_add.slang

let $\mathrm{f}(\mathrm{y}$ : int $):$ int $->$ int $=$ let $\mathrm{g}(\mathrm{x}$ : int $):$ int $=\mathrm{y}+\mathrm{x}$ in g end in let add21: int $->$ int $=f(21)$
in let add17: int $->$ int $=f(17)$ in add17(3) + add21(10) end
end
end

Note : we really do need closures on the heap here the values 21 and 17 do not exist on the stack at this point in the execution.

After the front-end, this becomes represented as follows.
App(Lambda(f, App(Lambda(add21,
App(Lambda(add17,
Op(App(Var(add17), Integer(3)), ADD, App(Var(add21), Integer(10)))), App( $\operatorname{Var}(f)$, Integer(17))),
App(Var(f), Integer(21))))),
Lambda(y, App(Lambda(g, $\operatorname{Var}(\mathrm{g})), \operatorname{Lambda}(\mathrm{x}, \mathrm{Op}(\operatorname{Var}(\mathrm{y})$, ADD, $\operatorname{Var}(\mathrm{x}))))))$

## Can we make sense of this?

```
MK_CLOSURE(L3, 0)
MK_CLOSURE(LO, 0)
APPLY
HALT
    PUSH STACK_INT 21
LOOKUP STACK_LOCATION -2
APPLY
LOOKUP STACK LOCATION -2
MK_CLOSURE(L1, 1)
APPLY
RETURN
    PUSH STACK_INT 17
LOOKUP HEAP_LOCATION 1
APPLY
LOOKUP STACK_LOCATION -2
MK_CLOSURE(L\overline{2},1)
APPLY
RETURN
```

L2 : PUSH STACK_INT 3
LOOKUP STACK_LOCATION -2
APPLY
PUSH STACK_INT 10
LOOKUP HEAP_LOCATION 1
APPLY
OPER ADD
RETURN
L3: LOOKUP STACK_LOCATION-2
MK_CLOSURE(L5, 1)
MK_CLOSURE(L4, 0)
APPLY
RETURN
L4 : LOOKUP STACK_LOCATION-2
RETURN
L5: LOOKUP HEAP_LOCATION 1
LOOKUP STACK_LOCATION -2
OPER ADD
RETURN

## The Gap, illustrated

fib.slang
let fib (m :int) : int =
if $\mathrm{m}=0$
then 1
else if $\mathrm{m}=1$
then 1
else fib $(m-1)+$ fib $(m-2)$ end
end
in fib (?) end

slang.byte -c -i4 fib.slang

|  | MK_CLOSURE(fib, 0) |
| :---: | :---: |
|  | MK_CLOSURE(L0, 0) |
|  | APPLY |
|  | HALT |
| L0 : | PUSH STACK UNIT |
|  | UNARY READ |
|  | LOOKUP STACK_LOCATION -2 |
|  | APPLY |
|  | RETURN |
| fib : | LOOKUP STACK_LOCATION -2 |
|  | PUSH STACK_INT 0 |
|  | OPER EQI |
|  | TEST L1 |
|  | PUSH STACK_INT 1 |
|  | GOTO L2 |
| L1 : | LOOKUP STACK_LOCATION -2 |
|  | PUSH STACK_INT 1 |
|  | OPER EQI |
|  | TEST L3 |
|  | PUSH STACK_INT 1 |
|  | GOTO L4 |
| L3 : | LOOKUP STACK LOCATION -2 |
|  | PUSH STACK_INT 1 |
|  | OPER SUB |
|  | LOOKUP STACK_LOCATION -1 |
|  | APPLY |
|  | LOOKUP STACK_LOCATION -2 |
|  | PUSH STACK_INT 2 |
|  | OPER SUB |
|  | LOOKUP STACK_LOCATION -1 |
|  | APPLY |
|  | OPER ADD |
| L4 : |  |
| L2 : | RETURN |

## Jargon VM code

## Remarks

1. The semantic GAP between a Slang/L3 program and a low-level translation (say x86/Unix) has been significantly reduced.
2. Implementing the Jargon VM at a lower-level of abstraction (in C?, JVM bytecodes? X86/Unix? ...) looks like a relatively easy programming problem.
3. However, using a lower-level implementation (say x86, exploiting fast registers) to generate very efficient code is not so easy. See Part II Optimising Compilers.

> Verification of compilers is an active area of research. See CompCert, CakeML, and DeepSpec.

## What about languages other than Slang/L3?

- Many textbooks on compilers treat only languages with first-order functions --- that is, functions cannot be passes as an argument or returned as a result. In this case, we can avoid allocating environments on the heap since all values associated with free variables will be somewhere on the stack!
- But how do we find these values? We optimise stack search by following a chain of static links. Static links are added to every stack frame and the point to the stack frame of the last invocation of the defining function.
- One other thing: most languages take multiple arguments for a function/procedure call.


## Terminology: Caller and Callee

## fun $f(x, y)=e 1$

": "
fun $g(w, v)=$ $w+f(v, v)$

For this invocation of the function f, we say that $g$ is the caller while $f$ is the callee

Recursive functions can play both roles at the same time ...

## Nesting depth

Pseudo-code

```
fun \(b(z)=e\)
fun \(g(x 1)=\)
    fun \(h(x 2)=\)
        fun \(f(x 3)=e 3(x 1, x 2, x 3, b, g h, f)\)
        in
            e2(x1, x2, b, g, h, f)
            end
        in
            e1(x1, b, g, h)
    end
b(g(17))
```


## Nesting depth

## code in big box is at nesting depth k

fun $b(z)=e$ nesting depth $k+1$
fun $g(x 1)=$
fun $h(x 2)=$
fun $f(x 3)=e 3(x 1, x 2, x 3, b, g h, f) \quad$ nesting depth $k+3$
in
e2(x1, x2, b, g, h, f)
end
in
el(x1, b, g, h)
end
nesting depth $\mathrm{k}+1$
b(g(17))

Function $g$ is the definer of $h$. Functions $g$ and $b$ must share a definer defined at depth k-1

Stack with static links and variable number of arguments

caller and callee at same nesting depth $k$

caller at depth k and callee at depth $\mathrm{i}<\mathrm{k}$


## caller at depth $k$ and callee at depth $k+1$



Access to argument values at static distance
0


## Access to argument values at static distance d, $0<d$



## LECTUREs 11, 12 What about Interpreter 1 ?

- Evaluation using a stack
- Recursion using a stack
- Tail recursion elimination: from recursion to iteration
- Continuation Passing Style (CPS) : transform any recursive function to a tail-recursive function
- "Defunctionalisation" (DFC) : replace higher-order functions with a data structure
- Putting it all together:
- Derive the Fibonacci Machine
- Derive the Expression Machine, and "compiler"!
- This provides a roadmap for the interp_0 $\rightarrow$ interp_1 $\rightarrow$ interp_2 derivations.


## Example of tail-recursion : gcd

```
(* gcd : int * int -> int *)
let rec gcd(m,n)=
    if m = n
    then m
    else if m < n
        then gcd(m, n-m)
        else gcd(m-n,
        n)
```

Compared to fib, this function uses recursion in a different way. It is tail-recursive. If implemented with a stack, then the "call stack" (at least with respect to gcd) will simply grow and then shrink. No "ups and downs" in between.


Tail-recursive code can be replaced by iterative code that does not require a "call stack" (constant space)

## gcd_iter : gcd without recursion!

```
(* gcd : int * int -> int *)
let rec gcd(m,n)=
    if m = n
    then m
    else if m < n
        then gcd(m, n-m)
    else gcd(m-n,
    n)
```

Here we have illustrated tail-recursion elimination as a source-to-source transformation. However, the OCaml compiler will do something similar to a lower-level intermediate representation. Upshot : we will consider all tail-recursive OCaml functions as representing iterative programs.
(* gcd_iter : int * int -> int *)
let gcd_iter ( $\mathrm{m}, \mathrm{n}$ ) =
let $r m=r e f m$
in let $\mathrm{rn}=$ ref n
in let result $=$ ref 0
in let not_done $=$ ref true
in let _ =
while !not_done do

$$
\begin{aligned}
& \text { if } \text { !rm }=\text { !rn } \\
& \text { then (not_done }:=\text { false; } \\
& \text { result }:=\text { !rm) } \\
& \text { else if !rm }<\text { !rn } \\
& \text { then } r n:=\text { !rn }- \text { !rm } \\
& \text { else } \mathrm{rm}:=\text { !rm }- \text { !rn }
\end{aligned}
$$

done
in !result

## Familiar examples : fold_left, fold_right

## From ocaml-4.01.0/stdlib/list.ml :

```
(* fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
    fold_left fa [b1; ...; bn]] = f(...(f (f a b1) b2) ...) bn
*)
let rec fold_left f a I =
    match I with
    | [] -> a
    | b :: rest -> fold_left f (f a b) rest
(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
        fold_right f[a1; ..; an] b = f a1 (f a2 (... (f an b) ...))
*)
let rec fold_right f | b =
    match I with
    | [] -> b
    | a::rest -> f a (fold_right f rest b)
```

This is tail recursive

This is NOT tail
recursive

# Question: can we transform any recursive function into a tail recursive function? 

The answer is YES!

- We add an extra argument, called a continuation, that represents "the rest of the computation"
- This is called the Continuation Passing Style (CPS) transformation.
- We will then "defunctionalize" (DFC) these continuations and represent them with a stack.
- Finally, we obtain a tail recursive function that carries its own stack as an extra argument!

We will apply this kind of
transformation to the code of interpreter 0 as the first steps towards deriving interpreter 1.

## (CPS) transformation of fib

```
(* fib : int -> int *)
let rec fib m =
    if m =0
    then 1
    else if m = 1
            then 1
            else fib(m-1) + fib (m-2)
(* fib_cps:int * (int -> int) -> int *)
let rec fib_cps (m, cnt) =
        if m}=
    then cnt 1
    else if m=1
        then cnt 1
        else fib_cps(m -1, fun a -> fib_cps(m - 2, fun b -> cnt (a + b)))
```


## A closer look

The rest of the computation after computing "fib(m)". That is, cnt is a function expecting the result of "fib(m)" as its argument.
let rec fib_cps $(\mathrm{m}, \mathrm{cnt})=$ if $m=\overline{0}$
then cnt 1
else if $\mathrm{m}=1$
then cnt 1
else fib_cps(m-1, fun a -> fib_cps(m-2, fun b -> cnt $(a+b))$ )

This makes explicit the order of evaluation that is implicit in the original "fib(m-1) + fib(m-2)" :
-- first compute fib(m-1)
-- then compute fib(m-1)
-- then add results together
-- then return

The computation waiting for the result of "fib(m-1)"


The computation waiting for the result of "fib(m-2)"

## Expressed with "let" rather than "fun"

```
(* fib_cps_v2 : (int -> int) * int -> int *)
let rec fib_cps_v2 (m, cnt) =
    if m = 0
    then cnt 1
    else if m = 1
    then cnt 1
    else let cnt2 a b = cnt (a + b)
        in let cnt1 a = fib_cps_v2(m-2, cnt2 a)
        in fib_cps_v2(m-1,cnt1)
```

Some prefer writing CPS forms without explicit funs ....

## Use the identity continuation

```
(* fib_cps : int * (int -> int) -> int *)
let rec fib_cps (m, cnt) =
    if m = 0
    then cnt 1
    else if m = 1
then cnt 1
else fib_cps(m -1, fun a -> fib_cps(m - 2, fun b -> cnt (a + b)))
```

let id $(x:$ int $)=x$
let fib_1 $x=$ fib_cps(x, id)

List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;
$=[1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; 55 ; 89]$

## Correctness?

For all c : int $->$ int, for all $\mathrm{m}, 0<=\mathrm{m}$, we have, $c(f i b m)=$ fib_cps $(m, c)$.

Proof: assume c : int -> int. By Induction on $m$. Base case : $m=0$ : fib_cps(0, c) $=c(1)=c(f i b(0)$.

NB: This proof pretends that we can treat OCaml functions as ideal mathematical functions, which of course we cannot. OCaml functions might raise exceptions like "stack overflow" or "you burned my toast", and so on. But this is a convenient fiction as long as we remember to be careful.

Induction step: Assume for all $\mathrm{n}<\mathrm{m}, \mathrm{c}(\mathrm{fib} \mathrm{n})=$ fib_cps(n, c).
(That is, we need course-of-values induction!)

```
        fib_cps(m + 1, c)
        = if m + 1 = 1
        then c 1
        else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b)))
    = if m + 1 = 1
    then c 1
    else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a + b)))
= (by induction)
    if m + 1 = 1
    then c 1
    else (fun a -> fib_cps(m -1, fun b -> c (a + b))) (fib m)
```


## Correctness?

```
= if m + 1 = 1
        then c 1
        else fib_cps(m-1, fun b -> c ((fib m) + b))
    = (by induction)
    if m + 1 = 1
    then c 1
    else (fun b -> c ((fib m) + b)) (fib (m-1))
    = if m + 1 = 1
    then c 1
    else c ((fib m) + (fib (m-1)))
    =c (if m + 1 = 1
        then 1
        else ((fib m) + (fib (m-1))))
    = c(if m +1 = 1
        then 1
        else fib((m+1)-1) + fib ((m+1)-2))
    =c(fib(m + 1))
```


# Can with express fib_cps without a functional argument? 

(* fib_cps_v2 : (int -> int) * int -> int *)
let rec fib_cps_v2 (m, cnt) =
if $\mathrm{m}=\overline{0}$
then cnt 1
else if $\mathrm{m}=1$
then cnt 1
else let cnt2 a b = cnt (a + b)
in let cnt1 $a=$ fib_cps_v2(m-2, cnt2 a)
in fib_cps_v2(m-1, cnt1)

Idea of "defunctonalisation" (DFC): replace id, cnt1 and cnt2 with instances of a new data type:
type cnt $=$ ID | CNT1 of int * cnt | CNT2 of int * cnt
Now we need an "apply" function of type cnt * int -> int

## "Defunctionalised" version of fib_cps

(* datatype to represent continuations *)
type cnt $=$ ID | CNT1 of int * cnt | CNT2 of int * cnt
(* apply_cnt : cnt * int -> int *)
let rec apply_cnt $=$ function
| (ID, a) -> a
| (CNT1 (m, cnt), a) -> fib_cps_dfc(m-2, CNT2 (a, cnt))
| (CNT2 (a, cnt), b) -> apply_cnt (cnt, a + b)
(* fib_cps_dfc : (cnt * int) -> int *)
and fib_cps_dfc ( $\mathrm{m}, \mathrm{cnt}$ ) $=$
if $\mathrm{m}=0$
then apply_cnt(cnt, 1)
else if $\mathrm{m}=1$
then apply_cnt(cnt, 1)
else fib_cps_dfc(m-1, CNT1(m, cnt))
(* fib_2 : int -> int *)
let fib_2 m = fib_cps_dfc(m, ID)

## Correctness?

Let < c > be of type cnt representing a continuation c : int -> int constructed by fib_cps.

Then
apply_cnt( $<\mathrm{c}>, \mathrm{m})=\mathrm{c}(\mathrm{m})$
and
fib_cps(n, c) = fib_cps_dfc(n, < c >).

Functional continuation c
fun a -> fib_cps(m-2, fun b $->$ cnt $(a+b))$
fun $b->\operatorname{cnt}(a+b)$
fun $x->x$

Representation < c >
CNT1 $(\mathrm{m},<\mathrm{cnt}>$ )
CNT2 (a, < cnt >)
ID

Proof left as an exercise!

| Functional continuation $c$ | Representation < c > |
| :--- | :--- |
| fun $\mathrm{a}->$ fib_cps $(\mathrm{m}-2$, fun $\mathrm{b}->\mathrm{cnt}(\mathrm{a}+\mathrm{b}))$ | CNT1 $(\mathrm{m},<\mathrm{cnt}>)$ |
| fun $\mathrm{b}->$ cnt $(\mathrm{a}+\mathrm{b})$ | CNT2 $(\mathrm{a},<\mathrm{cnt}>)$ |
| fun $\mathrm{x}->\mathrm{x}$ | ID |

## Eureka! Continuations are just lists (used like a stack)

## type int_list = NIL | CONS of int * int_list

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt


Replace the above continuations with lists! (l've selected more suggestive names for the constructors.)

$$
\begin{aligned}
& \text { type tag = SUB2 of int | PLUS of int } \\
& \text { type tag_list_cnt = tag list }
\end{aligned}
$$

## The continuation lists are used like a stack!

type tag = SUB2 of int | PLUS of int
type tag_list_cnt = tag list
(* apply_tag_list_cnt : tag_list_cnt * int -> int *)
let rec apply_tag_list_cnt = function
| ([], a) -> a
((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)
| ((PLUS a) :: cnt, b) -> apply_tag_list_cnt (cnt, a + b)
(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *)
and fib_cps_dfc_tags (m, cnt) =
if $\mathrm{m}=0$
then apply_tag_list_cnt(cnt, 1)
else if $m=1$
then apply_tag_list_cnt(cnt, 1)
else fib_cps_dfc_tags(m-1, (SUB2 m) :: cnt)
(* fib_3 : int -> int *)
let fib_3 m = fib_cps_dfc_tags(m, [])

# Combine Mutually tail-recursive functions into a single function 

type state_type =
| SUB1 (* for right-hand-sides starting with fib_ *)
| APPL (* for right-hand-sides starting with apply_*)
type state $=($ state_type * int * tag_list_cnt) -> int
(* eval : state -> int A two-state transition function*)
let rec eval = function
| (SUB1, 0,
cnt) -> eval (APPL, 1,
cnt)
| (SUB1, 1,
cnt) -> eval (APPL, 1,
cnt )
| (SUB1, m,
cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)
| (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)
| (APPL, b, (PLUS a) :: cnt) -> eval (APPL, (a+b),
$\mathrm{cnt})$
| (APPL, a, []) -> a
(* fib_4 : int -> int *)
let fib_4 m = eval (SUB1, m, [])
(* step : state -> state *)
let step = function
| (SUB1, 0, cnt) -> (APPL, 1,
cnt)
(SUB1, 1,
| (SUB1, m,
cnt) -> (APPL, 1,
cnt)
cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)
| (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2), (PLUS a) :: cnt)
| (APPL, b, (PLUS a) :: cnt) -> (APPL, (a+b),
cnt)
| _ -> failwith "step : runtime error!"
(* clearly TAIL RECURSIVE! *)
let rec driver state $=$ function
| (APPL, a, []) -> a
state -> driver (step state)

In this version we have simply made the tail-recursive structure very explicit.
(* fib_5 : int -> int *)
let fib_5 m = driver (SUB1, m, [])

## Here is a trace of fib_5 6 .

```
1 SUB1 || 6 || []
2 SUB1 || 5 || [SUB2 6]
3 SUB1 || 4 || [SUB2 6, SUB2 5]
4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]
5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]
6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]
11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]
12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]
13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]
14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]
15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]
16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]
17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]
18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]
19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]
20 APPL || 5 || [SUB2 6, SUB2 5]
21 SUB1 || 3 || [SUB2 6, PLUS 5]
22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]
23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]
24 APPL || 1 ||[SUB2 6, PLUS 5, SUB2 3, SUB2 2]
25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]
```

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]
27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]
28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]
29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]
30 APPL || 3 || [SUB2 6, PLUS 5]
31 APPL || 8 || [SUB2 6]
32 SUB1 || 4 || [PLUS 8]
33 SUB1 || 3 || [PLUS 8, SUB2 4]
34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]
35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]
36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]
37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]
38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]
39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]
40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2]
41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]
42 APPL || 3 || [PLUS 8, SUB2 4]
43 SUB1 || 2 || [PLUS 8, PLUS 3]
44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2]
45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]
46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1]
47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]
48 APPL || 2 || [PLUS 8, PLUS 3]
49 APPL || 5 || [PLUS 8]
50 APPL ||13|| []

> The OCaml file in basic_transformations/fibonacci_machine.ml contains some code for pretty printing such traces....

## Pause to reflect

- What have we accomplished?
- We have taken a recursive function and turned it into an iterative function that does not require "stack space" for its evaluation (in OCaml)
- However, this function now carries its own evaluation stack as an extra argument!
- We have derived this iterative function in a step-by-step manner where each tiny step is easily proved correct.
- Wow!


## That was fun! Let's do it again!

type expr =
| INT of int
| PLUS of expr * expr
| SUBT of expr * expr
| MULT of expr * expr

This time we will derive a stack-machine AND a "compiler" that translates expressions into a list of instructions for the machine.
(* eval : expr -> int
a simple recusive evaluator for expressions *)
let rec eval = function
| INT a
-> a
| PLUS(e1, e2) -> (eval e1) + (eval e2)
| SUBT(e1, e2) -> (eval e1) - (eval e2)
| MULT(e1, e2) -> (eval e1) *(eval e2)

## Here we go again : CPS

type cnt_2 = int -> int
type state_2 = expr * cnt_2
(* eval_aux_2 : state_2 -> int *)
let rec eval_aux_2 (e, cnt) =
match e with
| INT a -> cnt a
PLUS(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2)))
| SUBT(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))
| MULT(e1, e2) ->
eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))
(*id_cnt : cnt_2 *)
let id_cnt ( x : int) $=\mathrm{x}$
(* eval_2 : expr -> int *)
let eval_2 e = eval_aux_2(e, id_cnt)

## Defunctionalise!

type cnt_3 =
| ID
OUTER_PLUS of expr * cnt_3
| OUTER_SUBT of expr * cnt_3
| OUTER_MULT of expr * cnt_3
INNER_PLUS of int * cnt_3
INNER_SUBT of int * cnt_3
INNER_MULT of int * cnt_3
type state_3 $=$ expr $*$ cnt_3
(* apply_3 : cnt_3 * int -> int *)
let rec apply_3 = function
$\mid($ (ID, $\quad->$ v
$\mid$ (OUTER_PLUS(e2, cnt), v1) $->$ eval_aux_3(e2, INNER_PLUS(v1, cnt))
$\mid$ (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))
$\mid$ (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))
$\mid$ (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2)
$\mid$ (INNER_SUBT(v1, cnt), v2) $->$ apply_3(cnt, v1 - v2)
$\mid$ (INNER_MULT(v1, cnt), v2) $->$ apply_3(cnt, v1 * v2)

## Defunctionalise!

(* eval_aux_2 : state_3 -> int *)
and eval_aux_3 (e, cnt) =
match e with
| INT a -> apply_3(cnt, a)
PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt)) SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt))
MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt))
(* eval_3 : expr -> int *)
let eval_3 e = eval_aux_3(e, ID)

## Eureka! Again we have a stack!

type tag =
| O_PLUS of expr
I_PLUS of int
O_SUBT of expr
I_SUUBT of int
O_MULT of expr
I_MULT of int
type cnt_4 = tag list
type state_4 = expr * cnt_4
(* apply_4 : cnt_4 * int -> int *)
let rec apply_4 = function
| ([], - v) -> v
|((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)
| ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)
| ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)
| ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)
| ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)
| ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)

## Eureka! Again we have a stack!

(* eval_aux_4 : state_4 -> int *)
and eval_aux_4 (e, cnt) =
match e with
| INT a $\quad->$ apply_4(cnt, a)
| PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt)
| SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt)
| MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt)
(* eval_4 : expr -> int *)
let eval_4 e = eval_aux_4(e, [])

## Eureka! Can combine apply_4 and eval_aux_4

type acc =
| A_INT of int
| A_EXP of expr
type cnt_5 = cnt_4
type state_5 = cnt_5 * acc
val : step : state_5 -> state_5
val driver : state_5 -> int
val eval_5 : expr -> int

Type of an "accumulator" that contains either an int or an expression.

The driver will be clearly tail-recursive ...

## Rewrite to use driver, accumulator

let step_5 = function

let rec driver_5 = function

```
    | ([], A_INT v) -> v
    | state -> driver_5 (step_5 state)
```

let eval_5 e = driver_5([], A_EXP e)

## Eureka! There are really two independent stacks here --- one for "expressions" and one for values

type directive $=$
| E of expr
| DO_PLUS
DO_SUBT
DO_MULT
type directive_stack $=$ directive list
type value_stack $=$ int list
type state_6 = directive_stack * value_stack
val step_6 : state_6 -> state_6
val driver_6 : state_6 -> int
val exp_6 : expr -> int

The state is now two stacks!

## Split into two stacks

let step_6 = function
| (E(INT v) :: ds,
(E(PLUS(e1, e2)) :: ds,
vs) -> (ds, v :: vs)
vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)
(E(SUBT(e1, e2)) :: ds,
vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs
(E(MULT(e1, e2)) :: ds,
vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs
| (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs)
(DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs)
| (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs)
| _ -> failwith "eval : runtime error!"
let rec driver_6 = function
| ([], [v]) -> v
state -> driver_6 (step_6 state)
let eval_6 e = driver_6 ([E e], [])

## An eval 6 trace

## e = PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))

Top of each stack is on the right

## Key insight

This evaluator is interleaving two distinct computations:
(1) decomposition of the input expression into sub-expressions (2) the computation of,+- , and *.

## Idea: why not do the decomposition BEFORE the computation?

Key insight: An interpreter can (usually) be refactored into a translation (compilation!) followed by a lower-level interpreter.

> Interpret_higher (e) = interpret_lower(compile(e))

## Refactor --- compile!

(* low-level instructions *)
type instr =
| Ipush of int
| Iplus
| Isubt
| Imult
type code $=$ instr list
Never put off till run-time what you can do at compile-time.
-- David Gries
type state_7 = code * value_stack
(* compile : expr -> code *)
let rec compile $=$ function
$\begin{array}{ll}\mid \text { INT a } & ->\text { [Ipush a] } \\ \text { | PLUS(e1, e2) } & ->\text { (compile e1) @ (compile e2) @ [Iplus] } \\ \text { | SUBT(e1, e2) } & ->\text { (compile e1) @ (compile e2) @ [Isubt] } \\ \text { | MULT(e1, e2) } & ->\text { (compile e1) @ (compile e2) @ [Imult] }\end{array}$

## Evaluate compiled code.

(* step_7 : state_7 -> state_7 *)
let step_7 = function
| (Ipush v :: is, vs) -> (is, v :: vs)
| (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)
| (Isubt :: is, v2::v1::vs) -> (is, (v1 - v2) :: vs)
(Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)
| _ -> failwith "eval : runtime error!"
let rec driver_7 $=$ function
| ([], [v]) -> v
| _ -> driver_7 (step_7 state)
let eval_7 e = driver_7 (compile e, []) I

## An eval_7 trace

compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))) = [push 89; push 2; mult; push 10; push 4; subt; plus]

```
            state 1 IS = [add; sub; push 4; push 10; mul; push 2; push 89]
            VS = [
            state 2 IS = [add; sub; push 4; push 10; mul; push 2]
                        VS = [89]
            state 3 IS = [add; sub; push 4; push 10; mul]
            VS = [89; 2]
            state 4 IS = [add; sub; push 4; push 10]
            VS = [178]
    state 5 IS = [add; sub; push 4]
            VS = [178; 10]
    state 6 IS = [add; sub]
        VS = [178;10; 4]
    state 7 IS = [add]
        VS = [178; 6]
    state }
        IS = [
        VS = [184]
```

Top of each stack is on the right

## Interp_0.ml $\rightarrow$ interp_1.ml $\rightarrow$ interp_2.ml

The derivation from eval to compile+eval_7 can be used as a guide to a derivation from Interpreter 0 to interpreter 2.

1. Apply CPS to the code of Interpreter 0
2. Defunctionalise
3. Arrive at interpreter 1, which has a single continuation stack containing expressions, values and environments
4. Spit this stack into two stacks : one for instructions and the other for values and environments
5. Refactor into compiler + lower-level interpreter
6. Arrive at interpreter 2.

## Taking stock

Starting from a direct implementation of Slang/L3 semantics, we have DERIVED a Virtual Machine in a step-by-step manner. The correctness of aach step is (more or less) easy to check.

## Interpreter 0

Explicit stack via CPS+DFS

Split stack into two, refactor

Linearise code

Low-level addressable stack
Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

# Compiler Construction Lent Term 2018 

## Part III: Lectures 13-16

- 13 : Compilers in their OS context
- 14 : Assorted Topics
- 15 : Runtime memory management
- 16 : Bootstrapping a compiler

Timothy G. Griffin tgg22@cam.ac.uk Computer Laboratory University of Cambridge

## Lecture 13

- Code generation for multiple platforms.
- Assembly code
- Linking and loading
- The Application Binary Interface (ABI)
- Object file format (only ELF covered)
- A crash course in x86 architecture and instruction set
- Naïve generation of x86 code from Jargon VM instructions


## We could implement a Jargon byte code interpreter

```
void vsm_execute_instruction(vsm_state *state, bytecode instruction)
{
    opcode code = instruction.code;
    argument arg1 = instruction.arg1;
    switch (code) {
        case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }
        case POP : { state->sp--; state->pc++; break; }
        case GOTO: { state->pc = arg1; break; }
        case STACK_LOOKUP: {
        state->stack[state->sp++] =
        state->stack[state->fp + arg1];
        state->pc++; break; }
    }
}
- Generate compact byte code for each Jargon instruction.
- Compiler writes byte codes to a file.
- Implement an interpreter in C or C++ for these byte codes.
- Execution is much faster than our jargon.ml implementation.
- Or, we could generate assembly code from Jargon instructions

\section*{Backend could target multiple platforms}


One of the great benefits of Virtual Machines is their portability. However, for more efficient code we may want to compile to assembler. Lost portability can be regained through the extra effort of implementing code generation for every desired target platform.

\section*{Assembly and Linking}


The gcc manual (810 pages) https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf
Chapter 9: Binary Compatibility ..... 677

\section*{9 Binary Compatibility}

Binary compatibility encompasses several related concepts:
application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with binary representations of a program, including compilers, assemblers, linkers, and language runtime support. Some ABIs are formal with a written specification, possibly designed by multiple interested parties. Others are simply the way things are actually done by a particular set of tools.

\section*{Applications Binary Interface (ABI)}

We will use x86/Unix as our running example. Specifies many things, including the following.
- C calling conventions used for systems calls or calls to compiled C code.
- Register usage and stack frame layout
- How parameters are passed, results returned
- Caller/callee responsibilities for placement and cleanup

Note: the conventions are required for portable interaction with compiled C.
Your compiled language does not have to follow the same conventions!
- Byte-level layout and semantics of object files.
- Executable and Linkable Format (ELF).

Formerly known as Extensible Linking Format.
- Linking, loading, and name mangling

\section*{Object files}

Must contain at least
- Program instructions
- Symbols being exported
- Symbols being imported
- Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common format for both linker input and output.

\section*{ELF details (1)}

Header information; positions and sizes of sections
.text segment (code segment): binary data
.data segment: binary data
.rela.text code segment relocation table: list of (offset,symbol) pairs giving:
(i) offset within .text to be relocated; and (iii) by which symbol
.rela.data data segment relocation table: list of (offset,symbol) pairs giving:
(i) offset within .data to be relocated; and
(iii) by which symbol

\section*{ELF details (2)}
. symtab symbol table:
List of external symbols (as triples) used by the module.
Each is (attribute, offset, symname) with attribute:
1. undef: externally defined, offset is ignored;
2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).

Symbol names are given as offsets within .strtab to keep table entries of the same size.
. strtab string table:
the string form of all external names used in the module

\section*{The (Static) Linker}

What does a linker do?
- takes some object files as input, notes all undefined symbols.
- recursively searches libraries adding ELF files which define such symbols until all names defined ("library search").
- whinges if any symbol is undefined or multiply defined.

Then what?
- concatenates all code segments (forming the output code segment).
- concatenates all data segments.
- performs relocations (updates code/data segments at specified offsets.

\section*{Dynamic vs. Static linking}

\section*{Static linking (compile time)}

Problem: a simple "hello world" program may give a 10MB
executable if it refers to a big graphics or other library.
Dynamic linking (run time)
For shared libraries, the object files contain stubs, not code, and the operating system loads and links the code on demand.

Pros and Cons of dynamic linking:
(+) Executables are smaller
(+) Bug fixes to libraries don't require re-linking.
(-) Non-compatible changes to a library can wreck previously working programs ("dependency hell").

\section*{A "runtime system"}

A library implementing functionality needed to run compiled code on a given operating system. Normally tailored to the language being compiled.
- Implements interface between OS and language.
- May implement memory management.
- May implement "foreign function" interface (say we want to call compiled C code from Slang code, or vice versa).
- May include efficient implementations of primitive operations defined in the compiled language.
- For some languages, the runtime system may perform runtime type checking, method lookup, security checks, and so on.

\section*{Runtime system}

\section*{Targeting a VM}

\section*{Targeting a platform}

Generated code

\begin{tabular}{|c|}
\hline Virtual Machine \\
Implementation \\
Includes runtime \\
system \\
\hline
\end{tabular}

Generated code

Run-time system


Linker


Executable

In either case, implementers of the compiler and the runtime system must agree on many low-level details of memory layout and data representation.

\section*{Typical (Low-Level) Memory Layout (UNIX)}

Rough schematic of traditional layout in (virtual) memory.

Dealing with Virtual Machines allows us to ignore some of the low-level details....


The heap is used for dynamically allocating memory. Typically either for very large objects or for those objects that are returned by functions/procedures and must outlive the associated activation record.

In languages like Java and ML, the heap is managed automatically ("garbage collection")

\section*{A Crash Course in \(x 86\) assembler}
- A CISC architecture
- There are 16, 32 and 64 bit versions
- 32 bit version :
- General purpose registers : EAX EBX ECX EDX
- Special purpose registers : ESI EDI EBP EIP ESP
- EBP : normally used as the frame pointer
- ESP : normally used as the stack pointer
- EDI : often used to pass (first) argument
- EIP : the code pointer
- Segment and flag registers that we will ignore ...
- 64 bit version:
- Rename 32-bit registers with "R" (RAX, RBX, RCX, ...)
- More general registers: R8 R9 R10 R11 R12 R13 R14 R15

\section*{Register}
names can indicate "width" of a value.
rax: 64 bit version
eax : 32 bit version (or lower 32 bits of rax) ax : 16 bit version (or lower 16 bits of eax) al : lower 8 bits of ax
ah: upper 8 bits of ax

\section*{See https://en.wikibooks.org/wiki/X86_Assembly}

The syntax of x86 assembler comes in several flavours. Here are two examples of "put integer 4 into register eax":
movl \$4, \%eax // GAS (aka AT\&T) notation mov eax, 4 // Intel notation

I will (mostly) use the GAS syntax, where a suffix is used to indicate width of arguments:
- b (byte) \(=8\) bits
- \(w(\) word \()=16\) bits
- \(\mathrm{I}(\mathrm{long})=32\) bits
- \(q\) (quad) \(=64\) bits

For example, we have movb, movw movl, and movq.

\section*{Examples (in GAS notation)}
\begin{tabular}{|c|c|}
\hline movl \$4, \%eax & \# put 32 bit integer 4 in register eax \\
\hline movw \$4, \%eax & \# put 16 bit integer 4 in lower 16 bits of eax \\
\hline movb \$4, \%eax & \# put 4 bit integer 4 in lowest 4 bits of eax \\
\hline movl \%esp, \%ebp & \# put the contents of esp into ebp \\
\hline movl (\%esp), \%ebp & \begin{tabular}{l}
\# interpret contents of esp as a memory \\
\# address. Copy the value at that address \\
\# into register ebp
\end{tabular} \\
\hline movl \%esp, (\%ebp) & \begin{tabular}{l}
\# interpret contents of ebp as a memory \\
\# address. Copy the value in esp to \\
\# that address.
\end{tabular} \\
\hline movl \%esp, 4(\%ebp) & \begin{tabular}{l}
) \# interpret contents of ebp as a memory \\
\# address. Add 4 to that address. Copy \\
\# the value in esp to this new address.
\end{tabular} \\
\hline
\end{tabular}

\section*{A few more examples}
call label \# push return address on stack and jump to label ret \# pop return address off stack and jump there \# NOTE: managing other bits of the stack frame \# such as stack and frame pointer must be done \# explicitly
subl \(\$ 4\), \%esp \# subtract 4 from esp. That is, adjust the \# stack pointer to make room for one 32 -bit \# (4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called allocate that will manage heap memory. We will compile and link this in with code generated by the slang compiler. At the x86 level, allocate will expect a header in edi and return a heap pointer in eax.

\section*{Some Jargon VM instructions are "easy" to translate}

Remember: X86 is CISC, so RISC architectures may require more instructions
\begin{tabular}{|c|c|c|}
\hline GOTO Ioc & jmp loc & \\
\hline POP & addl \$4, \%esp & // move stack pointer 1 word \(=4\) bytes \\
\hline PUSH v & subl \$4, \%esp movl \$i, (\%esp) & // make room on top of stack // where i is an integer representing v \\
\hline FST & movl (\%esp), \%edx movl 4(\%edx), \%edx movl \%edx, (\%esp) & \begin{tabular}{l}
//store "a" into edx \\
// load v1, 4 bytes, 1 word, after header \\
// replace "a" with " v 1 " at top of stack
\end{tabular} \\
\hline SND & movl (\%esp), \%edx movl 8(\%edx), \%edx movl \%edx, (\%esp) & \begin{tabular}{l}
//store "a" into edx \\
// vload v2, 8 bytes, 2 words, after header \\
// replace "a" with "v2" at top of stack
\end{tabular} \\
\hline
\end{tabular}


\section*{... while others require more work}


\section*{One possible x86 (32 bit) implementation of MK_PAIR:}
movl \$3, \%edi shr \$16, \%edi, movw \$PAIR, \%di call allocate movl (\%esp), \%edx movl \%edx, 8(\%eax) addl \$4, \%esp movl (\%esp), \%edx movl \%edx, 4(\%eax) movl \%eax, (\%esp)
// construct header in edi
// ... put size in upper 16 bits (shift right)
// ... put type in lower 16 bits of edi
// input: header in ebi, output: "a" in eax
// move "v2" to the heap,
// ... using temporary register edx
// adjust stack pointer (pop "v2")
// move "v1" to the heap
// ... using temporary register edx
// copy value "a" to top of stack

\section*{Left as exercises for you :}

\section*{LOOKUP APPLY RETURN CASE TEST ASSIGN REF} Here's a hint. For things you don't understand, just experiment! OK, you need to pull an address out of a closure and call it. Hmm, how does something similar get compiled from C?
int func ( int (*f)(int) ) \{ return (*f)(17); \} /* pass a function pointer and apply it /*
\begin{tabular}{|c|c|c|c|}
\hline & _func: pushq & \%rbp & \# save frame pointer \\
\hline & mova & \%rsp, \%rbp & \# set frame pointer to stack pointer \\
\hline X86, & subq & \$16, \%rsp & \# make some room on stack \\
\hline 64 bit & movl & \$17, \%eax & \# put 17 in argument register eax \\
\hline & movq & \%rdi, -8(\%rbp) & \# rdi contains the argument f \\
\hline & movl & \%eax, \%edi & \# put 17 in register edi, so f will get it \\
\hline without & callq & *-8(\%rbp) & \# WOW, a computed address for call! \\
\hline -O2 & addq & \$16, \%rsp & \# restore stack pointer \\
\hline & popq & \%rbp & \# restore old frame pointer \\
\hline & ret & & \# restore stack \\
\hline
\end{tabular}

\section*{What about arithmetic?}

Houston, we have a problem....
- It may not be obvious now, but if we want to have automated memory management we need to be able to distinguish between values (say integers) and pointers at runtime.
- Have you ever noticed that integers in SML or Ocaml are either 31 (or 63) bits rather than the native 32 (or 64) bits?
- That is because these compilers use a the least significant bit to distinguish integers (bit = 1) from pointers (bit =0).
- OK, this works. But it may complicate every arithmetic operation!
- This is another exercise left for you to ponder

\section*{Lecture 14 Assorted Topics}
1.Stacks are slow, registers are fast
1. Stack frames still needed ...
2. ... but try to shift work into registers
3. Caller/callee save/restore policies
4. Register spilling
2.Simple optimisations
1. Peep hole (sliding window)
2. Constant propagation
3. Inlining
3.Representing objects (as in OOP)
1. At first glance objects look like a closure containing multiple function (methods) ...
2. ... but complications arise with method dispatch 4.Implementing exception handling on the stack

\section*{Stack vs regsisters}


\section*{Stack-oriented:}
(+) argument locations is implicit, so instructions are smaller.
(---) Execution is slower

Register-oriented:
(+++) Execution MUCH faster
\((-)\) argument location is
explicit, so instructions are larger

\section*{Main dilemma : registers are fast, but are fixed in number. And that number is rather small.}
- Manipulating the stack involves RAM access, which can be orders of magnitude slower than register access (the "von Neumann Bottleneck")
- Fast registers are (today) a scarce resource, shared by many code fragments
- How can registers be used most effectively?
- Requires a careful examination of a program's structure
- Analysis phase: building data structures (typically directed graphs) that capture definition/use relationships
- Transformation phase : using this information to rewrite code, attempting to most efficiently utilise registers
- Problem is NP-complete
- One of the central topics of Part II Optimising Compilers.
- Here we focus only on general issues : calling conventions and register spilling

\section*{Caller/callee conventions}
- Caller and callee code may use overlapping sets of registers
- An agreement is needed concerning use of registers
- Are some arguments passed in specific registers?
- Is the result returned in a specific register?
- If the caller and callee are both using a set of registers for "scratch space" then caller or callee must save and restore these registers so that the caller's registers are not obliterated by the callee.
- Standard calling conventions identify specific subsets of registers as "caller saved" or "callee saved"
- Caller saved: if caller cares about the value in a register, then must save it before making any call
- Callee saved: The caller can be assured that the callee will leave the register intact (perhaps by saving and restoring it)

\section*{Another C example. X86, 64 bit, with gcc}
\begin{tabular}{lll} 
& \multicolumn{2}{c}{ caller: } \\
& pushq & \%rbp \\
& movq & \%rsp, \%rbp \# save frame pointer new frame pointer
\end{tabular}

\section*{Regsiter spilling}
- What happens when all registers are in use?
- Could use the stack for scratch space ...
- ... or (1) move some register values to the stack, (2) use the registers for computation, (3) restore the registers to their original value
- This is called register spilling

\section*{Simple optimisations. Inline expansion}
```

fun f(x) =x + 1
fun g(x) = x - 1

```
.."
..
fun \(h(x)=f(x)+g(x)\)
inline \(f\) and \(g\)
fun \(f(x)=x+1\)
fun \(g(x)=x-1\)
.."
...
fun \(h(x)=(x+1)+(x-1)\)
(+) Avoid building activation records at runtime
(+) May allow further optimisations
(-) May lead to "code bloat" (apply only to functions with "small" bodies?)

Question: if we inline all occurrences of a function, can we delete its definition from the code?
What if it is needed at link time?

\section*{Be careful with variable scope}

Inline g in h
```

let val x = 1
fun g(y) = x + y
fun h(x)=g(x) + 1
in
h(17)
end

```

What kind of care might be needed will depend on the representation level of the Intermediate code involved.
```

let val x = 1
fun g(y) = x + y
fun h(x) = x + y + 1
in
h(17)
end

```
let val \(x=1\)
    fun \(g(y)=x+y\)
    fun \(h(z)=x+z+1\)
in
    h(17)
end

\section*{(b) Constant propagation, constant folding}
```

let x = 2
let y = x - 1
let z = y * 17

```
\[
\begin{aligned}
& \text { let } x=2 \\
& \text { let } y=2-1 \\
& \text { let } z=y * 17
\end{aligned}
\]
\[
\text { let } x=2
\]
\[
\text { let } y=1
\]
\[
\text { let } z=y * 17
\]
let \(x=2\)
let \(y=1\)
let \(\mathbf{z}=1 * 17\)
\[
\begin{array}{|l|}
\hline \text { let } x=2 \\
\text { let } y=1 \\
\text { let } z=17 \\
\hline
\end{array}
\]


\section*{(c) peephole optimisation}

\section*{Peephole Optimization}

\author{
W. M. McKeeman
}

Stanford University, Stanford, California
Communications of the ACM, July 1965

Example 1. Source code:
\[
\begin{aligned}
& X:=Y \\
& Z:=X+Z
\end{aligned}
\]

Compiled code:
LDA Y load the accumulator from \(Y\) STA \(X\) store the accumulator in \(X\) LDA X load the accumulator from X ADD Z add the contents of \(Z\) STA Z store the accumulator in Z

Results for syntax-directed code generation.

\section*{peephole optimisation}

\section*{... code sequence ...}
\(\square\)
Sweep a window over the code sequence looking for instances of simple code patterns that can be rewritten to better code ... (might be combined with constant folding, etc, and employ multiple passes)
```

Examples
-- eliminate useless combinations (push 0; pop)
-- introduce machine-specific instructions
-- improve control flow. For example: rewrite
"GOTO L1 ... L1: GOTO L2"
to
"GOTO L2 ... L1 : GOTO L2")

```

\section*{gcc example. \\ -O<m> turns on optimisation to level m}

\section*{g.c}
int h(int n) \{ return ( \(0<n\) ) ? \(\mathrm{n}: 101\); \}
int g(int n) \{ return 12 * h(n + 17); \}

\section*{g.s (fragment)}
gcc -O2 -S -c g.c
.cfi_startproc pushq \%rbp
movq \%rsp, \%rbp
addl \$17, \%edi
imull \$12, \%edi, \%ecx
testl \%edi, \%edi
movl \$1212, \%eax
cmovgl \%ecx, \%eax popq \%rbp
ret

\section*{Wait. What happened to the call to h???}
cfi_endproc

\section*{gcc example \((-0<m>\) turns on optimisation \()\)}

\section*{g.c}
int h(int n) \{ return ( \(0<n\) ) ? n: 101; \} int g(int n) \{ return 12 * \(\mathrm{h}(\mathrm{n}+17)\); \}

The compiler must have done something similar to this:
```

int g(int n) { return 12 * h(n + 17); }

```
    int g(int n\() \quad\{\) int \(\mathrm{t}:=\mathrm{n}+17\); return 12 * \(\mathrm{h}(\mathrm{t})\); \}
int g(int n) \{ int \(\mathrm{t}:=\mathrm{n}+17\); return 12 *( \((0<\mathrm{t})\) ? \(\mathrm{t}: 101\) ); \} \(\rightarrow\)
int g(int n\()\) \{ int \(\mathrm{t}:=\mathrm{n}+17\); return \((0<\mathrm{t})\) ? 12 * \(\mathrm{t}: 1212\); \} \(\rightarrow\)...

\section*{New Topic: OOP Objects (single inheritance)}
let start := 10
```

    class Vehicle extends Object {
        var position := start
    method move(int x) = {position := position + x}
    }
    class Car extends Vehicle {
        var passengers := 0
        method await(v : Vehicle) =
            if (v.position < position)
        then v.move(position - v.position)
        else self.move(10)
    }
    class Truck extends Vehicle {
        method move(int x) =
            if }x<=55\mathrm{ then position:= position +x
                        method override
    }
    var t:= new Truck
    varc:= new Car
    var v : Vehicle:= c
    in
c.passengers := 2;
c.move(60);
v.move(70);
c.await(t)
end

## Object Implementation?

- how do we access object fields?
- both inherited fields and fields for the current object?
- how do we access method code?
- if the current class does not define a particular method, where do we go to get the inherited method code?
- how do we handle method override?
- How do we implement subtyping ("object polymorphism")?
- If $B$ is derived from $A$, then need to be able to treat a pointer to a $B$-object as if it were an $A$-object.


## Another OO Feature

- Protection mechanisms
- to encapsulate local state within an object, Java has "private" "protected" and "public" qualifiers
- private methods/fields can't be called/used outside of the class in which they are defined
- This is really a scope/visibility issue! Frontend during semantic analysis (type checking and so on), the compiler maintains this information in the symbol table for each class and enforces visibility rules.


## Object representation



NB: a compiler typically generates methods with an extra argument representing the object (self) and used to access object data.

## Inheritance ("pointer polymorphism")



Note that a pointer to a B object can be treated as if it were a pointer to an A object!

## Method overriding



## Static vs. Dynamic

- which method to invoke on overloaded polymorphic types?



## Dynamic dispatch implemented with vtables

A pointer to a class $C$ object can be treated as a pointer to a class A object


$$
\begin{aligned}
& \text { class } c * c=\ldots ; \\
& \operatorname{class} A * a=c ; \\
& a->m 2(3) ;
\end{aligned}
$$

*(a->vtable[1])(a, 3);

## Topic 1 : Exceptions (informal description)

## e handle f

## raise e

If expression e evaluates "normally" to value v , then $v$ is the result of the entire expression.

Otherwise, an exceptional value $v$ ' is "raised" in the evaluation of $e$, then result is ( $f$ v')

Evaluate expression e to value $v$, and then raise $v$ as an exceptional value, which can only be "handled".

## Viewed from the call stack



Call stack just before evaluating code for
e handle f

Push a special frame for the handle
"raise $v$ " is encountered while evaluating a function body associated with top-most frame
"Unwind" call stack. Depending on language, this may involve some "clean up" to free resources.

## Possible pseudo-code implementation

## e handle f

let fun _h27 () =
build special "handle frame" save address of $f$ in frame;
... code for e ...
return value of e
in _h27 () end

## raise e

... code for e ...
save v , the value of e ; unwind stack until first
fp found pointing at a handle frame; Replace handle frame with frame for call to (extracted) f using $v$ as argument.

## Lecture 15

## Automating run-time memory management

-Managing the heap
-Garbage collection

- Reference counting
- Mark and sweep
- Copy collection
- Generational collection

> Read Chapter 12 of
> Basics of Compiler Design
> (T. Mogensen)

## Explicit (manual) memory management

- User library manages memory; programmer decides when and where to allocate and deallocate
- void* malloc(long n)
- void free(void *addr)
- Library calls OS for more pages when necessary
- Advantage: Gives programmer a lot of control.
- Disadvantage: people too clever and make mistakes. Getting it right can be costly. And don't we want to automate-away tedium?
- Advantage: With these procedures we can implement memory management for "higher level" languages ;-)


## Memory Management

- Many programming languages allow programmers to (implicitly) allocate new storage dynamically, with no need to worry about reclaiming space no longer used.
- New records, arrays, tuples, objects, closures, etc.
- Java, SML, OCaml, Python, JavaScript, Python, Ruby, Go, Swift, SmallTalk, ...
- Memory could easily be exhausted without some method of reclaiming and recycling the storage that will no longer be used.
- Often called "garbage collection"
- Is really "automated memory management" since it deals with allocation, de-allocation, compaction, and memory-related interactions with the OS.

Automation is based on an approximation : if data can be reached from a root set, then it is not "garbage"


Type information required (pointer or not), some kind of "tagging" needed.

## ... Identify Cells Reachable From Root Set...



## ... reclaim unreachable cells



## But How? Two basic techniques, and many variations

- Reference counting : Keep a reference count with each object that represents the number of pointers to it. Is garbage when count is 0 .
- Tracing : find all objects reachable from root set. Basically transitive close of pointer graph.

[^0]
## Reference Counting, basic idea:

- Keep track of the number of pointers to each object (the reference count).
- When Object is created, set count to 1.
- Every time a new pointer to the object is created, increment the count.
- Every time an existing pointer to an object is destroyed, decrement the count
- When the reference count goes to 0 , the object is unreachable garbage


## Reference counting can't detect cycles!



- Memory leakage when have cycles in data.
- Pros
- Incremental (no long pauses to collect...)


## Mark and Sweep

- A two-phase algorithm
- Mark phase: Depth first traversal of object graph from the roots to mark live data
- Sweep phase: iterate over entire heap, adding the unmarked data back onto the free list


## Copying Collection

- Basic idea: use 2 heaps
- One used by program
- The other unused until GC time
- GC:
- Start at the roots \& traverse the reachable data
- Copy reachable data from the active heap (fromspace) to the other heap (to-space)
- Dead objects are left behind in from space
- Heaps switch roles


## Copying Collection



## Copying GC

- Pros
- Simple \& collects cycles
- Run-time proportional to \# live objects
- Automatic compaction eliminates fragmentation
- Cons
- Twice as much memory used as program requires
- Usually, we anticipate live data will only be a small fragment of store
- Allocate until 70\% full
- From-space $=70 \%$ heap; to-space $=30 \%$
- Long GC pauses = bad for interactive, real-time apps


## OBSERVATION: for a copying garbage collector

- $80 \%$ to $98 \%$ new objects die very quickly.
- An object that has survived several collections has a bigger chance to become a long-lived one.
- It's a inefficient that long-lived objects be copied over and over.



## IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas containing older objects less often than the younger ones.


Diagram from Andrew Appel's Modern Compiler Implementation

## Other issues...

- When do we promote objects from young generation to old generation
- Usually after an object survives a collection, it will be promoted
- Need to keep track of older objects pointing to newer ones!
- How big should the generations be?
- When do we collect the old generation?
- After several minor collections, we do a major collection
- Sometimes different GC algorithms are used for the new and older generations.
- Why? Because the have different characteristics
- Copying collection for the new
- Less than 10\% of the new data is usually live
- Copying collection cost is proportional to the live data
- Mark-sweep for the old


## LECTURE 16 <br> Bootstrapping a compiler

- Compilers compiling themselves!
- Read Chapter 13 Of
- Basics of Compiler Design
- by Torben Mogensen
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/


## Bootstrapping. We need some notation . . .



An application called app written in language $\mathbf{A}$


An interpreter or VM for language A Written in language B

## A <br> mch <br> A machine called mch running language A natively.

## Simple Examples

| hello |
| :---: |
| x86 |
| x86 |
| M1 |



## Tombstones



This is an application called trans that translates programs in language A into programs in language $\mathbf{B}$, and it is written in language $\mathbf{C}$.

## Ahead-of-time compilation



Thanks to David Greaves for the example.

## Of course translators can be translated



Translator foo. $\mathbf{B}$ is produced as output from trans when given foo.A as input.

## Our seemingly impossible task



We have just invented a really great new language $\mathbf{L}$ (in fact we claim that " $L$ is far superior to C++"). To prove how great $L$ is we write a compiler for $\mathbf{L}$ in $\mathbf{L}$ (of course!). This compiler produces machine code B for a widely used instruction set (say B = x86).

Furthermore, we want to compile our compiler so that it can run on a machine running $\mathbf{B}$. Our compiler is written in L! How can we compiler our compiler?

There are many many ways we could go about this task. The following slides simply sketch out one plausible route to fame and fortune.

# Step 1 <br> Write a small interpreter (VM) for a small language of byte codes 

MBC = My Byte Codes


The zoom machine!

Step 2 Pick a small subset $S$ of $L$ and
write a translator from $S$ to MBC


Write comp_1.cpp by hand. (It sure would be nice if we could hide the fact that this is written is $\mathrm{C}++$.)

Compiler comp_1.B is produced as output from gcc when comp_1.cpp is given as input.

## Step 3 <br> Write a compiler for $L$ in $S$



Write a compiler comp_2.S for the full language $\mathbf{L}$, but written only in the sub-language $\mathbf{S}$.

Compile comp_2.S using comp_1.B to produce comp_2.mbc

Step 4
Write a compiler for $L$ in $L$, and then compile it!


## Putting it all together

We wrote these compilers and the MBC VM.


## Step 5 : Cover our tracks and leave the world mystified and amazed!

Our L compiler download site contains only three components:
MBC
zoom
$C++$

comp_2.mbc is a just file of bytes. We give it the mysterious name such as mr-e


Our instructions:

1. Use gcc to compile the zoom interpreter
2. Use zoom to run mr-e with input comp.L to output the compiler comp.B. MAGIC!

## Another example (Mogensen, Page 285)

## Solving a different problem.

## You have:

(1) An ML compiler on ARM. Who knows where it came from.
(2) An ML compiler written in ML, generating x86 code.

You want:
An ML compiler generating x86 and running on an x86 platform.



[^0]:    For a very interesting (non-examinable) treatment of this subject see
    A Unified Theory of Garbage Collection. David F. Bacon, Perry Cheng, V.T. Rajan. OOPSLA 2004.

    In that paper reference counting and tracing are presented as "dual" approaches, and other techniques are hybrids of the two.

