
Cloud Computing

Large-scale Resource Management
Eva Kalyvianaki

ek264@cam.ac.uk

Contents
1. Mesos: A Platform for Fine-Grained Resource Sharing in Data Center

by B. Hindman, A. Knwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S.
Shenker, I. Stoica from University of California, Berkeley, NSDI 2011.

1. Omega: flexible, scalable schedulers for large compute clusters
by Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek and John
Wilkes, EuroSys 2013.

2

Background
§ Data centers are built from clusters of commodity hardware

§ These clusters run a diverse set of applications: e.g.,
MapReduce, Data Streaming, Storm, S4, etc

§ Each application has its own execution framework

§ Multiplexing a cluster between frameworks improves
resources utilisation and so reduces costs

3

Problem Statement
§ It is very difficult and challenging for a single framework

(application-specific) to efficiently manage the resources of
clusters

§ The aim of the Mesos work is to be able to run multiple
frameworks in a single cluster in order to:
§ maximise utilisation
§ share data between frameworks

4

Common solutions for sharing clusters
1. Statically partition the

cluster and run one
framework (or VMs) per
partition. Disadvantages:
1. Low utilisation
2. Rigid partitioning which

might not match the
real-time changing
application demands

3. Mismatch between the
allocation granularity of
static partitioning and
current application
frameworks such as
Hadoop.

5

Mesos
§ Challenges and Goals:
1. High utilisation
2. Support diverse frameworks: each framework will have
different scheduling needs

3. Scalability: the scheduling system must scale to clusters of
1,000s of nodes running 100s of jobs with 1,000,000s of tasks

4. Reliability: because all applications would depend on Mesos, the
system must be fault-tolerant and highly available.

§ Mesos: a thin resource sharing layer that enables fine-
grained sharing across diverse cluster computing
frameworks, by giving frameworks a common interface for
accessing cluster resources.

6

Design Elements
1. Fine-grained sharing:

§ Allocation at the level of tasks within a job
§ Improves utilisation, latency and data locality

2. Resource offers:
§ Offer available resources to frameworks
§ Simple, scalable application controlled scheduling mechanism

7

Design Element 1, Fine-Grained Sharing

8

Design Element 2, Resource Offers

9

§ Mesos proposes and uses Resource Offers:
Offer available resources to frameworks and let them pick which
resources to use and which tasks to launch

§ Advantage: keeps Mesos simple, expandable to future
frameworks

§ Disadvantage: Decentralised solutions are not optimal

Mesos Architecture

10

Mesos Architecture, Terminology

11

§ Mesos master: fine-grained sharing across frameworks
§ Mesos slave on each node
§ Frameworks that run tasks on slave nodes
§ Framework schedulers

§ “While the Mesos master determines how many resources
to offer to each framework, the frameworks’ schedulers
select which of the offered resources to use”.

Mesos Resource Offer Example

12

Mesos Resource Offers

13

§ Frameworks can reject offers when these do not satisfy
their constraints in order to wait for ones that do.

§ But, a framework might have to wait for a long time until it
receives an offer that satisfies its constraints and Mesos
might be sending these offers to many frameworks à time
consuming.

§ So, Mesos frameworks set their own filters; they specify
offers that will always be rejected.

Mesos Architecture Details

14

§ Resource Allocation Module
1. Fair Sharing based on a generalisation of max-min fairness
for multiple resources

2. Strict priorities
3. Mesos can also (revoke) kill tasks when a greedy framework
uses up lots of resources for a long time. Mesos allows the
framework a greedy period.

§ Isolation is achieved using Linux Containers

Mesos Architecture Details (con’t)

15

§ Scalable and Robust Resource Offers
§ Use of filters: “only offer nodes from list L”, “only offer
nodes with at least R resources free”, these can be
evaluated quickly

§ Mesos counts resources offered to a framework towards its
allocation of the cluster

§ If a framework takes a long time to respond, Mesos
withdraws the offers and asks another framework

Mesos Evaluation

16

§ Amazon EC2 with 92 Mesos nodes
§ A mix of Frameworks:
1. Hadoop running a mix of small and large jobs based on a
Facebook workload

2. A Hadoop instance running a set of large batch jobs
3. Spark running machine learning jobs
4. Torque running MPI jobs

5. Mesos should: achieve higher utilisation and all jobs
should finish at least as fast as in the static partitioning

Mesos Performance For all Frameworks

17

Mesos Performance vs Static Partitioning

18

Omega: flexible, scalable schedulers for large
compute clusters

§ Challenges:
§ Google maintains different data centers around the world
§ Clusters and workloads are growing in size
§ Diverse workloads
§ Growing job arrival rates

§ Need for a scalable scheduler to tackle these
challenges

19

Existing Approaches

20

Existing Approach, Mesos revised

21

Disadvantages:
§ Pessimistic Concurrency

Control: Mesos avoids conflicts
by offering a given resource to
one framework at-a-time.
Mesos chooses the order and
the sizes of the offers. One
framework holds the lock of the
resources for the duration of
the decision à slow.

§ A framework does not have
access to all the cluster state.
So, it cannot support
preemption or getting all
resources.

Omega: Shared State, Overview

22

Cell State: a resilient master
copy of the resource
allocations of the cluster

No centralised scheduler. Each
framework maintains its own
scheduler. Each scheduler has its
own private, local, frequently-
updated copy of the cell state
which uses to make decisions.

Omega Shared-state Scheduling, Steps

1. A framework’s scheduler makes a decision
2. Updates the shared cell state copy in an atomic
commit

3. At most one such commit will succeed
4. The scheduler resyncs its local copy and if needed re-
schedules

23

Omega Scheduling, Remarks
§ Omega schedulers operation in parallel
§ Schedulers typically do incremental transactions to avoid
starvation

§ Schedulers agree on common scale for expressing the relative
importance of jobs

§ Performance viability of the shared-state approach is
determined by the frequency at which transactions fail and
their costs!!!

§ “Our performance evaluation of the Omega model using both
lightweight simulations with synthetic workloads, and high-
fidelity, trace-based simulations of production workloads at
Google, shows that optimistic concurrency over shared state is
a viable, attractive approach to cluster scheduling. “ 24

Material
1. Mesos: A Platform for Fine-Grained Resource Sharing in Data Center

by B. Hindman, A. Knwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S.
Shenker, I. Stoica from University of California, Berkeley, NSDI 2011.
Sections 1-3.5, 6-6.1.2

2. Omega: flexible, scalable schedulers for large compute clusters
By Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek and John
Wilkes, EuroSys 2013.
Sections 1-3, 8

25

