
Peter R. Pietzuch
prp@doc.ic.ac.uk

Integrating Scale Out and Fault Tolerance
in Stream Processing using

Operator State Management

with Raul Castro Fernandez*
Matteo Migliavacca+ and Peter Pietzuch*

*Imperial College London, +Kent Univerisity

Big data …

… in numbers:
– 2.5 billions on gigabytes of data every day (source IBM)

– LSST telescope, Chile 2016, 30 TB nightly

… come from everywhere:
– web feeds, social networking
– mobile devices, sensors, cameras
– scientific instruments
– online transactions (public and private sectors)

… have value:
– Global Pulse forum for detecting human crises internationally
– real-time big data analytics in UK £25 billions à £216 billions in 2012-17
– recommendation applications (LinkedIn, Amazon)

2

E processing infrastructure for big data analysis

A black-box approach for big data analysis
• users issue analysis queries with real-time semantics
• streams of data updates, time-varying rates, generated in real-time
• streams of result data
ü processing in near real-time

3

time

Stream
Processing

System

• queries consist of operators (join, map, select, ..., UDOs)
• operators form graphs
• operators process streams of tuples on-the-fly
• operators span nodes

Distributed Stream Processing System

4

Elastic DSPSs in the Cloud

Real-time big data analysis challenge traditional DSPS:
? what about continuous workload surges?
? what about real-time resource allocation to workload variations?
? keeping the state correct forstateful operators?

Massively scalable , cloud-based DSPSs [SIGMOD 2013]
1. gracefully handles stateful operators’ state
2. operator state management for combined scale out and

fault tolerance
3. SEEP system and evaluation
4. related work
5. future research directions

5

Stream Processing in the Cloud
• clouds provide infinite pools of resources

6

? How do we build a stream processing platform in the Cloud?

• Failure resilience:
– active fault-tolerance needs 2x resources
– passive fault-tolerance leads to long

recovery times

• Intra-query parallelism:
– provisioning for workload peaks

unnecessarily conservative

E dynamic scale out:
increase resources
when peaks appear

E hybrid fault-tolerance:
low resource overhead
with fast recovery

E Both mechanisms must support stateful operators

Stateless vs Stateful Operators

7

stateless:
ü failure recovery
ü scale out

filter
> 5

filterfilter

counter

countercounter

stateful:
× failure recovery
× scale out

(the, 10)
(with, 5) (the, 10)

(with, 5)the with the

(the, 2) !=12
(with, 1) !=6

7 1 5 9 97

9
9

(the, …)

(with, …)
with

operator state: a summary of past tuples’ processing

State Management

8

processing state: (summary of past tuples’ processing)

routing state: (routing of tuples)

buffer state: (tuples)

E operator state is an external entity managed by the DSPS
E primitives for state management
E mechanisms (scale out, failure recovery) on top of primitives
E dynamic reconfiguration of the dataflow graph

A

B

C

State Management Primitives

9

takes snapshot of state and
makes it externally available

E restore

E backup

A
A

B
B

E checkpoint

E partition

moves copy of state from
one operator to another

splits state in a semantically correct
fashion for parallel processing

State Management Scale Out, Stateful Ops

10

A

A

periodically, stateful operators
checkpoint and back up state
to designated upstream
backup node, in memory

A

A

sca
le

ou
t A

backup node already
has state of operator
to be parallelised

A’
new operator

A

A’
A

A’

E checkpoint

E backup

E partition

E restore upstream ops send
unprocessed tuples
to update
checkpointed state

B

E How do we partition stateful operators?

Partitioning Stateful Operators
• 1. Processing state modeled as (key, value) dictionary

• 2. State partitioned according to key k of tuples

• 3. Tuples will be routed to correct operator as of k

11

t=1, key=c, “computer”
t=3, key=c, “cambridge”

t=3, (c, computer:1, cambridge:1)
t=1, “computer”
t=2, “laboratory”
t=3, “cambridge” splitter

counter

t=2, key=l, “laboratory”

(a à k), A
(l à z), A’

t=2, (l, laboratory:1)

counter

A

A’routing
state

buffer state

processing state

Passive Fault-Tolerance Model

• recreate operator state by replaying tuples after failure:
– upstream backup: sends acks upstream for tuples processed downstream

• may result in long recovery times due to large buffers:
– system is reprocessing streams after failure è inefficient

12

ACKs

data
A B C D

Recovering using State Management (R+SM)

13

A
A

Acha
ng

e r
ou

tin
g

sta
te

new instance

• Benefit from state management primitives:
– use periodically backed up state on upstream node to recover faster
– trim buffers at backup node
– same primitives as in scale out

A

A

state is restored and unprocessed
tuples are replayed from buffer

E same primitives for parallel recovery

A
A’

State Management in Action: SEEP

14

(1)

(2)

(1) dynamic Scale Out: detect bottleneck , add new parallelised operator

(2) failure Recovery: detect failure, replace with new operator

EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

recovery
coordinator

Dynamic Scale Out: Detecting bottlenecks

CPU
utilisation

report

35%
85%

30%

logical infrastructure
view

35% 85% 30%
bottleneck
detector

15

The VM Pool: Adding operators

• problem: allocating new VMs takes minutes...

16

bottleneck
detector

monitoring
information

Cloud
provider

VM1 VM2virtual machine pool

provision VM from cloud
(order of mins)

add new VM to pool

fault detector
VM2

VM3 (dynamic pool size)

Experimental Evaluation
• Goals:

– investigate effectiveness of scale out mechanism

– recovery time after failure using R+SM
– overhead of state management

• Scalable and Elastic Event Processing (SEEP):
– implemented in Java; Storm-like data flow model

• Sample queries + workload
– Linear Road Benchmark (LRB) to evaluate scale out [VLDB’04]

• provides an increasing stream workload over time

• query with 8 operators, 3 are stateful; SLA: results < 5 secs

– Windowed word count query (2 ops) to evaluate fault tolerance

• induce failure to observe performance impact

• Deployment on Amazon AWS EC2
– sources and sinks on high-memory double extra large instances

– operators on small instances

17

Scale Out: LRB Workload

18

0

1

2

3

4

5

6

7

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Tu
pl

es
/s

 (x
10

0K
)

Nu
m

be
r o

f V
M

s

Time (seconds)

Throughput (tuples/s)
Input rate (tuples/s)

Num. of VMs

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

La
te

nc
y

(m
illi

se
co

nd
s)

Nu
m

be
r o

f V
Ms

Time (seconds)

Latency
Num. of VMs

scales to load factor L=350
with 50 VMs on Amazon EC2

(automated query parallelisation,
scale out policy at 70%)

L=512 highest result [VLDB’12]

(hand-crafted query on cluster)

scale out leads to latency peaks,
but remains within LRB SLA

E SEEP scales out to increasing workload in the Linear Road Benchmark

Conclusions

19

• Stream processing will grow in importance:
– handling the data deluge
– enables real-time response and decision making

• Integrated approach for scale out and failure recovery:
– operator state an independent entity
– primitives and mechanisms

• Efficient approach extensible for additional operators:
– effectively applied to Amazon EC2 running LRB
– parallel recovery

