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Big data … 

… in numbers: 
– 2.5 billions on gigabytes of data every day (source IBM)

– LSST telescope, Chile 2016, 30 TB nightly

… come from everywhere: 
– web feeds, social networking
– mobile devices, sensors, cameras
– scientific instruments
– online transactions (public and private sectors)

… have value:
– Global Pulse forum for detecting human crises internationally
– real-time big data analytics in UK £25 billions à £216 billions in 2012-17
– recommendation applications (LinkedIn, Amazon)
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E processing infrastructure for big data analysis 



A black-box approach for big data analysis 
• users issue analysis queries with real-time semantics
• streams of data updates, time-varying rates, generated in real-time  
• streams of result data 
ü processing in near real-time 
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• queries consist of operators (join, map, select, ..., UDOs)
• operators form graphs
• operators process streams of tuples on-the-fly
• operators span nodes 

Distributed Stream Processing System
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Elastic DSPSs in the Cloud 

Real-time big data analysis challenge traditional DSPS:
? what about continuous workload surges?
? what about real-time resource allocation to workload variations?
? keeping the state correct forstateful operators?

Massively scalable , cloud-based DSPSs [SIGMOD 2013]
1. gracefully handles stateful operators’ state
2. operator state management for combined scale out and 

fault tolerance
3. SEEP system and evaluation  
4. related work
5. future research directions
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Stream Processing in the Cloud
• clouds provide infinite pools of resources
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? How do we build a stream processing platform in the Cloud?

• Failure resilience:
– active fault-tolerance needs 2x resources
– passive fault-tolerance leads to long 

recovery times

• Intra-query parallelism:
– provisioning for workload peaks 

unnecessarily conservative

E dynamic scale out: 
increase resources 
when peaks appear

E hybrid fault-tolerance: 
low resource overhead 
with fast recovery

E Both mechanisms must support stateful operators



Stateless vs Stateful Operators
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ü scale out
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operator state:  a summary of past tuples’ processing



State Management
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processing state: (summary of past tuples’ processing)

routing state: (routing of tuples)

buffer state: (tuples)

E operator state is an external entity managed by the DSPS
E primitives for state management
E mechanisms (scale out, failure recovery) on top of primitives
E dynamic reconfiguration of the dataflow graph
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State Management Primitives
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takes snapshot of state and 
makes it externally available

E restore

E backup

A
A

B
B

E checkpoint

E partition

moves copy of state from 
one operator to another

splits state in a semantically correct 
fashion for parallel processing



State Management Scale Out, Stateful Ops
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periodically, stateful operators 
checkpoint and back up state 
to designated upstream 
backup node, in memory
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backup node already 
has state of operator 
to be parallelised
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new operator
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E checkpoint

E backup

E partition

E restore upstream ops send
unprocessed tuples
to update 
checkpointed state
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E How do we partition stateful operators?



Partitioning Stateful Operators
• 1. Processing state modeled as (key, value) dictionary

• 2. State partitioned according to key k of tuples

• 3. Tuples will be routed to correct operator as of k
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t=1, key=c, “computer”
t=3, key=c, “cambridge”

t=3, (c, computer:1, cambridge:1)
t=1, “computer”
t=2, “laboratory”
t=3, “cambridge” splitter

counter

t=2, key=l, “laboratory”

(a à k), A
(l à z), A’

t=2, (l, laboratory:1)
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Passive Fault-Tolerance Model

• recreate operator state by replaying tuples after failure:
– upstream backup: sends acks upstream for tuples processed downstream

• may result in long recovery times due to large buffers:
– system is reprocessing streams after failure è inefficient
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Recovering using State Management (R+SM)

13

A
A

Acha
ng

e r
ou

tin
g

sta
te

new instance

• Benefit from state management primitives:
– use periodically backed up state on upstream node to recover faster
– trim buffers at backup node
– same primitives as in scale out

A

A

state is restored and unprocessed 
tuples are replayed from buffer

E same primitives for parallel recovery

A
A’



State Management in Action: SEEP
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(1)

(2)

(1) dynamic Scale Out: detect bottleneck , add new parallelised operator

(2) failure Recovery: detect failure, replace with new operator

EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

recovery
coordinator



Dynamic Scale Out: Detecting bottlenecks
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The VM Pool: Adding operators

• problem: allocating new VMs takes minutes...
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bottleneck
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Cloud 
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VM1 VM2virtual machine pool

provision VM from cloud 
(order of mins)

add new VM to pool

fault detector
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Experimental Evaluation
• Goals:

– investigate effectiveness of scale out mechanism

– recovery time after failure using R+SM
– overhead of state management

• Scalable and Elastic Event Processing (SEEP):
– implemented in Java; Storm-like data flow model

• Sample queries + workload
– Linear Road Benchmark (LRB) to evaluate scale out [VLDB’04]

• provides an increasing stream workload over time 

• query with 8 operators, 3 are stateful; SLA: results < 5 secs

– Windowed word count query (2 ops) to evaluate fault tolerance

• induce failure to observe performance impact

• Deployment on Amazon AWS EC2
– sources and sinks on high-memory double extra large instances

– operators on small instances
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Scale Out: LRB Workload
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scales to load factor L=350 
with 50 VMs on Amazon EC2

(automated query parallelisation, 
scale out policy at 70%)

L=512 highest result [VLDB’12]

(hand-crafted query on cluster)

scale out leads to latency peaks, 
but remains within LRB SLA

E SEEP scales out to increasing workload in the Linear Road Benchmark



Conclusions
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• Stream processing will grow in importance:
– handling the data deluge
– enables real-time response and decision making

• Integrated approach for scale out and failure recovery:
– operator state an independent entity 
– primitives and mechanisms

• Efficient approach extensible for additional operators:
– effectively applied to Amazon EC2 running LRB
– parallel recovery 


