Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management

with Raul Castro Fernandez*
Matteo Migliavacca+ and Peter Pietzuch*
*Imperial College London, +Kent University
Big data ...

... in numbers:
- 2.5 billions on gigabytes of data every day (source IBM)
- LSST telescope, Chile 2016, 30 TB nightly

... come from everywhere:
- web feeds, social networking
- mobile devices, sensors, cameras
- scientific instruments
- online transactions (public and private sectors)

... have value:
- Global Pulse forum for detecting human crises internationally
- real-time big data analytics in UK £25 billions → £216 billions in 2012-17
- recommendation applications (LinkedIn, Amazon)

processing infrastructure for big data analysis
A black-box approach for big data analysis

- users issue analysis *queries* with real-time semantics
- *streams* of data updates, *time-varying rates*, generated in *real-time*
- *streams of result data*
 - processing in *near real-time*
queries consist of **operators** (join, map, select, ..., UDOs)
operators form graphs
operators process **streams of tuples** on-the-fly
operators span nodes
Elastic DSPSs in the Cloud

Real-time big data analysis challenge traditional DSPS:
? what about continuous workload surges?
? what about real-time resource allocation to workload variations?
? keeping the state correct for stateful operators?

Massively scalable, cloud-based DSPSs [SIGMOD 2013]
1. gracefully handles stateful operators’ state
2. operator state management for combined scale out and fault tolerance
3. SEEP system and evaluation
4. related work
5. future research directions
Stream Processing in the Cloud

Clouds provide infinite pools of resources.

How do we build a stream processing platform in the Cloud?

Intra-query parallelism:
- Provisioning for workload peaks unnecessarily conservative.

Failure resilience:
- Active fault-tolerance needs 2x resources.
- Passive fault-tolerance leads to long recovery times.

- **Dynamic scale out:**
 - Increase resources when peaks appear.

- **Hybrid fault-tolerance:**
 - Low resource overhead with fast recovery.

Both mechanisms must support **stateful** operators.
Stateless vs Stateful Operators

operator state: a summary of past tuples’ processing

stateless:
- ✓ failure recovery
- ✓ scale out

stateful:
- ✗ failure recovery
- ✗ scale out
processing state: (summary of past tuples’ processing)

routing state: (routing of tuples)

buffer state: (tuples)

operator state is an external entity managed by the DSPS
primitives for state management
mechanisms (scale out, failure recovery) on top of primitives
dynamic reconfiguration of the dataflow graph
State Management Primitives

- **checkpoint**: Takes snapshot of state and makes it externally available.
- **backup**: Moves copy of state from one operator to another.
- **restore**: Splits state in a semantically correct fashion for parallel processing.
State Management Scale Out, Stateful Ops

backup node already has state of operator to be parallelised

periodically, stateful operators checkpoint and back up state to designated **upstream backup node**, in memory

upstream ops send unprocessed tuples to update checkpointed state

How do we partition stateful operators?
Partitioning Stateful Operators

1. Processing state modeled as (key, value) dictionary
2. State partitioned according to key k of tuples
3. Tuples will be routed to correct operator as of k

```
t=1, key=c, "computer"
t=3, key=c, "cambridge"
t=3, (c, computer:1, cambridge:1)
t=1, "computer"
t=2, "laboratory"
t=3, "cambridge"```

```
t=2, key=l, "laboratory"
t=2, (l, laboratory:1)
```

Routing state:
(a \rightarrow k), A
(l \rightarrow z), A'

Buffer state:
t=1, key=c, "computer"
t=3, key=c, "cambridge"
recreate operator state by replaying tuples after failure:
- **upstream backup**: sends acks upstream for tuples processed downstream

may result in long recovery times due to large buffers:
- system is reprocessing streams after failure \(\Rightarrow\) inefficient
Recovering using State Management (R+SM)

Benefit from state management primitives:

- use periodically backed up state on upstream node to recover faster
- trim buffers at backup node
- same primitives as in scale out

state is restored and unprocessed tuples are replayed from buffer

same primitives for parallel recovery
(1) **dynamic Scale Out**: detect bottleneck, add new parallelised operator

(2) **failure Recovery**: detect failure, replace with new operator
Dynamic Scale Out: Detecting bottlenecks

CPU utilisation report

bottleneck detector

Logical infrastructure view
**The VM Pool: Adding operators**

**problem:** allocating new VMs takes minutes...

---

**Virtual machine pool**

- VM1
- VM2
- VM3

(Dynamic pool size)

**Add new VM to pool**

**Cloud provider**

- Provision VM from cloud (order of mins)
Experimental Evaluation

Goals:
- investigate effectiveness of **scale out** mechanism
- recovery time after failure using **R+SM**
- overhead of **state management**

Scalable and Elastic Event Processing (SEEP):
- implemented in Java; Storm-like data flow model

Sample queries + workload
- **Linear Road Benchmark** (LRB) to evaluate scale out [VLDB’04]
  - provides an increasing stream workload over time
  - query with 8 operators, 3 are stateful; SLA: results < 5 secs
- **Windowed word count query** (2 ops) to evaluate fault tolerance
  - induce failure to observe performance impact

Deployment on Amazon **AWS EC2**
- sources and sinks on high-memory double extra large instances
- operators on small instances
Scale Out: LRB Workload

scales to load factor $L=350$ with 50 VMs on Amazon EC2 (automated query parallelisation, scale out policy at 70%)

$L=512$ highest result [VLDB'12] (hand-crafted query on cluster)

scale out leads to latency peaks, but remains within LRB SLA

SEEP scales out to increasing workload in the Linear Road Benchmark
Conclusions

Stream processing will grow in importance:
- handling the data deluge
- enables real-time response and decision making

Integrated approach for scale out and failure recovery:
- operator state an independent entity
- primitives and mechanisms

Efficient approach extensible for additional operators:
- effectively applied to Amazon EC2 running LRB
- parallel recovery