
Example sheet 5
Graph traversal, path finding

Algorithms—DJW∗—2018/2019

Questions labelled ◦ are warmup questions. Questions labelled ∗ involve more thinking and you are
not expected to tackle them all.

Question 1◦. Read the definitions of directed acyclic graph and tree from lecture notes. Draw an
example of each of the following, or explain why no example exists:
(i) A directed acyclic graph with 8 vertices and 10 edges
(ii) An undirected tree with 8 vertices and 10 edges
(iii) A graph without cycles that is not a tree

Question 2◦. Show that dfs_recurse has running time O(V + E).

Question 3. The algorithms dfs and dfs_recurse (as given in the handout) do not always visit
vertices in the same order. Modify dfs so that they do. Give pseudocode. [Assume that there is an
ordering on vertices, and that v.neighbours returns a sorted list of v’s neighbouring vertices.]

Question 4. Give pseudocode for a function dfs_recurse_path(g, s, t) based on dfs_recurse,
that returns a path from s to t. Modify your function so that it does not visit any further vertices once
it has reached the destination vertex t.

Question 5. Consider a directed graph in which every vertex v is labelled with a real number xv .
For each vertex v, define mv to be the minimum value of xu among all vertices u such that either
u = v or u is reachable via some path from v. Give an O(E +V log V)-time algorithm that computes
mv for all vertices v.

Question 6. Modify bfs_path(g, s, t) to find all shortest paths from s to t.

Question 7 (FS)◦. In a directed graph with edge weights, give a formal proof of the triangle
inequality

d(u, v) ≤ d(u,w) + c(w → v) for all vertices u, v, w with w → v

where d(u, v) is the minimum weight of all paths from u to v (or ∞ if there are no such paths) and
c(w → v) is the weight of edge w → v. Make sure your proof covers the cases where no path exists.

Question 8. There is a missing step in the proof of Dijkstra’s algorithm, as given in the handout.
The proof looks at the state of program execution at the point in time at which some vertex v fails
the assertion on line 9. Call this time t. It uses the equation

ui−1.distance = distance(s to ui−1),

and justifies it by saying “the assertion on line 9 didn’t fail when ui−1 was popped.” Let t ′ be the time
when ui−1 was popped, and explain carefully why ui−1.distance cannot change between t ′ and t.

Question 9 (CLRS-24.3-4). A contractor has written a program that she claims solves the shortest
path problem, on directed graphs with edge weights ≥ 0. The program produces v.distance and
v.come_from for every vertex v in a graph. Give an O(V + E)-time algorithm to check the output of
the contractor’s program. [Hint. Pay attention to the case where some edge weights are zero.]

∗Questions labelled FS are from Dr Stajano. Questions labelled CLRS are from Introduction to Algorithms, 3rd ed. by
Cormen, Leiserson, Rivest and Stein.

1

Question 10. Suppose we have implemented Dijkstra’s algorithm using a priority queue for which
push and decreaskey have running time Θ(1), and popmin has running time Θ(log n) where n is
the number of items in the queue. By constructing a suitable family of graphs, show that Dijsktra’s
algorithm has worst-case running time Ω(E + V log V). You may assume |E | ≥ |V | − 1.

Question 11 (FS). In Section 5.5, we defined M (ℓ)
i j to be the minimum weight among all paths from

i to j that have ℓ or fewer edges, and we derived the recursion

M (1) = W, M (ℓ) = W ⊗ M (ℓ−1) (1)

where Wi j = 0 if i = j, Wi j = weight(i → j) if there is an edge i → j, and Wi j = ∞ otherwise. How
can we define M (0) so that M (1) = W ⊗ M (0)? [Hint. For normal matrix multiplication, if A is any
matrix and I is the identity matrix then A = A I.]

Question 12. Let P(ℓ)
i j be the pair (d, p) where d is the minimum weight among all paths from i to j

that have ℓ or fewer edges, and p is one such path. Define a recursion for P(ℓ) similar to equation (1),
and explain the operator you have invented to replace ⊗.

Question 13◦. By hand, run both Dijkstra’s algorithm and the Bellman-Ford algorithm on each of
the graphs below, starting from the shaded vertex. The labels indicate edge costs, and one is negative.
Does Dijkstra’s algorithm correctly compute minimum weights?

[Run dijkstra as described in lectures, which loops until toexplore is empty. Some textbooks
use different versions of Dijkstra’s algorithm, that terminate once a destination vertex has been
popped, or that don’t allow popped vertices to re-enter toexplore.]

3

2
-4

3

1 3

2
-4

2

1

Question 14. In the course of running the Bellman-Ford algorithm, is the following assertion
true? “Pick some vertex v, and consider the first time at which the algorithm reaches line 7 with
v.minweight correct i.e. equal to the true minimum weight from the start vertex to v. After one
pass of relaxing all the edges, u.minweight is correct for all u ∈ neighbours(v).”

If it is true, prove it. If not, provide a counterexample.

Question 15 (CLRS-25.3-4). An engineer friend tells you there is a simpler way to reweight edges
than the method used in Johnson’s algorithm. Let w∗ be the minimum weight of all edges in the
graph, and just define w′(u → v) = w(u → v) − w∗ for all edges u → v. What is wrong with your
friend’s idea?

Question 16*. You’ve learned what O(n) means when there’s a single variable n that increases.
How would you define O(E + V log V)?

Question 17*. Give a O(V + E) algorithm that solves Question 5. [This goes beyond what is taught
in lectures. Credit to Georgiev (matriculated 2016) for spotting this.]

Question 18*. Consider a graph without edge weights, and write d(u, v) for the length of the
shortest path from u to v. The diameter of the graph is defined to be maxu,v∈V d(u, v). Give an
efficient algorithm to compute the diameter of an undirected tree, and analyse its running time.
[Hint. Use breadth-first search, twice.]

Question 19*. The Bellman-Ford code given in the handout will report “Negative cycle detected”
if there is a negative-weight cycle reachable from the start vertex. Modify the code so that, in such
cases, it returns a negative-weight cycle, rather than just reporting that one exists.

2

Question 20. (Not intended for supervision.) Here is a question about Dijsktra’s algorithm,
followed by a selection of actual answers written by students. Read these answers and pinpoint
carefully where they are lacking.

Let dijkstra_path(g, s, t) be an implementation of Dijkstra’s shortest path algorithm that returns
the shortest path from vertex s to vertex t in a graph g. Prove that the implementation can safely
terminate when it first encounters vertex t.

[The underlying issue is that these are word salad answers, not maths, and it’s easy to slip wishful
thinking into a word salad. That is, these answers assume something is true but they don’t prove it
or even state it. It’s easy to fall into the trap of wishful thinking. You may have fallen into it yourself
when answering question 14.

[The most common wishful thinking here is to take for granted that v.distance as computed by
the algorithm at a certain point in time, is equal to the true shortest path distance from s to v. Do
the answers assume this is true for all vertices in the frontier? For all vertices popped before t? Do
they prove it?

[Dijsktra’s algorithm requires edge weights to be ≥ 0. If some edges have negative weights then
the algorithm might not terminate—and so its proof of correctness must break! Any “proof” that
doesn’t use the assumption must be wrong. Where do these answers use the assumption?]

Bad answer 1. Proof by induction. For the base case, consider a graph with one edge and two
vertices. There is only one path, so when it reaches t that path is the shortest path and the algorithm
can terminate.

For the induction step, assume that when the nth vertex is popped it has the correct distance. The
(n + 1)th vertex reached, call it v, is then the next closest (to s) adjacent vertex. If a closer vertex
existed, it would have to go through a path of a shorter distance, so we would have reached that vertex
before v on this path. But in this case Dijkstra would already have reached it. This can’t happen, so
no shorter path to it exists.

Eventually, we will reach t, and by the above proof there is no shorter path to t, so dijkstra_path
can safely terminate.

Bad answer 2. Assume that “first encounters” means that t has just been popped from the priority
queue. Let S be the set of all vertices that have been popped. (Initially, S = {s}, and s.distance = 0.)
Let the true shortest path be

s = v1 → v2 → · · · → vk = t.

Suppose t has just been popped, and let the edge that gives it its distance be x → t where x ∈ S.
Consider any other path of the form

s = v1 → · · · → x → y → · · · → t

where y < S. Since t has just been picked and y has not, we know that the priority key for t is ≤ that
for y, therefore the distance to t on the first path is smaller than that on the other path. Therefore the
path chosen is the true shortest path.

Bad answer 3. Dijkstra’s algorithm performs a depth-first search on the graph, storing a frontier of
all unexplored vertices that are neighbours to explored vertices.

Each time it chooses a new vertex v to explore, from the frontier of unexplored vertices, it chooses
the one that will have the shortest distance from the start s, based on the edge weight plus the distance
from its already explored neighbour.

Given that no other vertex in the frontier is closer to s, and that this new vertex v has yet to be
explored, when v is explored it must have been via the shortest path from s to v.

3

Hence, when t is first encountered, it must have been found via its shortest path and the program
can safely terminate.

Bad answer 4. At the moment when the vertex t is popped from the priority queue, it has to be the
vertex in the priority queue with the least distance from s. This means that any other vertex in the
priority queue has distance ≥ that for t. Since all edge weights in the graph are ≥ 0, any path from s
to t via anything still in the priority queue will have distance ≥ that of the distance from s to t when
t is popped, thus the distance to t is correct when t is popped.

Bad answer 5. In Dijkstra’s algorithm we add vertices to a min priority queue sorted by the shortest
distance to them from the start vertex s. We then repeatedly pop the minimum element in the priority
queue.

Assume that at the time we pop t, there is a shorter path to it than the one we just found. If that
is the case, then there is some vertex x that immediately precedes t in the shorter path.

However, this x cannot exist, as if it did it would have been popped from the frontier before t
(path s { x must be shorter than the path s { t) and is already part of the path being considered.
We reach a contradiction, so the assumption that there is a shorter path than the one found must be
false.

Bad answer 6. Assume that upon termination the path to t is suboptimal. Let v be the vertex which
is first in the computed path that is not on the shortest path. Let ui be the node on the shortest path
that should have been chosen instead of v.

s = u1 → u2 → · · · → ui−1 → v → · · · → t (computed path)
s = u1 → u2 → · · · → ui−1 → ui → · · · → t (true shortest path)

Since v is not optimal,

distance(s to v) < v.distance since v is not optimal
≤ distance(s to ui−1) + cost(ui−1 → v) as it didn’t fail at ui−1

≤ distance(s to ui−1) + cost(ui−1 → ui) as v was chosen over ui in priority queue
≤ distance(s to v) as ui is on the shortest path to v.

We have proved that distance(s to v) < distance(s to v), a contradiction, hence the path must be the
shortest.

4

