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Preliminaries

Course content and textbooks

This course is about some of the coolest stuff a programmer can do.
Most real-world programming is conceptually pretty simple. The un-

deniable difficulties come primarily from size: enormous systems with
millions of lines of code and complex APIs that won’t all comfortably fit
in a single brain. But each piece usually does something pretty bland,
such as moving data from one place to another and slightly massaging it
along the way.

Here, it’s different. We look at pretty advanced hacks—those ten-line
chunks of code that make you want to take your hat off and bow.

The only way to understand this material in a deep, non-superficial
way is to program and debug it yourself, and then run your programs
step by step on your own examples, visualizing intermediate results along
the way. You might think you are fluent in n programming languages
but you aren’t really a programmer until you’ve written and debugged
some hairy pointer-based code such as that required to cut and splice the
circular doubly-linked lists used in Fibonacci trees. (Once you do, you’ll
know why.)

However this course isn’t about programming: it’s about designing
and analysing algorithms and data structures—the ones that great pro-
grammers then write up as tight code and put in libraries for other pro-
grammers to reuse. It’s about finding smart ways of solving difficult
problems, and about evaluating different solutions to see which one re-
sults in the best performance.

In order to gain a more than superficial understanding of the course
material you will also need a full-length textbook, for which this handout
is not a substitute. The one I recommend is a classic, adopted at many
of the top universities around the world, and which at some point was
the most cited book in computer science:

[CLRS3] Cormen, Leiserson, Rivest, Stein. Introduction to
Algorithms, Third edition. MIT press, 2009. ISBN 978-0-
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262-53305-8.

A heavyweight book at about 1300 pages, it covers a little more ma-
terial and at slightly greater depth than most others. It includes careful
mathematical treatment of the algorithms it discusses and is a natural
candidate for a reference shelf. Despite its bulk and precision this book
is written in a fairly friendly style. I know some of you have already read
most of it before even coming to Cambridge. You can’t properly call
yourself a computer scientist if CLRS3 is not on your bookshelf. It’s the
default text for this course: by all means feel free to refer to other books
too, but chapter references in the chapter headings of these notes are to
this textbook.

Other textbooks on algorithms that may well be worth consulting as
optional additional references include at least Sedgewick; Kleinberg and
Tardos; and of course the legendary multi-volume Knuth. Full biblio-
graphic details are in the syllabus and on the course web page. However
none of these other textbooks covers all the topics in the syllabus, so
you’re still better off getting yourself a copy of CLRS3 (which by the
way, in spite of its excellent quality, is also the cheapest of the bunch).

Remember that your undergraduate education costs in the region of
at least 10 k£ per year and is the foundation of your future professional
career. You’ve been admitted to Cambridge, so you’re already pretty
good. Once you’ve made this investment, go through with it properly.
Attempting to save 35 £ by learning the fundamentals of computer sci-
ence without a good textbook is really a false economy and will put
you at a disadvantage compared to your more dedicated contemporaries
who’ll become superstars and get Firsts. I don’t get a percentage from
book sales—I say this purely in your interest.

Note also that a growing number of mostly accurate descriptions of
algorithms and data structures can be found on Wikipedia. Once you
master the material in this course, and especially after you’ve earned
some experience by writing and debugging your own implementation,
consider improving any such descriptions that you find lacking or unclear.

What is in these notes

After you finish university and go into the real world, you won’t always
be given the slides, so it’s a good idea to acquire the useful life skill
of creating your own notes when you listen to a presentation. Some of
my students do so with a beautiful fountain pen; others have taught
themselves to write LATEX in real time; yet others may be content with
just scribbling in the margin—which I have made especially big to allow

6 Algorithms (2018–2019)



that.
Whatever you do, I encourage you to recreate the content of the

lectures yourself and to study the wonderful textbook. The more you
redo by yourself, the more you’ll actually learn. This handout is not in
the form of slides but it does cover the same topics as the lectures, and
in the same order, while sometimes providing more detailed and precise
commentaries than one could convey in a bullet point format.

These notes contain short exercises, highlighted by boxes, that you
would do well to solve as you go along to prove that you are not just
reading on autopilot. They tend to be easy (most are meant to take
not more than five minutes each) and are therefore insufficient to help
you really own the material covered here. For that, program the al-
gorithms yourself1 and solve problems found in your textbook or as-
signed by your supervisor. There is a copious supply of past exam ques-
tions at http://www.cl.cam.ac.uk/teaching/exams/pastpapers/ un-
der Algorithms, Algorithms I, Algorithms II and Data Structures and Al-
gorithms, and in the example sheets available from the course webpage
I have curated a subset of questions that are still relevant for this year’s
syllabus.

Acknowledgements and history

I produced my first version of these notes in 2005, for a 16-lecture course2

entitled “Data Structures and Algorithms”, building on the excellent notes
for that course originally written by Arthur Norman and then enhanced
by Roger Needham (my academic grandfather—the PhD supervisor of
my PhD supervisor) and Martin Richards. I hereby express my gratitude
to my illustrious predecessors. In later years the course evolved into two
(Algorithms I and II, to first and second year students respectively) and
the aggregate number of my lectures gradually expanded from 4+12 to
0+27, until the 2013–2014 reorganization that brought all this material
back into the first year, for a 24-lecture course of which the second half
is now covered by another lecturer (first Thomas Sauerwald, until 2016,
and then Damon Wischik). A number of interesting topics have been
dropped during the various reorganizations, from string searching to Van
Emde Boas trees, and maybe one day I’ll collect them all into an extended

1The more programs you write to recreate what I show you in the lectures, the
more you will really own this material.

216 lectures including 4 on what effectively was “remedial discrete mathematics”
for Diploma students, thus in fact only 12 lectures of data structures and algorithms
proper.
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version. But, for now, this version of the handout only has topics that
are in this year’s syllabus.

Although I don’t know where they are, from experience I am pretty
sure that these notes still contain a few bugs, as all non-trivial docu-
ments do. Consult the course web page for the errata corrige. I am
grateful to Kay Henning Brodersen, Sam Staton, Simon Spacey, Rasmus
King, Chloë Brown, Robert Harle, Larry Paulson, Daniel Bates, Tom
Sparrow, Marton Farkas, Wing Yung Chan, Tom Taylor, Trong Nhan
Dao, Oliver Allbless, Aneesh Shukla, Christian Richardt, Long Nguyen,
Michael Williamson, Myra VanInwegen, Manfredas Zabarauskas, Ben
Thorner, Simon Iremonger, Heidi Howard, Tom Sparrow, Simon Blessenohl,
Nick Chambers, Nicholas Ngorok, Miklós András Danka, Hauke Neitzel,
Alex Bate, Darren Foong, Jannis Bulian, Gábor Szarka, Suraj Patel,
Diandian Wang, Simone Teufel and particularly Alastair Beresford and
Jan Polášek for sending me corrections to previous editions. Whether
you are a student or a supervisor, if you find any more corrections and
email them to me, I’ll credit you in any future revisions (unless you pre-
fer anonymity). The responsibility for any remaining mistakes remains
of course mine.
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Chapter 1

What’s the point of all this?

Textbook

Study chapter 1 in CLRS3.

1.1 What is an algorithm?

An algorithm is a systematic recipe for solving a problem. By “system-
atic” we mean that the problem being solved will have to be specified
quite precisely and that, before any algorithm can be considered com-
plete, it will have to be provided with a proof that it works and an
analysis of its performance. In a great many cases, all of the ingenuity
and complication in algorithms is aimed at making them fast (or at re-
ducing the amount of memory that they use) so a justification that the
intended performance will be attained is very important.

In this course you will learn, among other things, a variety of “prior
art” algorithms and data structures to address recurring computer science
problems; but what would be especially valuable to you is acquiring
the skill to invent new algorithms and data structures to solve difficult
problems you weren’t taught about. The best way to make progress
towards that goal is to participate in this course actively, rather than to
follow it passively. To help you with that, here are three difficult problems
for which you should try to come up with suitable algorithms and data
structures. The rest of the course will eventually teach you good ways to
solve these problems but you will have a much greater understanding of
the answers and of their applicability if you attempt (and perhaps fail)
to solve these problems on your own before you are taught the canonical
solution.
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Chapter 1. What’s the point of all this?

1.2 DNA sequences

In bioinformatics, a recurring activity is to find out how “similar” two
given DNA sequences are. For the purposes of this simplified problem
definition, assume that a DNA sequence is a string of arbitrary length
over the alphabet {A, C, G, T} and that the degree of similarity between
two such sequences is measured by the length of their longest common
subsequence, as defined next. A subsequence T of a sequence S is any
string obtained by dropping zero or more characters from S; for example,
if S = AGTGTACCCAT, then the following are valid subsequences: AGGTAAT
(=AGT/GTAC/C/C/AT), TACAT (=A/G/T/G/TAC/CC/AT), GGT (=A/GT/GTA/C/C/C/A/T/); but the
following are not: AAG, TCG. You must find an algorithm that, given two
sequences X and Y of arbitrary but finite lenghts, returns a sequence Z
of maximal length that is a subsequence of both X and Y 1.

You might wish to try your candidate algorithm on the following two
sequences: X = CCGTCAGTCGCG, Y = TGTTTCGGAATGCAA. What is the
longest subsequence you obtain? Are there any others of that length?
Are you sure that there exists no longer common subsequence (in other
words: can you prove your algorithm is correct)? Is your algorithm
simple enough that you can run it with pencil and paper in a reasonable
time on an input of this size? How long do you estimate your algorithm
would take to complete, on your computer, if the sequences were about
30 characters each? Or 100? Or a million?

1.3 Bestseller chart

Imagine an online store with millions of items in its catalogue. For each
item, the store keeps track of how many instances it sold. Every day the
new sales figures come in and a web page is compiled with a list of the top
100 best sellers. How would you generate such a list? How long would it
take to run this computation? How long would it take if, hypothetically,
the store had trillions of different items for sale instead of merely mil-
lions? Of course you could re-sort the whole catalogue each time and take
the top 100 items, but can you do better? And is it cheaper to maintain
the chart up to date after each sale or to recompute it from scratch once
a day? (You note here that we are not merely concerned with finding
an algorithm, but also with how to estimate the relative performance of
different alternatives, before actually running them.)

1There may be several, all of maximal length.
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1.4. Database indexing

1.4 Database indexing

Imagine a very large database of transactions (e.g. microbilling for a
telecomms operator or bids history for an online auction site), with sev-
eral indices over different keys, so that you can sequentially walk through
the database records in order of account number but also, alternatively,
by transaction date or by value or by surname. Each index has one entry
per record (containing the key and the disk address of the record) but
there are so many records that even the indices (never mind the records)
are too large to fit in RAM2 and must themselves be stored as files on
disk. What is an efficient way of retrieving a particular record given its
key, if we consider scanning the whole index linearly as too slow? Can we
arrange the data in some other way that would speed up this operation?
And, once you have thought of a specific solution: how would you keep
your new indexing data structure up to date when adding or deleting
records to the original database?

1.5 Questions to ask

I recommend you spend some time attacking the three problems above,
as seriously as if they were exam questions, before going any further with
the course. You may not fully succeed yet, perhaps depending on what
you studied in high school, but you must give each of them your best
shot. Then, after each new lecture, ask yourself whether what you learnt
that day gives any insight towards a better solution. The first and most
obvious question (and the one often requiring the greatest creativity) is
of course:

• What strategy to use? What is the algorithm? What is the data
structure?

But there are several other questions that are important too.

• Is the algorithm correct? How can we prove that it is?

• How long does it take to run? How long would it take to run on a
much larger input? Besides, since computers get faster and cheaper
all the time, how long would it take to run on a different type of

2This is becoming less and less common, given the enormous size of today’s mem-
ories, but trust computer people to keep inventing new ways of filling them up! Alter-
natively, change the context and imagine that the whole thing must run inside your
watch.
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Chapter 1. What’s the point of all this?

computer, or on the computer I will be able to buy in a year, or
in three years, or in ten? Can you roughly estimate what input
sizes it would not be able to process even if run on the computing
cluster of a large corporation? Or on that of a three-letter agency?

• If there are several possible algorithms, all correct, how can we
compare them and decide which is best? If we rank them by speed
on a certain computer and a certain input, will this ranking carry
over to other computers and other inputs? And what other ranking
criteria should we consider, if any, other than speed?

Your overall goal for this course is to learn general methods for answering
all of these questions, regardless of the specific problem.

12 Algorithms (2018–2019)



Chapter 2

Sorting

Chapter contents

Review of complexity and O-notation. Triv-
ial sorting algorithms of quadratic complex-
ity. Review of merge sort and quicksort, un-
derstanding their memory behaviour on stati-
cally allocated arrays. Minimum cost of sort-
ing. Heapsort. Stability. Other sorting meth-
ods including sorting in linear time. Median
and order statistics.
Expected coverage: about 4 lectures.
Study 1, 2, 3, 6, 7, 8, 9 in CLRS3.

Our look at algorithms starts with sorting, which is a big topic: any
course on algorithms, including Foundations of Computer Science that
precedes this one, is bound to discuss a number of sorting methods.
Volume 3 of Knuth (almost 800 pages) is entirely dedicated to sorting
(covering over two dozen algorithms) and the closely related subject of
searching, so don’t think this is a small or simple topic! However much
is said in this lecture course, there is a great deal more that is known.

Some lectures in this chapter will cover algorithms (such as insertion
sort, merge sort and quicksort) to which you have been exposed before
from a functional language (ML) perspective. While these notes attempt
to be self-contained, the lecturer may go more quickly through the ma-
terial you have already seen. During this second pass you should pay
special attention to issues of memory allocation and array usage which
were not evident in the functional programming presentation.
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Chapter 2. Sorting

2.1 Insertion sort

Textbook

Study chapter 2 in CLRS3.

Let us approach the problem of sorting a sequence of items by mod-
elling what humans spontaneously do when arranging in their hand the
cards they were dealt in a card game: you keep the cards in your hand
in order and you insert each new card in its place as it comes.

We shall look at data types in greater detail later on in the course but
let’s assume you already have a practical understanding of the “array”
concept: a sequence of adjacent “cells” in memory, indexed by an integer.
If we implement the hand as an array a[] of adequate size, we might put
the first card we receive in cell a[0], the next in cell a[1] and so on.
Note that one thing we cannot actually do with the array, even though
it is natural with lists or when handling physical cards, is to insert a new
card between a[0] and a[1]: if we need to do that, we must first shift
right all the cells after a[0], to create an unused space in a[1], and then
write the new card there.

Let’s assume we have been dealt a hand of n cards1, now loaded in
the array as a[0], a[1], a[2], . . . , a[n-1], and that we want to sort it.
We pretend that all the cards are still face down on the table and that
we are picking them up one by one in order. Before picking up each card,
we first ensure that all the preceding cards in our hand have been sorted.

1Each card is represented by a capital letter in the diagram so as to avoid confusion
between card numbers and index numbers. Letters have the obvious order implied by
their position in the alphabet and thus A < B < C < D. . . , which is of course also
true of their ASCII or Unicode code.
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2.1. Insertion sort

A little aside prompted by the diagram. A common
source of bugs in computing is the off-by-one error. Try
implementing insertsort on your own and you might
accidentally trip over an off-by-one error yourself, be-
fore producing a debugged version. You are hereby
encouraged to acquire a few good hacker habits that
will reduce the chance of your succumbing to that par-
ticular pitfall. One is to number items from zero rather
than from one—then most “offset + displacement” cal-
culations will just work. Another is to adopt the con-
vention used in this diagram when referring to arrays,
strings, bitmaps and other structures with lots of lin-
early numbered cells: the index always refers to the po-
sition between two cells and gives its name to the cell
to its right. (The Python programming language, for
example, among its many virtues, uses this convention
consistently.) Then the difference between two indices
gives you the number of cells between them. So for
example the subarray a[2:5], containing the elements
from a[2] included to a[5] excluded, has 5 − 2 = 3
elements, namely a[2] = "F", a[3] = "E" and a[4]
= "A".

When we pick up card a[i], since the first i items of the array have
been sorted, the next is inserted in place by letting it sink towards the
left down to its rightful place: it is compared against the item at position
j (with j starting at i− 1, the rightmost of the already-sorted elements)
and, if smaller than it, a swap moves it down. If the new element does
move down, then so does the j pointer; and then the new element is again
compared against the one in position j and swapped if necessary, until
it gets to its place. We can write down this algorithm in pseudocode as
follows:

c© Frank Stajano 15



Chapter 2. Sorting

0 def insertSort(a):
1 """BEHAVIOUR: Run the insertsort algorithm on the integer
2 array a, sorting it in place.
3

4 PRECONDITION: array a contains len(a) integer values.
5

6 POSTCONDITION: array a contains the same integer values as before,
7 but now they are sorted in ascending order."""
8

9 for i from 1 included to len(a) excluded:
10 # ASSERT: the first i positions are already sorted.
11

12 # Insert a[i] where it belongs within a[0:i].
13 j = i - 1
14 while j >= 0 and a[j] > a[j + 1]:
15 swap(a[j], a[j + 1])
16 j = j - 1

Pseudocode is an informal notation that is pretty similar to real
source code but which omits any irrelevant details. For example we write
swap(x,y) instead of the sequence of three assignments that would nor-
mally be required in many languages. The exact syntax is not terribly
important: what matters more is clarity, brevity and conveying the essen-
tial ideas and features of the algorithm. It should be trivial to convert a
piece of well-written pseudocode into the programming language of your
choice.

Exercise 1
Assume that each swap(x, y) means three assignments (namely
tmp = x; x = y; y = tmp). Improve the insertsort algorithm
pseudocode shown in the handout to reduce the number of as-
signments performed in the inner loop.

2.2 Is the algorithm correct?

How can we convince ourselves (and our customers) that the algorithm
is correct? In general this is far from easy. An essential first step is to
specify the objectives as clearly as possible: to paraphrase Virgil Gligor,
who once said something similar about attacker modelling, without a
specification the algorithm can never be correct or incorrect—only sur-
prising!
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2.2. Is the algorithm correct?

In the pseudocode above, we provided a (slightly informal) speci-
fication in the documentation string for the routine (lines 1–7). The
precondition (line 4) is a request, specifying what the routine expects to
receive from its caller; while the postcondition (lines 6–7) is a promise,
specifying what the routine will do for its caller (provided that the pre-
condition is satisfied on call). The pre- and post-condition together form
a kind of “contract”, using the terminology of Bertrand Meyer, between
the routine and its caller2. This is a good way to provide a specification.

There is no universal method for proving the correctness of an algo-
rithm; however, a strategy that has very broad applicability is to reduce
a large problem to a suitable sequence of smaller subproblems to which
you can apply mathematical induction3. Are we able to do so in this
case?

To reason about the correctness of an algorithm, a very useful tech-
nique is to place key assertions at appropriate points in the program.
An assertion is a statement that, whenever that point in the program
is reached, a certain property will always be true. Assertions provide
“stepping stones” for your correctness proof; they also help the human
reader understand what is going on and, by the same token, help the pro-
grammer debug the implementation4. Coming up with good invariants
is not always easy but is a great help for developing a convincing proof
(or indeed for discovering bugs in your algorithm while it isn’t correct
yet). It is especially helpful to find a good, meaningful invariant at the
beginning of each significant loop. In the algorithm above we have an
invariant on line 10, at the beginning of the main loop: the ith time we
enter the loop, it says, the previous passes of the loop will have sorted
the leftmost i cells of the array. How? We don’t care, but our job now
is to prove the inductive step: assuming the assertion is true when we

2If the caller fails to uphold her part of the bargain and invokes the routine while
the precondition is not true, the routine cannot be blamed if it doesn’t return the
correct result. On the other hand, if the caller ensures that the precondition is true
before calling the routine, the routine will be considered faulty unless it returns the
correct result. The “contract” is as if the routine said to the caller: “provided you
satisfy the precondition, I shall satisfy the postcondition”.

3Mathematical induction in a nutshell: “How do I solve the case with k elements?
I don’t know, but assuming someone smarter than me solved the case with k − 1
elements, I could tell you how to solve it for k elements starting from that”; then, if
you also independently solve a starting point, e.g. the case of k = 0, you’ve essentially
completed the job.

4Many modern programming languages allow you to write assertions as program
statements (as opposed to comments); then the expression being asserted is evaluated
at runtime and, if it is not true, an exception is raised; this alerts you as early as
possible that something isn’t working as expected, as opposed to allowing the program
to continue running while in a state inconsistent with your beliefs and assumptions
about it.
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enter the loop, we must prove that one further pass down the loop will
make the assertion true when we reenter. Having done that, and having
verified that the assertion holds for the trivial case of the first iteration
(i = 1; it obviously does, since the first one positions cannot possibly
be out of order), then all that remains is to check that we achieve the
desired result (whole array is sorted) at the end of the last iteration.

Check the recommended textbook for further details and a much more
detailed walkthrough, but this is the jist of a powerful and widely appli-
cable method for proving the correctness of your algorithm.

Exercise 2
Provide a useful invariant for the inner loop of insertion sort, in
the form of an assertion to be inserted between the “while” line
and the “swap” line.

2.3 Computational complexity

Textbook

Study chapter 3 in CLRS3.

2.3.1 Abstract modelling and growth rates

How can we estimate the time that the algorithm will take to run if we
don’t know how big (or how jumbled up) the input is? It is almost always
necessary to make a few simplifying assumptions before performing cost
estimation. For algorithms, the ones most commonly used are:

1. We only worry about the worst possible amount of time that some
activity could take.

2. Rather than measuring absolute computing times, we only look at
rates of growth and we ignore constant multipliers. If the problem
size is n, then 100000f(n) and 0.000001f(n) will both be considered
equivalent to just f(n).

3. Any finite number of exceptions to a cost estimate are unimportant
so long as the estimate is valid for all large enough values of n.
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4. We do not restrict ourselves to just reasonable values of n or apply
any other reality checks. Cost estimation will be carried through
as an abstract mathematical activity.

Despite the severity of all these limitations, cost estimation for al-
gorithms has proved very useful: almost always, the indications it gives
relate closely to the practical behaviour people observe when they write
and run programs.

The notations big-O, Θ and Ω, discussed next, are used as short-hand
for some of the above cautions.

2.3.2 Big-O, Θ and Ω notations

A function f(n) is said to be O(g(n)) if there exist constants k and N , all
> 0, such that 0 ≤ f(n) ≤ k ·g(n) whenever n > N . In other words, g(n)
provides an upper bound that, for sufficiently large values of n, f(n) will
never exceed5, except for what can be compensated by a constant factor.
In informal terms: f(n) ∈ O(g(n)) means that f(n) grows at most like
g(n), but no faster.

A function f(n) is said to be Θ(g(n)) if there are constants k1, k2 and
N , all > 0, such that 0 ≤ k1 · g(n) ≤ f(n) ≤ k2 · g(n) whenever n > N .
In other words, for sufficiently large values of n, the functions f() and
g() agree within a constant factor. This constraint is much stronger than
the one implied by Big-O. In informal terms: f(n) ∈ Θ(g(n)) means that
f(n) grows exactly at the same rate as g(n).

Some authors also use Ω() as the dual of O() to provide a lower bound.
In informal terms: f(n) ∈ Ω(g(n)) means that f(n) grows at least like
g(n).

Some authors also use lowercase versions of O() and Ω() to make a
subtle point. The “big” versions describe asymptotic bounds that might
or might not be tight; informally, O() is like ≤ and Ω() is like ≥. The
“small” versions, instead, describe asymptotic bounds that are definitely
not tight: informally, o() is like < and ω() is like >.

Here is a very informal6 summary table:

5We add the “greater than zero” constraint to avoid confusing cases of a f(n) with
a high growth rate dominated by a g(n) with a low growth rate because of sign issues,
e.g. f(n) = −n3 which is < g(n) = n for any n > 0.

6For sufficiently large n, within a constant factor and blah blah blah.
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If. . . then f(n) grows . . . g(n). f(n) . . . g(n)
small-o f(n) ∈ o(g(n)) strictly more slowly than <
big-o f(n) ∈ O(g(n)) at most as quickly as ≤
big-theta f(n) ∈ Θ(g(n)) exactly like =
big-omega f(n) ∈ Ω(g(n)) at least as quickly ≥
small-omega f(n) ∈ ω(g(n)) strictly more quickly than >

Note that none of these notations says anything about f(n) being a
computing time estimate, even though that will be the most common use
in this lecture course.

Note also that it is common to say that f(n) = O(g(n)), with “=”
instead of “∈”. This is formally incorrect7 but it’s a broadly accepted
custom, so we shall sloppily adopt it too from time to time.

Various important computer procedures have costs that grow asO(n log(n))
and a gut-feeling understanding of logarithms will be useful to follow this
course. Formalities apart, the most fundamental thing to understand
about logarithms is that logb(n) is the number of digits of n when you
write n down in base b. If this isn’t intuitive, then any fancy algebra you
may be able to perform on logarithms will be practically useless.

In the proofs, the logarithms will often come out as ones to base 2—
which, following Knuth, we shall indicate as “ lg”: for example, lg(1024) =
log2(1024) = 10. But observe that log2(n) = Θ(log10(n)) (indeed a
stronger statement could be made—the ratio between them is a con-
stant); so, with Big-O or Θ or Ω notation, there is no real need to worry
about the base of logarithms—all versions are equally valid.

The following exercise contains a few examples that may help explain,
even if (heavens forbid) you don’t actually do the exercise.

7For example it violates the transitivity of equality: we may have f1(n) = O(lg n)
and f2(n) = O(lg n) even though f1(n) 6= f2(n).
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Exercise 3

|sin(n)| = O(1)

|sin(n)| 6= Θ(1)

200 + sin(n) = Θ(1)

123456n+ 654321 = Θ(n)

2n− 7 = O(17n2)

lg(n) = O(n)

lg(n) 6= Θ(n)

n100 = O(2n)

1 + 100/n = Θ(1)

For each of the above “=” lines, identify the constants k, k1, k2, N
as appropriate. For each of the “ 6=” lines, show they can’t possibly
exist.

Please note the distinction between the value of a function and the
amount of time it may take to compute it: for example n! can be com-
puted in O(n) arithmetic operations, but has value bigger than O(nk)
for any fixed k.

2.3.3 Models of memory

Through most of this course there will be a tacit assumption that the
computers used to run algorithms will always have enough memory, and
that this memory can be arranged in a single address space so that one
can have unambiguous memory addresses or pointers. Put another way,
we pretend you can set up a single array of integers that is as large as
you will ever need.

There are of course practical ways in which this idealization may fall
down. Some archaic hardware designs may impose quite small limits on
the size of any one array, and even current machines tend to have but
finite amounts of memory, and thus upper bounds on the size of data
structure that can be handled.

A more subtle issue is that a truly unlimited memory will need in-
tegers (or pointers) of unlimited size to address it. If integer arithmetic
on a computer works in a 32-bit representation (as is still common for
embedded systems) then the largest integer value that can be represented
is certainly less than 232 and so one can not sensibly talk about arrays
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with more elements than that. This limit represents only 4 gigabytes of
main memory, which used to be considered enormous but these days is
the amount installed by default in the kind of basic computer you can
pick up in a supermarket next to your groceries. The solution is obvi-
ously that the width of integer subscripts used for address calculation
has to increase with the logarithm of the size of a memory large enough
to accommodate the problem. So, to solve a hypothetical problem that
needed an array of size 10100, all subscript arithmetic would have to be
done using 100 decimal digit precision.

It is normal in the analysis of algorithms to ignore these problems and
assume that any element a[i] of an array can be accessed in unit time,
however large the array is. The associated assumption is that integer
arithmetic operations needed to compute array subscripts can also all be
done at unit cost. This makes good practical sense since the assumption
holds pretty well true for all problems—or at least for most of those you
are actually likely to want to tackle on a computer8.

Strictly speaking, though, on-chip caches in modern processors make
the last paragraph incorrect. In the good old days, all memory references
used to take unit time. Now, since processors have become faster at a
much higher rate than memory9, CPUs use super fast (and expensive and
comparatively small) cache stores that can typically serve up a memory
value in one or two CPU clock ticks; however, when a cache miss occurs,
it often takes tens or even hundreds of ticks. Locality of reference is thus
becoming an issue, although one which most textbooks on algorithms
still largely ignore for the sake of simplicity of analysis.

2.3.4 Models of arithmetic

The normal model for computer arithmetic used here will be that each
arithmetic operation10 takes unit time, irrespective of the values of the
numbers being combined and regardless of whether fixed or floating point
numbers are involved. The nice way that Θ notation can swallow up
constant factors in timing estimates generally justifies this. Again there
is a theoretical problem that can safely be ignored in almost all cases:
in the specification of an algorithm (or of an Abstract Data Type) there
may be some integers, and in the idealized case this will imply that the
procedures described apply to arbitrarily large integers, including ones
with values that will be many orders of magnitude larger than native

8With the notable exception of cryptography.
9This phenomenon is referred to as “the memory gap”.

10Not merely the ones on array subscripts mentioned in the previous section.
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computer arithmetic will support directly11. In the fairly rare cases where
this might arise, cost analysis will need to make explicit provision for
the extra work involved in doing multiple-precision arithmetic, and then
timing estimates will generally depend not only on the number of values
involved in a problem but on the number of digits (or bits) needed to
specify each value.

2.3.5 Worst, average and amortized costs

Usually the simplest way of analyzing an algorithm is to find the worst-
case performance. It may help to imagine that somebody else is proposing
the algorithm, and you have been challenged to find the very nastiest data
that can be fed to it to make it perform really badly. In doing so you are
quite entitled to invent data that looks very unusual or odd, provided
it comes within the stated range of applicability of the algorithm. For
many algorithms the “worst case” is approached often enough that this
form of analysis is useful for realists as well as pessimists.

Average case analysis ought by rights to be of more interest to most
people, even though worst case costs may be really important to the de-
signers of systems that have real-time constraints, especially if there are
safety implications in failure. But, before useful average cost analysis
can be performed, one needs a model for the probabilities of all possible
inputs. If in some particular application the distribution of inputs is sig-
nificantly skewed, then analysis based on uniform probabilities might not
be valid. For worst case analysis it is only necessary to study one limiting
case; for average analysis the time taken for every case of an algorithm
must be accounted for—and this, usually, makes the mathematics a lot
harder.

Amortized analysis (covered in the second half of this course) is ap-
plicable in cases where a data structure supports a number of operations
and these will be performed in sequence. Quite often the cost of any
particular operation will depend on the history of what has been done
before; and, sometimes, a plausible overall design makes most opera-
tions cheap at the cost of occasional expensive internal reorganization
of the data. Amortized analysis treats the cost of this re-organization
as the joint responsibility of all the operations previously performed on
the data structure and provides a firm basis for determining if it was
worthwhile. It is typically more technically demanding than just single-
operation worst-case analysis.

11Or indeed, in theory, larger than the whole main memory can even hold! After
all, the entire RAM of your computer might be seen as just one very long binary
integer.
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A good example of where amortized analysis is helpful is garbage
collection, where it allows the cost of a single large expensive storage re-
organization to be attributed to each of the elementary allocation trans-
actions that made it necessary. Note that (even more than is the case
for average cost analysis) amortized analysis is not appropriate for use
where real-time constraints apply.

2.4 How much does insertion sort cost?

Having understood the general framework of asymptotic worst-case anal-
ysis and the simplifications of the models we are going to adopt, what
can we say about the cost of running the insertion sort algorithm we
previously recalled? If we indicate as n the size of the input array to
be sorted, and as f(n) the very precise (but very difficult to accurately
represent in closed form) function giving the time taken by our algorithm
to compute an answer on the worst possible input of size n, on a specific
computer, then our task is not to find an expression for f(n) but merely
to identify a much simpler function g(n) that works as an upper bound,
i.e. a g(n) such that f(n) = O(g(n)). Of course a loose upper bound is
not as useful as a tight one: if f(n) = O(n2), then f(n) is also O(n5),
but the latter doesn’t tell us as much.

Once we have a reasonably tight upper bound, the fact that the big-
O notation eats away constant factors allows us to ignore the differences
between the various computers on which we might run the program.

If we go back to the pseudocode listing of insertsort found on page
16, we see that the outer loop of line 9 is executed exactly n − 1 times
(regardless of the values of the elements in the input array), while the
inner loop of line 14 is executed a number of times that depends on the
number of swaps to be performed: if the new card we pick up is greater
than any of the previously received ones, then we just leave it at the
rightmost end and the inner loop is never executed; while if it is smaller
than any of the previous ones it must travel all the way through, forcing
as many executions as the number of cards received until then, namely
i. So, in the worst case, during the ith invocation of the outer loop, the
inner loop will be performed i times. In total, therefore, for the whole
algorithm, the inner loop (whose body consists of a constant number of
elementary instructions) is executed a number of times that won’t exceed
the nth triangular number, n(n+1)

2
. In big-O notation we ignore constants

and lower-order terms, so we can simply write O(n2).
Note that it is possible to implement the algorithm slightly more

efficiently at the price of complicating the code a little bit, as suggested
in another exercise on page 16.
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Exercise 4
What is the asymptotic complexity of the variant of insertsort
that does fewer swaps?

2.5 Minimum cost of sorting

We just established that insertion sort has a worst-case asymptotic cost
dominated by the square of the size of the input array to be sorted (we
say in short: “insertion sort has quadratic cost”). Is there any possibility
of achieving better asymptotic performance with some other algorithm?

If I have n items in an array, and I need to rearrange them in ascend-
ing order, whatever the algorithm there are two elementary operations
that I can plausibly expect to use repeatedly in the process. The first
(comparison) takes two items and compares them to see which should
come first12. The second (exchange) swaps the contents of two nomi-
nated array locations.

In extreme cases either comparisons or exchanges13 may be hugely
expensive, leading to the need to design methods that optimize one re-
gardless of other costs. It is useful to have a limit on how good a sorting
method could possibly be, measured in terms of these two operations.

Assertion 1 (lower bound on exchanges). If there are n items in
an array, then Θ(n) exchanges always suffice to put the items in order.
In the worst case, Θ(n) exchanges are actually needed.

Proof. Identify the smallest item present: if it is not already in the
right place, one exchange moves it to the start of the array. A second
exchange moves the next smallest item to place, and so on. After at
worst n − 1 exchanges, the items are all in order. The bound is n − 1
rather than n because at the very last stage the biggest item has to be
in its right place without need for a swap—but that level of detail is
unimportant to Θ notation.

12Indeed, to start with, this course will concentrate on sorting algorithms where
the only information about where items should end up will be that deduced by making
pairwise comparisons.

13Often, if exchanges are costly, it can be useful to sort a vector of pointers to
objects rather than a vector of the objects themselves—exchanges in the pointer
array will be cheap.
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Exercise 5
The proof of Assertion 1 (lower bound on exchanges) convinces
us that Θ(n) exchanges are always sufficient. But why isn’t that
argument good enough to prove that they are also necessary?

Conversely, consider the case where the original arrangement of the
data is such that the item that will need to end up at position i is
stored at position i + 1 (with the natural wrap-around at the end of
the array). Since every item is in the wrong position, you must perform
enough exchanges to touch each position in the array and that certainly
means at least n/2 exchanges, which is good enough to establish the Θ(n)
growth rate. Tighter analysis would show that more than n/2 exchanges
are in fact needed in the worst case.

Assertion 2 (lower bound on comparisons). Sorting by pairwise
comparison, assuming that all possible arrangements of the data might
actually occur as input, necessarily costs at least Ω(n lg n) comparisons.

Proof. As you saw in Foundations of Computer Science, there are
n! permutations of n items and, in sorting, we in effect identify one
of these. To discriminate between that many cases we need at least
dlog2(n!)e binary tests. Stirling’s formula tells us that n! is roughly nn,
and hence that lg(n!) is about n lg n.

Note that this analysis is applicable to any sorting method whose only
knowledge about the input comes from performing pairwise comparisons
between individual items14; that it provides a lower bound on costs but
does not guarantee that it can be attained; and that it is talking about
worst case costs. Concerning the last point, the analysis can be carried
over to average costs when all possible input orders are equally probable.

For those who can’t remember Stirling’s name or his formula, the
following argument is sufficient to prove that lg(n!) = Θ(n lg n).

lg(n!) = lg(n(n−1)(n−2) . . . 2·1) = lg n+lg(n−1)+lg(n−2)+. . .+lg(2)+lg(1)

All n terms on the right are less than or equal to lg n and so

lg(n!) ≤ n lg n.

Therefore lg(n!) is bounded by n lg n. Conversely, since the lg function is
monotonic, the first n/2 terms, from lg n to lg(n/2), are all greater than
or equal to lg(n/2) = lg n− lg 2 = (lg n)− 1, so

14Hence the existence of sorting methods faster than n lg n when we know more, a
priori, about the items to be sorted—as we shall see in section 2.14.
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lg(n!) ≥ n

2
(lg n− 1) + lg(n/2) + . . .+ lg(1) ≥ n

2
(lg n− 1),

proving that, when n is large enough, n lg n is bounded by k lg(n!) (for
k = 3, say). Thus lg(n!) = Θ(n lg n).

2.6 Selection sort

In the previous section we proved that an array of n items may be sorted
by performing no more than n − 1 exchanges. This provides the basis
for one of the simplest sorting algorithms known: selection sort. At
each step it finds the smallest item in the remaining part of the array
and swaps it to its correct position. This has, as a sub-algorithm, the
problem of identifying the smallest item in an array. The sub-problem
is easily solved by scanning linearly through the (sub)array, comparing
each successive item with the smallest one found so far. If there are m
items to scan, then finding the minimum clearly costs m−1 comparisons.
The whole selection-sort process does this on a sequence of sub-arrays of
size n, n−1, . . . , 1. Calculating the total number of comparisons involved
requires summing an arithmetic progression, again yielding a triangular
number and a total cost of Θ(n2). This very simple method has the
advantage (in terms of how easy it is to analyse) that the number of
comparisons performed does not depend at all on the initial organization
of the data, unlike what happened with insert-sort.

0 def selectSort(a):
1 """BEHAVIOUR: Run the selectsort algorithm on the integer
2 array a, sorting it in place.
3

4 PRECONDITION: array a contains len(a) integer values.
5

6 POSTCONDITION: array a contains the same integer values as before,
7 but now they are sorted in ascending order."""
8

9 for k from 0 included to len(a) excluded:
10 # ASSERT: the array positions before a[k] are already sorted
11

12 # Find the smallest element in a[k:END] and swap it into a[k]
13 iMin = k
14 for j from iMin + 1 included to len(a) excluded:
15 if a[j] < a[iMin]:
16 iMin = j
17 swap(a[k], a[iMin])
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We show this and the other quadratic sorting algorithms in this sec-
tion not as models to adopt but as examples of the kind of wheel one is
likely to reinvent before having studied better ways of doing it. Use them
to learn to compare the trade-offs and analyze the performance on simple
algorithms where understanding what’s happening is not the most diffi-
cult issue, as well as to appreciate that coming up with asymptotically
better algorithms requires a lot more thought than that.

Exercise 6
When looking for the minimum of m items, every time one of the
m−1 comparisons fails the best-so-far minimum must be updated.
Give a permutation of the numbers from 1 to 7 that, if fed to the
Selection sort algorithm, maximizes the number of times that the
above-mentioned comparison fails.

2.7 Binary insertion sort

Now suppose that data movement is cheap (e.g. we use pointers, as per
footnote 13 on page 25), but comparisons are expensive (e.g. it’s string
comparison rather than integer comparison). Suppose that, part way
through the sorting process, the first k items in our array are neatly in
ascending order, and now it is time to consider item k + 1. A binary
search in the initial part of the array can identify where the new item
should go, and this search can be done in dlg(k)e comparisons. Then
we can drop the item in place using at most k exchanges. The complete
sorting process performs this process for k from 1 to n, and hence the
total number of comparisons performed will be

dlg(1)e+ dlg(2)e+ . . .+ dlg(n− 1)e

which is bounded by

lg(1) + 1 + lg(2) + 1 + . . .+ lg(n− 1) + 1

and thus by lg((n − 1)!) + n = O(lg(n!)) = O(n lg n). This effectively
attains the lower bound for general sorting that we set up earlier, in terms
of the number of comparisons. But remember that the algorithm has high
(quadratic) data movement costs. Even if a swap were a million times
cheaper than a comparison (say), so long as both elementary operations
can be bounded by a constant cost then the overall asymptotic cost of
this algorithm will be O(n2).
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0 def binaryInsertSort(a):
1 """BEHAVIOUR: Run the binary insertion sort algorithm on the integer
2 array a, sorting it in place.
3

4 PRECONDITION: array a contains len(a) integer values.
5

6 POSTCONDITION: array a contains the same integer values as before,
7 but now they are sorted in ascending order."""
8

9 for k from 1 included to len(a) excluded:
10 # ASSERT: the array positions before a[k] are already sorted
11

12 # Use binary partitioning of a[0:k] to figure out where to insert
13 # element a[k] within the sorted region;
14

15 ### details left to the reader ###
16

17 # ASSERT: the place of a[k] is i, i.e. between a[i-1] and a[i]
18

19 # Put a[k] in position i. Unless it was already there, this
20 # means right-shifting by one every other item in a[i:k].
21 if i != k:
22 tmp = a[k]
23 for j from k - 1 included down to i - 1 excluded:
24 a[j + 1] = a[j]
25 a[i] = tmp

Exercise 7
Code up the details of the binary partitioning portion of the bi-
nary insertion sort algorithm.

2.8 Bubble sort

Another simple sorting method, similar to Insertion sort and very easy
to implement, is known as Bubble sort. It consists of repeated passes
through the array during which adjacent elements are compared and, if
out of order, swapped. The algorithm terminates as soon as a full pass
requires no swaps.

c© Frank Stajano 29



Chapter 2. Sorting

0 def bubbleSort(a):
1 """BEHAVIOUR: Run the bubble sort algorithm on the integer
2 array a, sorting it in place.
3

4 PRECONDITION: array a contains len(a) integer values.
5

6 POSTCONDITION: array a contains the same integer values as before,
7 but now they are sorted in ascending order."""
8

9 repeat:
10 # Go through all the elements once, swapping any that are out of order
11 didSomeSwapsInThisPass = False
12 for k from 0 included to len(a) - 1 excluded:
13 if a[k] > a[k + 1]:
14 swap(a[k], a[k + 1])
15 didSomeSwapsInThisPass = True
16 until didSomeSwapsInThisPass == False

Bubble sort is so called because, during successive passes, “light” (i.e.
low-valued) elements bubble up towards the “top” (i.e. the cell with the
lowest index, or the left end) of the array. Like Insertion sort, this al-
gorithm has quadratic costs in the worst case but it terminates in linear
time on input that was already sorted. This is clearly an advantage over
Selection sort.

Exercise 8
Prove that Bubble sort will never have to perform more than n
passes of the outer loop.

2.9 Mergesort

Given a pair of sub-arrays each of length n/2 that have already been
sorted, merging their elements into a single sorted array is easy to do in
around n steps: just keep taking the lowest element from the sub-array
that has it. In a previous course (Foundations of Computer Science)
you have already seen the sorting algorithm based on this idea: split the
input array into two halves and sort them recursively, stopping when the
chunks so small that they are already sorted, and then merge the two
sorted halves into one sorted array.
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0 def mergeSort(a):
1 """*** DISCLAIMER: this is purposefully NOT a model of good code
2 (indeed it may hide subtle bugs---can you see them?) but it is
3 a useful starting point for our discussion. ***
4

5 BEHAVIOUR: Run the merge sort algorithm on the integer array a,
6 returning a sorted version of the array as the result. (Note that
7 the array is NOT sorted in place.)
8

9 PRECONDITION: array a contains len(a) integer values.
10

11 POSTCONDITION: a new array is returned that contains the same
12 integer values originally in a, but sorted in ascending order."""
13

14 if len(a) < 2:
15 # ASSERT: a is already sorted, so return it as is
16 return a
17

18 # Split array a into two smaller arrays a1 and a2
19 # and sort these recursively
20 h = int(len(a) / 2)
21 a1 = mergeSort(a[0:h])
22 a2 = mergeSort(a[h:END])
23

24 # Form a new array a3 by merging a1 and a2
25 a3 = new empty array of size len(a)
26 i1 = 0 # index into a1
27 i2 = 0 # index into a2
28 i3 = 0 # index into a3
29 while i1 < len(a1) or i2 < len(a2):
30 # ASSERT: i3 < len(a3)
31 a3[i3] = smallest(a1, i1, a2, i2) # updates i1 or i2 too
32 i3 = i3 + 1
33 # ASSERT: i3 == len(a3)
34 return a3

Compared to the other sorting algorithms seen so far, this one hides
several subtleties, many to do with memory management issues, which
may have escaped you when you studied it in ML:

• Merging two sorted sub-arrays (lines 24–32) is most naturally done
by leaving the two input arrays alone and forming the result into
a temporary buffer (line 25) as large as the combination of the two
inputs. This means that, unlike the other algorithms seen so far,
we cannot sort an array in place: we need additional space.
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• The recursive calls of the procedure on the sub-arrays (lines 21–
22) are easy to write in pseudocode and in several modern high
level languages but they may involve additional acrobatics (wrapper
functions etc) in languages where the size of the arrays handled by
a procedure must be known in advance. The best programmers
among you will learn a lot (and maybe find hidden bugs in the
pseudocode above) by implementing mergesort in a programming
language such as C, without automatic memory management.

• Merging the two sub-arrays is conceptually easy (just consume the
“emerging” item from each deck of cards) but coding it up naïvely
will fail on boundary cases, as the following exercise highlights.

Exercise 9
Can you spot any problems with the suggestion of replacing
the somewhat mysterious line a3[i3] = smallest(a1, i1, a2,
i2) with the more explicit and obvious a3[i3] = min(a1[i1],
a2[i2])? What would be your preferred way of solving such
problems? If you prefer to leave that line as it is, how would
you implement the procedure smallest it calls? What are the
trade-offs between your chosen method and any alternatives?

Exercise 10
In one line we return the same array we received from the caller,
while in another we return a new array created within the merge-
sort subroutine. This asymmetry is suspicious. Discuss potential
problems.

How do we evaluate the running time of this recursive algorithm?
The invocations that don’t recurse have constant cost but for the others
we must write a so-called recurrence relation. If we call f(n) the cost of
invoking mergesort on an input array of size n, then we have

f(n) = 2f(n/2) + kn,

where the first term is the cost of the two recursive calls (lines 21–22) on
inputs of size n/2 and the second term is the overall cost of the merging
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phase (lines 24–32), which is linear because a constant-cost sequence of
operations is performed for each of the n elements that is extracted from
the sub-arrays a1 and a2 and placed into the result array a3.

To solve the recurrence, i.e. to find an expression for f(n) that doesn’t
have f on the right-hand side, let’s “guess” that exponentials are going to
help (since we split the input in two each time, doubling the number of
arrays at each step) and let’s rewrite the formula15 with the substitution
n = 2m.

f(n) = f(2m)

= 2f(2m/2) + k2m

= 2f(2m−1)
::::::::

+ k2m

= 2(2f(2m−2) + k2m−1)
::::::::::::::::::::

+ k2m

= 22f(2m−2) + k2m + k2m

= 22f(2m−2) + 2 · k2m

= 22(2f(2m−3) + k2m−2) + 2 · k2m

= 23f(2m−3) + k2m + 2 · k2m

= 23f(2m−3) + 3 · k2m

= . . .

= 2mf(2m−m) +m · k2m

= f(1) · 2m + k ·m2m

= k0 · 2m + k ·m2m

= k0n+ kn lg n.

We just proved that f(n) = k0n + kn lg n or, in other words, that
f(n) = O(n lg n). Thus Mergesort is the first sorting algorithm we discuss
in this course whose running time is better than quadratic. Much more
than that, in fact: mergesort guarantees the optimal cost of O(n lg n),
is relatively simple and has low time overheads. Its main disadvantage
is that it requires extra space to hold the partially merged results. The
implementation is trivial if one has another empty n-cell array available;
but experienced programmers can get away with just n/2. Theoretical

15This is just an ad-hoc method for solving this particular recurrence, which may
not work in all cases—though it’s a powerful and versatile trick that we’ll exploit
several other times in this course. There is a whole theory on how to solve recurrences
in chapter 4 of CLRS3.
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computer scientists have been known to get away with just constant space
overhead16.

Exercise 11
Never mind the theoretical computer scientists, but how do you
mergesort in n/2 space?

An alternative is to run the algorithm bottom-up, doing away with
the recursion. Group elements two by two and sort (by merging) each
pair. Then group the sorted pairs two by two, forming (by merging)
sorted quadruples. Then group those two by two, merging them into
sorted groups of 8, and so on until the last pass in which you merge
two large sorted groups. Unfortunately, even though it eliminates the
recursion, this variant still requires O(n) additional temporary storage,
because to merge two groups of k elements each into a 2k sorted group
you still need an auxiliary area of k cells (move the first half into the
auxiliary area, then repeatedly take the smallest element from either the
second half or the auxiliary area and put it in place).

Exercise 12
Justify that the merging procedure just described will not over-
write any of the elements in the second half.

Exercise 13
Write pseudocode for the bottom-up mergesort.

16Cfr. Jyrki Katajainen, Tomi Pasanen, Jukka Teuhola. “Practical in-place merge-
sort”. Nordic Journal of Computing 3:27-–40, 1996. Note that real programmers
and theoretical computer scientists tend to assign different semantics to the word
“practical”.
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2.10 Quicksort

Textbook

Study chapter 7 in CLRS3.

Quicksort is the most elaborate of the sorting algorithms you have
already seen, from a functional programming viewpoint, in the Foun-
dations course. The main thing for you to understand and appreciate
in this second pass is how cleverly it manages to sort the array in place,
splitting it into a “lower” and a “higher” part without requiring additional
storage. You should also have a closer look at what happens in presence
of duplicates.

The algorithm is relatively easy to explain and, when properly imple-
mented and applied to non-malicious input data, the method can fully
live up to its name. However Quicksort is somewhat temperamental. It
is remarkably easy to write a program based on the Quicksort idea that
is wrong in various subtle cases (e.g. if all the items in the input list
are identical) and, although in almost all cases Quicksort turns in a time
proportional to n lg n (with a quite small constant of proportionality), for
worst case input data it can be as slow as n2. There are also several small
variants. It is strongly recommended that you study the description of
Quicksort in your favourite textbook and that you look carefully at the
way in which code can be written to avoid degenerate cases leading to
accesses off the end of arrays etc.

The core idea of Quicksort, as you will recall from the Foundations
course, is to select some value from the input and use that as a “pivot”
to split the other values into two classes: those smaller and those larger
than the pivot. What happens when applying this idea to an array rather
than a list? A selection procedure partitions the values so that the lower
portion of the array holds values not exceeding that of the pivot, while
the upper part holds only larger values. This selection can be performed
in place by scanning in from the two ends of the array, exchanging values
as necessary. Then the pivot is placed where it belongs, so that the array
contains a first region (still unsorted) with the low values, then the pivot,
then a third region (still unsorted) with the high values. For an n element
array it takes about n comparisons and data exchanges to partition the
array. Quicksort is then called recursively to deal with the low and high
parts of the data, and the result is obviously that the entire array ends
up perfectly sorted.
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Let’s have a closer look at implementing Quicksort. Remember we
scan the array (or sub-array) from both ends to partition it into three
regions. Assume you must sort the sub-array a[iBegin:iEnd], which
contains the cells from a[iBegin] (included) to a[iEnd] (excluded)17.
We use two auxiliary indices iLeft and iRight. We arbitrarily pick the
last element in the range as the pivot: Pivot = A[iEnd - 1]. Then
iLeft starts at iBegin and moves right, while iRight starts at iEnd -
1 and moves left. All along, we maintain the following invariants:

• iLeft ≤ iRight

• a[iBegin:iLeft] only has elements ≤ Pivot

• a[iRight:iEnd - 1] only has elements > Pivot

So long as iLeft and iRight have not met, we move iLeft as far right
as possible and iRight as far left as possible without violating the in-
variants. Once they stop, if they haven’t met, it means that A[iLeft] >
Pivot (otherwise we could move iLeft further right) and that A[iRight
- 1] ≤ Pivot (thanks to the symmetrical argument18). So we swap these
two elements pointed to by iLeft and iRight - 1. Then we repeat the
process, again pushing iLeft and iRight as far towards each other as
possible, swapping array elements when the indices stop and continuing
until they touch.

17See the boxed aside on page 15.
18Observe that, in order to consider iRight the symmetrical mirror-image of

iLeft, we must consider iRight to be pointing, conceptually, at the cell to its left,
hence the - 1.
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At that point, when iLeft = iRight, we put the pivot in its rightful
place between the two regions we created, by swapping A[iRight] and
[iEnd - 1].

We then recursively run Quicksort on the two smaller sub-arrays
a[iBegin:iLeft] and a[iRight + 1:iEnd].

Now let’s look at performance. Consider first the ideal case, where
each selection manages to split the array into two equal parts. Then the
total cost of Quicksort satisfies f(n) = 2f(n/2) + kn, and hence grows
as O(n lg n) as we proved in section 2.9. But, in the worst case, the
array might be split very unevenly—perhaps at each step only a couple
of items, or even none, would end up less than the selected pivot. In that
case the recursion (now f(n) = f(n − 1) + kn) will go around n deep,
and therefore the total worst-case costs will grow to be proportional to
n2.

One way of estimating the average cost of Quicksort is to suppose
that the pivot could equally probably have been any one of the items
in the data. It is even reasonable to use a random number generator to
select an arbitrary item for use as a pivot to ensure this.

Exercise 14
Can picking the pivot at random really make any difference to the
expected performance? How will it affect the average case? The
worst case? Discuss.
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Then it is easy to set up a recurrence formula that will be satisfied by
the average cost:

f(n) = kn+
1

n

n∑
i=1

(
f(i− 1) + f(n− i)

)

where the kn term is the cost of partitioning, whereas the summation
adds up, with equal weight, the expected costs corresponding to all the
(equally probable) ways in which the partitioning might happen. After
some amount of playing with this equation, it can be established that
the average cost for Quicksort is Θ(n lg n).

Quicksort provides a sharp illustration of what can be a problem
when selecting an algorithm to incorporate in an application. Although
its average performance (for random data) is good, it does have a quite
unsatisfactory (albeit uncommon) worst case. It should therefore not be
used in applications where the worst-case costs could have safety impli-
cations. The decision about whether to use Quicksort for good average
speed or a slightly slower but guaranteed O(n lg n) method can be a
delicate one.

There are a great number of small variants on the Quicksort scheme
and the best way to understand them for an aspiring computer scientist
is to code them up, sprinkle them with diagnostic print statements and
run them on examples. There are good reasons for using the median19

of the mid point and two others as the pivot at each stage, and for using
recursion only on partitions larger than a preset threshold. When the
region is small enough, Insertion sort may be used instead of recursing
down. A less intuitive but probably more economical arrangement is for
Quicksort just to return (without sorting) when the region is smaller than
a threshold; then one runs Insertion sort over the messy array produced
by the truncated Quicksort.

Exercise 15
Justify why running Insertion sort over the messy array produced
by the truncated Quicksort might not be as stupid as it may sound
at first. How should the threshold be chosen?

19Cfr. section 2.11.
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2.11 Median and order statistics using Quick-
sort

Textbook

Study chapter 9 in CLRS3.

The median of a collection of values is the one such that as many
items are smaller than that value as are larger. In practice, when we
look for algorithms to find a median, it is wise to expand to more general
order statistics: we shall therefore look for the item that ranks at
some parametric position k in the data. If we have n items, the median
corresponds to taking the special case k = n/2, while k = 1 and k = n
correspond to looking for minimum and maximum values.

One obvious way of solving this problem is to sort that data: then
the item with rank k is trivial to read off. But that costs O(n lg n) for
the sorting.

Two variants on Quicksort are available that solve the problem. One
has linear cost in the average case but, like Quicksort itself, has a quadratic
worst-case cost. The other is more elaborate to code and has a much
higher constant of proportionality, but guarantees linear cost. In cases
where guaranteed worst-case performance is essential the second method
might in theory be useful; in practice, however, it is so complicated and
slow that it is seldom implemented20.

Exercise 16
What is the smallest number of pairwise comparisons you need to
perform to find the smallest of n items?

Exercise 17
(More challenging.) And to find the second smallest?

20In this course we no longer describe the overly elaborate (though, to some, per-
versely fascinating) guaranteed-linear-cost method. It’s explained in your textbook if
you’re curious: see CLRS3, 9.3.
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The simpler scheme selects a pivot and partitions as for Quicksort,
at linear cost. Now suppose that the partition splits the array into two
parts, the first having size p, and imagine that we are looking for the
item with rank k in the whole array. If k < p then we just continue be
looking for the rank-k item in the lower partition. Otherwise we look for
the item with rank k − p in the upper one. The cost recurrence for this
method (assuming, unreasonably optimistically, that each selection stage
divides out values neatly into two even sets) is f(n) = f(n/2)+kn, whose
solution exhibits linear growth as we shall now prove. Setting n = 2m as
we previously did (and for the same reason), we obtain

f(n) = f(2m)

= f(2m/2) + k2m

= f(2m−1)
::::::::

+ k2m

= f(2m−2) + k2m−1
:::::::::::::::::

+ k2m

= f(2m−3) + k2m−2 + k2m−1 + k2m

= . . .

= f(2m−m) + k2m−(m−1) + . . .+ k2m−2 + k2m−1 + k2m

= f(20) + k(21 + 22 + 23 + . . . 2m)

= f(1) + 2k(2m − 1)

= k0 + k12
m

= k0 + k1n

which is indeed O(n), QED.
As with Quicksort itself, and using essentially the same arguments, it

can be shown that this best-case linear cost also applies to the average
case; but, equally, that the worst-case, though rare, has quadratic cost.

2.12 Heapsort

Textbook

Study chapter 6 in CLRS3.

Despite the good average behaviour of Quicksort, there are circum-
stances where one might want a sorting method that is guaranteed to
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run in time O(n lg n) whatever the input21, even if such a guarantee may
cost some increase in the constant of proportionality.

Heapsort is such a method, and is described here not only because
it is a reasonable sorting scheme, but because the data structure it uses
(called a heap, a term that is also used, but with a totally different
meaning, in the context of free-storage management) has other useful
applications.

Consider an array that has values stored in all its cells, but with the
constraint (known as “the heap property”) that the value at position k is
greater than (or equal to) those at positions22 2k + 1 and 2k + 2. The
data in such an array is referred to as a heap. The heap is isomorphic to
a binary tree in which each node has a value at least as large as those of
its children—which, as one can easily prove, means it is also the largest
value of all the nodes in the subtree of which it is root. The root of the
heap (and of the equivalent tree) is the item at location 0 and, by what
we just said, it is the largest value in the heap.

The data structure we just described, which we’ll use in heapsort, is
also known as a max-heap. You may also encounter the dual arrange-
ment, appropriately known as min-heap, where the value in each node is
at least as small as the values in its children; there, the root of the heap
is the smallest element (see section 4.8).

Note that any binary tree that represents a binary heap must have
a particular “shape”, known as almost full binary tree: every level
of the tree, except possibly the last, must be full, i.e. it must have the
maximum possible number of nodes; and the last level must either be full
or have empty spaces only at its right end. This constraint on the shape
comes from the isomorphism with the array representation: a binary tree
with any other shape would map back to an array with “holes” in it.

Exercise 18
What are the minimum and maximum number of elements in a
heap of height h?

The Heapsort algorithm consists of two phases. The first phase takes
an array full of unsorted data and rearranges it in place so that the data
forms a heap. Amazingly, this can be done in linear time, as we shall
prove shortly. The second phase takes the top (leftmost) item from the

21Mergesort does; but, as we said, it can’t sort the array in place.
22Supposing that those two locations are still within the bounds of the array, and

assuming that indices start at 0.
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heap (which, as we saw, was the largest value present) and swaps it to
the last position in the array, which is where that value needs to be in the
final sorted output. It then has to rearrange the remaining data to be a
heap with one fewer element. Repeating this step will leave the full set
of data in order in the array. Each heap reconstruction step has a cost
bounded by the logarithm of the amount of data left, and thus the total
cost of Heapsort ends up being bounded by O(n lg n), which is optimal.

The auxiliary function heapify (lines 22–36) takes a (sub)array that
is almost a heap and turns it into a heap. The assumption is that the
two (possibly empty) subtrees of the root are already proper heaps, but
that the root itself may violate the max-heap property, i.e. it might be
smaller than one or both of its children. The heapify function works by
swapping the root with its largest child, thereby fixing the heap property
for that position. What about the two subtrees? The one not affected
by the swap was already a heap to start with, and after the swap the
root of the subtree is certainly ≤ than its parent, so all is fine there. For
the other subtree, all that’s left to do is ensure that the old root, in its
new position further down, doesn’t violate the heap property there. This
can be done recursively. The original root therefore sinks down step by
step to the position it should rightfully occupy, in no more calls than
there are levels in the tree. Since the tree is “almost full”, its depth is the
logarithm of the number of its nodes, so heapify is O(lg n).

0 def heapSort(a):
1 """BEHAVIOUR: Run the heapsort algorithm on the integer
2 array a, sorting it in place.
3

4 PRECONDITION: array a contains len(a) integer values.
5

6 POSTCONDITION: array a contains the same integer values as before,
7 but now they are sorted in ascending order."""
8

9 # First, turn the whole array into a heap
10 for k from floor(END/2) excluded down to 0 included: # nodes with children
11 heapify(a, END, k)
12

13 # Second, repeatedly extract the max, building the sorted array R-to-L
14 for k from END included down to 1 excluded:
15 # ASSERT: a[0:k] is a max-heap
16 # ASSERT: a[k:END] is sorted in ascending order
17 # ASSERT: every value in a[0:k] is <= than every value in a[k:END]
18 swap(a[0], a[k - 1])
19 heapify(a, k - 1, 0)
20
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21

22 def heapify(a, iEnd, iRoot):
23 """BEHAVIOUR: Within array a[0:iEnd], consider the subtree rooted
24 at a[iRoot] and make it into a max-heap if it isn’t one already.
25

26 PRECONDITIONS: 0 <= iRoot < iEnd <= END. The children of
27 a[iRoot], if any, are already roots of max-heaps.
28

29 POSTCONDITION: a[iRoot] is root of a max-heap."""
30

31 if a[iRoot] satisfies the max-heap property:
32 return
33 else:
34 let j point to the largest among the existing children of a[iRoot]
35 swap(a[iRoot], a[j])
36 heapify(a, iEnd, j)

The first phase of the main heapSort function (lines 9–11) starts
from the bottom of the tree (rightmost end of the array) and walks up
towards the root, considering each node as the root of a potential sub-
heap and rearranging it to be a heap. In fact, nodes with no children
can’t possibly violate the heap property and therefore are automatically
heaps; so we don’t even need to process them—that’s why we start from
the midpoint floor(END/2) rather than from the end. By proceeding
right-to-left we guarantee that any children of the node we are currently
examining are already roots of properly formed heaps, thereby matching
the precondition of heapify, which we may therefore use. It is then
trivial to put an O(n lg n) bound on this phase—although, as we shall
see, it is not tight.

In the second phase (lines 13–19), the array is split into two distinct
parts: a[0:k] is a heap, while a[k:END] is the “tail” portion of the
sorted array. The rightmost part starts empty and grows by one element
at each pass until it occupies the whole array. During each pass of the
loop in lines 13–19 we extract the maximum element from the root of
the heap, a[0], reform the heap and then place the extracted maximum
in the empty space left by the last element, a[k], which conveniently is
just where it should go23. To retransform a[0:k - 1] into a heap after
placing a[k - 1] in position a[0] we may call heapify, since the two
subtrees of the root a[0] must still be heaps given that all that changed
was the root and we started from a proper heap. For this second phase,
too, it is trivial to establish an O(n lg n) bound.

23Because all the items in the right part are ≥ than the ones still in the heap, since
each of them was the maximum at the time of extraction.
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Now, what was that story about the first phase actually taking less
than O(n lg n)? Well, it’s true that all heaps are at most O(lg n) tall, but
many of them are much shorter because most of the nodes of the tree are
found in the lower levels24, where they can only be roots of short trees.
So let’s redo the budget more accurately.

level num nodes in level height of tree max cost of heapify
0 1 h kh
1 2 h− 1 k(h− 1)
2 4 h− 2 k(h− 2)
. . .
j 2j h− j k(h− j)
. . .
h 2h 0 0

By “max cost of heapify” we indicate a bound on the cost of perform-
ing the heapify operation on any node on the given level. The total cost
for a given level cannot exceed that amount, i.e. k(h−j), times the num-
ber of nodes in that level, 2j. The cost for the whole tree, as a function
of the number of levels, is simply the sum of the costs of all levels:

C(h) =
h∑

j=0

2j · k(h− j)

= k
2h

2h

h∑
j=0

2j(h− j)

= k2h

h∑
j=0

2j−h(h− j)

24Indeed, in a full binary tree, each level contains one more node than the whole
tree above it.
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. . . let l = h− j. . .

= k2h

h∑
l=0

l2−l

= k2h

h∑
l=0

l

(
1

2

)l

The interesting thing is that this last summation, even though it is a
monotonically growing function of h, is in fact bounded by a constant,
because the corresponding series converges to a finite value if the absolute
value of the base of the exponent (here 1

2
) is less than 1:

|x| < 1 ⇒
∞∑
i=0

ixi =
x

(1− x)2
.

This means that the cost C(h) grows like O(2h) and, if we instead
express this in terms of the number of nodes in the tree, C(n) = O(n)
and not O(n lg n), QED.

Heapsort therefore offers at least two significant advantages over other
sorting algorithms: it offers an asymptotically optimal worst-case com-
plexity of O(n lg n) and it sorts the array in place. Despite this, on
non-pathological data it is still usually beaten by the amazing Quicksort.

2.13 Stability of sorting methods

Data to be sorted often consists of records made of key and payload;
the key is what the ordering is based upon, while the payload is some
additional data that is just carried around in the rearranging process.
In some applications one can have keys that should be considered equal,
and then a simple specification of sorting might not indicate the order in
which the corresponding records should end up in the output list. “Sta-
ble” sorting demands that, in such cases, the order of items in the input
be preserved in the output. Some otherwise desirable sorting algorithms
are not stable, and this can weigh against them.

If stability is required, despite not being offered by the chosen sorting
algorithm, the following technique may be used. Extend the records with
an extra field that stores their original position, and extend the ordering
predicate used while sorting to use comparisons on this field to break
ties. Then, any arbitrary sorting method will rearrange the data in a
stable way, although this clearly increases space and time overheads a
little (but by no more than a linear amount).
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Exercise 19
For each of the sorting algorithms seen in this course, establish
whether it is stable or not.

2.14 Faster sorting

Textbook

Study chapter 8 in CLRS3.

If the condition that sorting must be based on pair-wise comparisons
is dropped it may sometimes be possible to do better than O(n lg n) in
terms of asymptotic costs. In this section we consider three algorithms
that, under appropriate assumptions, sort in linear time. Two particular
cases are common enough to be of at least occasional importance: sorting
integer keys from a fixed range (counting sort) and sorting real keys uni-
formly distributed over a fixed range (bucket sort). Another interesting
algorithm is radix sort, used to sort integer numerals of fixed length25,
which was originally used to sort punched cards mechanically.

2.14.1 Counting sort

Assume that the keys to be sorted are integers that live in a known
range, and that the range is fixed regardless of the number of values to
be processed. If the number of input items grows beyond the cardinality
of the range, there will necessarily be duplicates in the input. If no data is
involved at all beyond the integers, one can set up an array whose size is
determined by the range of integers that can appear (not by the amount
of data to be sorted) and initialize it to all 0s. Then, for each item in the
input data, w say, the value at position w in the array is incremented.
At the end, the array contains information about how many instances
of each value were present in the input, and it is easy to create a sorted
output list with the correct values in it. The costs are obviously linear.

If additional satellite data beyond the keys is present (as will usually
happen) then, once the counts have been collected, a second scan through
the input data can use the counts to indicate the exact position, in the

25Or, more generally, any keys (including character strings) that can be mapped
to fixed-length numerals in an arbitrary base.
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output array, to which each data item should be moved. This does not
compromise the overall linear cost.

During the second pass, the fact of scanning the items in the order in
which they appear in the input array ensures that items with the same
key maintain their relative order in the output. Thus counting sort is
not only fast but also stable. It doesn’t, however, sort in place.

Exercise 20
Give detailed pseudocode for the counting sort algorithm (par-
ticularly the second phase), ensuring that the overall cost stays
linear. Do you need to perform any kind of precomputation of
auxiliary values?

2.14.2 Bucket sort

Assume the input data is guaranteed to be uniformly distributed over
some known range (for instance it might be real numbers in the range
0.0 to 1.0). Then a numeric calculation on the key can predict with
reasonable accuracy where a value must be placed in the output. If the
output array is treated somewhat like a hash table (cfr. section 4.7), and
this prediction is used to insert items in it, then, apart from some local
clustering effects, that data has been sorted.

To sort n keys uniformly distributed between 0.0 and 1.0, create an
array of n linked lists and insert each key k to the list at position bk ·nc.
This phase has linear cost. (We expect each list to be one key long on
average, though some may be slightly longer and some may be empty.)
In the next phase, for each entry in the array, sort the corresponding list
with insertsort if it is longer than one element, then output it.

Insertsort, as we know, has a quadratic worst-case running time. How
does this affect the running time of bucket sort? If we could assume that
the lists are never longer than a constant k, it would be trivial to show
that the second pass too has linear costs in the worst case. However we
can’t, so we need to resort to a rather more elaborate argument. But
it is possible to prove that, under the assumption that the input values
are uniformly distributed, the average-case (but not worst-case) overall
running time of bucket sort is linear in n.
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2.14.3 Radix sort

Historically, radix sort was first described in the context of sorting inte-
gers encoded on punched cards, where each column of a card represented
a digit by having a hole punched in the corresponding row. A mechanical
device could be set to examine a particular column and distribute the
cards of a deck into bins, one per digit, according to the digit in that
column. Radix sort used this “primitive” to sort the whole deck.

The obvious way to proceed is perhaps to sort on the most significant
digit, then recursively for each bin on the next significant digit, then
on the next, all the way down to the least significant digit. But this
would require a great deal of temporary “desk space” to hold the partial
mini-decks still to be processed without mixing them up.

Radix sort instead proceeds, counter-intuitively, from the least sig-
nificant digit upwards. First, the deck is sorted into b = 10 bins based
on the least significant digit. Then the contents of the bins are collected
together, in order, to reform a full deck, and this is then sorted according
to the next digit up. But the per-digit sorting method used is chosen to
be stable, so that cards that have the same second digit still maintain
their relative order, which was induced by the first (least significant)
digit. The procedure is repeated going upwards towards the most signif-
icant digits. Before starting pass i, the digits in positions 0 to i− 1 have
already been sorted26. During pass i, the deck is sorted on the digit in
position i, but all the cards with the same i digit remain in the relative
order determined by the even less significant digits to their right. The
result is that, once the deck has been sorted on the most significant digit,
it is fully sorted. The number of passes is equal to the number of digits
(d) in the numerals being sorted and the cost of each pass can be made
linear by using counting sort.

Exercise 21
Why couldn’t we simply use counting sort in the first place, since
the keys are integers in a known range?

Note that counting sort does not sort in place; therefore, if that is the
stable sort used by radix sort, neither does radix sort. This, as well as the
constants hidden by the big-O notation, must be taken into account when
deciding whether radix sort is advantageous, in a particular application,
compared to an in-place algorithm like quicksort.

26Position 0 being of course the least significant digit, i.e. the rightmost column.
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Chapter contents

Strategies for algorithm design: dynamic pro-
gramming, divide and conquer, greedy algo-
rithms and other useful paradigms.
Expected coverage: about 3 lectures.
Study 4, 15, 16 in CLRS3.

There exists no general recipe for designing an algorithm that will
solve a given problem—never mind designing an optimally efficient one.
There are, however, a number of generally useful strategies, some of which
we have seen in action in the sorting algorithms discussed so far. Each
design paradigm works well in at least some cases; with the flair you
acquire from experience you may be able to choose an appropriate one
for your problem.

In this chapter we shall first study a powerful technique called dy-
namic programming. After that we shall name and describe several other
paradigms, some of which you will recognize from algorithms we already
discussed, while others you will encounter later in the course. None of
these are guaranteed to succeed in all cases but they are all instructive
ways of approaching algorithm design.
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3.1 Dynamic programming

Textbook

Study chapter 15 in CLRS3.

Sometimes it makes sense to work up towards the solution to a prob-
lem by building up a table of solutions to smaller versions of the problem.
For historical reasons, this process is known as “dynamic programming”,
but the use of the term “programming” in this context comes from op-
erations research rather than computing and has nothing to do with our
usual semantics of writing instructions for a machine: it originally meant
something like “finding a plan of action”.

Dynamic programming is related to the strategy of “divide and con-
quer” (section 3.3.3, q.v., but already seen in mergesort and quicksort) in
that it breaks up the original problem recursively into smaller problems
that are easier to solve. But the essential difference is that here the sub-
problems may overlap. Applying the divide and conquer approach in this
setting would inefficiently solve the same subproblems again and again
along different branches of the recursion tree. Dynamic programming, in-
stead, is based on computing the solution to each subproblem only once:
either by remembering the intermediate solutions and reusing them as
appropriate instead of recomputing them; or, alternatively, by deriving
out the intermediate solutions in an appropriate bottom-up order that
makes it unnecessary to recompute old ones again and again.

This method has applications in various tasks related to combinatorial
search. It is difficult to describe it both accurately and understandably
without having demonstrated it in action so let’s use examples.

An instructive preliminary exercise is the computation of Fibonacci
numbers:
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Exercise 22
Leaving aside for brevity Fibonacci’s original 1202 problem on the
sexual activities of a pair of rabbits, the Fibonacci sequence may
be more abstractly defined as follows:

F0 = 1
F1 = 1
Fn = Fn−2 + Fn−1 for n ≥ 2

(This yields 1, 1, 2, 3, 5, 8, 13, 21, . . .)
In a couple of lines in your favourite programming language, write
a recursive program to compute Fn given n, using the definition
above. And now, finally, the question: how many function calls
will your recursive program perform to compute F10, F20 and F30?
First, guess; then instrument your program to tell you the actual
answer.

Where’s the dynamic programming in this? We’ll come back to that,
but note the contrast between the exponential number of recursive calls,
where smaller Fibonacci numbers are recomputed again and again, and
the trivial and much more efficient iterative solution of computing the
Fibonacci numbers bottom-up.

A more significant example is the problem of finding the best order
in which to perform matrix chain multiplication. If A is a p × q matrix
and B is a q × r matrix, the product C = AB is a p × r matrix whose
elements are defined by

ci,j =

q−1∑
k=0

ai,k · bk,j.

The product matrix can thus be computed using p · q · r scalar multi-
plications (q multiplications1 for each of the p · r elements). If we wish
to compute the product A1A2A3A4A5A6 of 6 matrices, we have a wide
choice of the order in which we do the matrix multiplications.

Exercise 23
Prove (an example is sufficient) that the order in which the matrix
multiplications are performed may dramatically affect the total
number of scalar multiplications—despite the fact that, since ma-
trix multiplication is associative, the final matrix stays the same.

1As well as q − 1 sums.
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Suppose the dimensions of A1, A2, A3, A4, A5 and A6 are respec-
tively 30 × 35, 35 × 15, 15 × 5, 5 × 10, 10 × 20 and 20 × 25. Clearly,
adjacent dimensions must be equal or matrix multiplication would be im-
possible; therefore this set of dimensions can be specified by the vector
(p0, p1, . . . , p6) = (30, 35, 15, 5, 10, 20, 25). The problem is to find an or-
der of multiplications that minimizes the number of scalar multiplications
needed.

Observe that, with this notation, the dimensions of matrix Ai are
pi−1 × pi. Suppose that i, j, k are integer indices with i ≤ k ≤ j, that
Ai..j stands for the product Ai · Ai+1 · . . . · Aj and that m(i, j) is the
minimum number of scalar multiplications to compute the product Ai..j.
Then m can be defined as a recursive function:

m(i, j) =

{
0 if i = j
min
k∈[i,j)

{m(i, k) +m(k + 1, j) + pi−1pkpj} if i 6= j

With a sequence Ai · Ai+1 · . . . · Aj of j − i + 1 matrices, j − i ma-
trix multiplications are required. The last such matrix multiplication
to be performed will, for some k between i and j, combine a left-hand
cumulative matrix Ai..k (with i < k) and a right-hand one Ak+1..j (with
k+1 < j). The cost of that matrix multiplication will be pi−1 ·pk ·pj. The
expression above for the function m(i, j) is obtained by noting that one
of the possible values of k must be the one yielding the minimum total
cost and that, for that value, the two contributions from the cumulative
matrices must also each be of minimum cost.

For the above numerical problem the answer ism(1, 6) = 15125 scalar
multiplications. A naïve recursive implementation of this function will
compute m(i, j) in time exponential in the number of matrices to be
multiplied2, but the value can be obtained more efficiently by computing
and remembering the values of m(i, j) in a systematic order so that,
whenever m(i, k) or m(k+1, j) is required, the values are already known.

An alternative approach, as hinted at above, is to modify the simple-
minded recursive definition of the m() function so that it checks whether
m(i, j) has already been computed. If so, it immediately returns with the
previously computed result, otherwise it computes and saves the result in
a table before returning. This technique is known as memoization (this
not a typo for “memorization”—it comes from “jotting down a memo”
rather than from “memorizing”). For the previous example, the naïve
implementation computes m(1, 6) = 15125 in 243 invocations of m(),

2Do not confuse the act of computingm (minimum number of multiplications, and
related choice of which matrices to multiply in which order) and the act of computing
the matrix product itself. The former is the computation of a strategy for performing
the latter cheaply. But either of these acts can be computationally expensive.
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while a memoized version yields the same result in only 71 invocations
(try it).

Going back to general principles, dynamic programming tends to be
useful against problems with the following features:

1. There exist many choices, each with its own “score” which must be
minimized or maximized (optimization problem). In the example
above, each parenthesization of the matrix expression is a choice;
its score is the number of scalar multiplications it involves.

2. The number of choices is exponential in the size of the problem, so
brute force is generally not applicable. The number of choices here
is the number of possible binary trees that have the given sequence
of matrices (in order) as leaves.

3. The structure of the optimal solution is such that it is composed
of optimal solutions to smaller problems. The optimal solution ul-
timately consists of multiplying together two cumulative matrices;
these two matrices must themselves be optimal solutions for the cor-
responding subproblems because, if they weren’t, we could substitute
the optimal sub-solutions and get a better overall result.

4. There is overlap: in general, the optimal solution to a sub-problem
is required to solve several higher-level problems, not just one. The
optimal sub-solution m(2, 4) is needed in order to compute m(2, 5)
but also to compute m(1, 4).

Because of the fourth property of the problem, a straightforward re-
cursive divide-and-conquer approach will end up recomputing the com-
mon sub-solutions many times (just like the wasteful recursive Fibonacci),
unless it is turned into dynamic programming through memoization.

The non-recursive, bottom-up approach to dynamic programming
consists instead of building up the optimal solutions incrementally, start-
ing from the smallest ones and going up gradually.

To solve a problem with dynamic programming one must define a
suitable sub-problem structure so as to be able to write a kind of recur-
rence relation that describes the optimal solution to a sub-problem in
terms of optimal solutions to smaller sub-problems.
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3.2 Greedy algorithms

Textbook

Study chapter 16 in CLRS3.

Many algorithms involve some sort of optimization. The idea of
“greed” is to start by performing whatever operation contributes as much
as any single step can towards the final goal. The next step will then be
the best step that can be taken from the new position and so on. The
procedures for finding minimal spanning sub-trees, described later in the
course, are examples of how greed can sometimes lead to good results.
Other times, though, greed can get you stuck in a local maximum—so
it’s always a prudent idea to develop a correctness proof before blindly
using a greedy algorithm.

Most problems that can be solved by a greedy algorithm can also
be solved by dynamic programming: both strategies exploit the optimal
structure of the sub-problems. However the greedy strategy, when it
can be applied, is a much cheaper way of reaching the overall optimal
solution. Let’s start with an example.

A university has a sports hall that can be used for a variety of activi-
ties, but only one at a time. The various sports societies of the University
propose bookings for the hall, in the form of (start, finish) time segments,
and the management wishes to maximize the number of proposals it can
satisfy. More formally, we are given a set S = {a1, a2, . . . , an} of n ac-
tivities, each of the form ai = (si, fi), sorted for convenience in order of
finishing time (f1 ≤ f2 ≤ . . . ≤ fn), and we wish to find a maximum-size
subset of S in which no two activities overlap.

The number of subsets of S is 2n, since each of the n elements of S can
either be or not be in the subset. Examining each subset (to establish
whether its activities are compatible and then selecting a maximum-
cardinality subset among those that pass this filter) has exponential cost
and is therefore infeasible other than for very small n.

Using the dynamic programming approach, we note that assuming
activity ai to be a member of the optimal subset identifies two further
subsets: excluding the activities that overlap with ai, we have a first set
SiL with activities that complete before ai starts, and a second set SiR

with activities that start after ai finishes. If the optimal solution does
include ai, then it must consist of ai together with the optimal solution for
SiL and the optimal solution for SiR. (It’s easy to show that, if it didn’t,
a “more optimal” solution could be built by including them instead. This
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is the usual “cut and paste” argument used in dynamic programming.)
If, conversely, the optimal solution doesn’t include ai, then by the same
argument the union of {ai}, the optimal solution for SiL and the optimal
solution for SiR is still the best solution we can produce that includes ai.

We don’t know whether any particular ai will be included in the
optimal solution, but we know that at least one of them will, so we try
all possible values of i and pick the one yielding the subset of greatest
cardinality. If we indicate with opt(X) the cardinality of the maximum
subset of non-overlapping activities in set X, then we can define the
function recursively as:

opt({}) = 0

opt(S) = max
0≤i≤n

(opt(SiL) + 1 + opt(SiR))

with SiL and SiR defined as above. We can then either use recursion3

and memoize, or use iteration and compute the subsets bottom-up, thus
in either case bringing the costs down from exponential to polynomial in
n.

This is a great improvement, but the greedy strategy takes a more
daring gamble: instead of keeping all options open, and deciding on the
maximum only after having tried all possibilities and having unwound all
the levels of the memoized recursion, the greedy strategy says “hey, I bet
I can tell you one of these activities that is in the subset”; then, assuming
the guess is correct, the optimal solution must consist of that activity
plus the optimal solution to the remaining ones that don’t overlap with
it; and so forth. Very similar in structure to dynamic programming but
much more direct because we immediately commit to one choice at every

3The notation I used above is simplified for clarity of explanation, but incomplete.
To recurse down into subproblems we need a more complicated notation such as the
one used in the CLRS3 textbook. The simplified notation used above is OK at the
top level of the problem but is insufficiently powerful to express that, lower down, I
want (say) the activities that complete before ai′ starts but within those that start
after the higher-level ai finishes. The full notation in CLRS3 defines Sij as the set of
activities that start after the end of ai and finish before the start of aj , thus

Sij = {ak ∈ S : fi ≤ sk ≤ fk ≤ sj}.

And then you’d need some extra notational acrobatics (not quite specified even in the
book) to express the top-level starting set S, which can’t be generated from the above
definition as Sij by assigning in-range values to i and j. The cardinality of the best
possible overall solution containing activity ai will still be opt(SiL)+1+opt(SiR) but
we will now also be able to speak of the best possible solution containing activity ak
for the subset of activities that start after the end of ai and finish before the start of
aj . This additional expressive power is required to recurse into the subproblems.
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stage, discarding all the others a priori. (Of course this relies on being
able to make the correct choice!)

In this example the greedy strategy is to pick the activity that finishes
first, based on the intuition that it’s the one that leaves most of the rest
of the timeline free for the allocation of other activities. Now, to be able
to use the greedy strategy safely on this problem, we must prove that
this choice is indeed optimal; in other words, that the ai ∈ S with the
smallest fi is included in an optimal solution for S. (That would be a1,
by the way, since we conveniently said that activities were numbered in
order of increasing finishing time.)

Proof by contradiction. Assume there exists an optimal solution O ⊂
S that does not include a1. Let ax be the activity in O with the earliest
finishing time. Since a1 had the smallest finishing time in all S, f1 ≤
fx. There are two cases: either f1 ≤ sx or f1 > sx. In the first case,
s1 < f1 ≤ sx < fx, we have that a1 and ax are disjoint and therefore
compatible, so we could build a better solution than O by adding a1 to
it; so this case cannot happen. We are left with the second case, in which
there is overlap because a1 finishes after ax starts (but before ax finishes,
by hypothesis that a1 is first to finish in S). Since ax is first to finish in
O and no two activities in O overlap, then no activity in O occurs before
ax, thus no activity in O overlaps with a1. Thus we could build another
equally good optimal solution by substituting a1 for ax in O. Therefore
there will always exist an optimal solution that includes a1, QED. This
tells us that the greedy strategy works well for this problem.

The general pattern for greedy algorithms is:

1. Cast the problem as one where we make a (greedy) choice and are
then left with just one smaller problem to solve.

2. Prove that the greedy choice is always part of an optimal solution.

3. Prove that there’s optimal substructure, i.e. that the greedy choice
plus an optimal solution of the subproblem yields an optimal solu-
tion for the overall problem.

Because both greedy algorithms and dynamic programming exploit
optimal substructure, one may get confused as to which of the two tech-
niques to apply: using dynamic programming where a greedy algorithm
suffices is wasteful, whereas using a greedy algorithm where dynamic pro-
gramming is required will give the wrong answer. Here is an example of
the latter situation.

The knapsack problem, of which a bewildering array of variations have
been studied, can be described as follows (this will be the “0-1 knapsack”
flavour). A thief has a knapsack of finite carrying capacity and, having
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broken into a shop, must choose which items to take with him, up to a
maximum weight W . Each item i has a weight wi, which is an integer,
and a value vi. The goal of the thief is to select a subset of the available
items that maximizes the total value while keeping the total weight below
the carrying capacity W .

This problem has optimal substructure because, with the usual cut-
and-paste argument, it is easy to show that, having picked one item i that
belongs to the optimal subset, the overall optimal solution is obtained
by adding to that item the optimal solution to the 0-1 knapsack problem
with the remaining items and with a knapsack of capacity W − wi.

The greedy strategy might be to pick the item of greatest value. But
we can easily prove with a counterexample that this won’t lead to the
optimal solution. Consider a carrying capacity of W = 18 kg, an item 1
of weight w1 = 10 kg and value v1 = 101 £ and two items 2 and 3 each
of weight 9 kg and value 100 £. Following the stated strategy, the thief
would take item 1 and would not have space for anything else, for a total
value of 101 £, whereas the optimal solution is to take items 2 and 3 and
go away with 200 £.

A perhaps smarter greedy strategy might be to pick the item with
the highest £/kg ratio. This would have worked in the previous example
but here too we can show it doesn’t in general.

Exercise 24
Provide a small counterexample that proves that the greedy strat-
egy of choosing the item with the highest £/kg ratio is not guar-
anteed to yield the optimal solution.

It can be shown, however, that the greedy strategy of choosing the
item with the highest £/kg ratio is optimal for the fractional (as op-
posed to 0-1) knapsack problem, in which the thief can take an arbitrary
amount, between 0 and 100%, of each available item4.

3.3 Overview of other strategies

This course is too short to deal with every possible strategy at the same
level of detail as we did for dynamic programming and greedy algorithms.
The rest of this chapter is therefore just an overview, meant essentially as
hints for possible ways to solve a new problem. In a professional situation,

4Works with gold dust but not with plasma TVs.
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reach for your textbook to find worked examples (and, sometimes, theory)
for most of these approaches.

3.3.1 Recognize a variant on a known problem

This obviously makes sense! But there can be real inventiveness in seeing
how a known solution to one problem can be used to solve the essentially
tricky part of another. The Graham Scan method for finding a convex
hull (described in the second half of the course), which uses as a sub-
algorithm a particularly efficient way of comparing the relative positions
of two vectors, is an illustration of this.

3.3.2 Reduce to a simpler problem

Reducing a problem to a smaller one tends to go hand in hand with
inductive proofs of the correctness of an algorithm. Almost all the ex-
amples of recursive functions you have ever seen are illustrations of this
approach. In terms of planning an algorithm, it amounts to the insight
that it is not necessary to invent a scheme that solves a whole problem
all in one step—just a scheme that is guaranteed to make non-trivial
progress.

Quicksort (section 2.10), in which you sort an array by splitting it
into two smaller arrays and sorting these on their own, is an example of
this technique.

This method is closely related to the one described in the next section.

3.3.3 Divide and conquer

Textbook

Study chapter 4 in CLRS3.

This is one of the most important ways in which algorithms have been
developed. It suggests that a problem can sometimes be solved in three
steps:

1. Divide: If the particular instance of the problem that is presented
is very small, then solve it by brute force. Otherwise divide the
problem into two (rarely more) parts. To keep the recursion bal-
anced it is usually best to make the sub-problems have similar size.

2. Conquer: Use recursion to solve the smaller problems.
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3. Combine: Create a solution to the final problem by using infor-
mation from the solution of the smaller problems.

This approach is similar to the one described in the previous section
but distinct in so far as we use an explicit recombination step.

In the most common and useful cases, both the dividing and combin-
ing stages will have linear cost in terms of the problem size—certainly we
expect them to be much easier tasks to perform than the original prob-
lem seemed to be. Mergesort (section 2.9) provides a classical example
of this approach.

3.3.4 Backtracking

If the algorithm you require involves a search, it may be that backtrack-
ing is what is needed. This splits the conceptual design of the search
procedure into two parts: the first just ploughs ahead and investigates
what it thinks is the most sensible path to explore, while the second
backtracks when needed. The first part will occasionally reach a dead
end and this is where the backtracking part comes in: having kept extra
information about the choices made by the first part, it unwinds all calcu-
lations back to the most recent choice point and then resumes the search
down another path. The Prolog language makes an institution of this
way of designing code. The method is of great use in many graph-related
problems.

3.3.5 The MM method

This approach is perhaps a little frivolous, but effective all the same.
It is related to the well known scheme of giving a million monkeys a
million typewriters for a million years (the MM Method) and waiting for
a Shakespeare play to be written. What you do is give your problem to
a group of students (no disrespect intended or implied) and wait a few
months. It is quite likely they will come up with a solution that any
individual is unlikely to find. Ross Anderson once did this by setting
a Tripos exam question on the problem and then writing up the edited
results, with credit to the candidates, as an academic paper5.

Sometimes a variant of this approach is automated: by systematically
trying ever increasing sequences of machine instructions, one may even-
tually find one that has the desired behaviour. This method was once
applied to the following C function:

5Ross Anderson, “How to cheat at the lottery (or, Massively parallel requirements
engineering)”, Proc. Annual Computer Security Applications Conference, Phoenix,
AZ, 1999.
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int sign(int x) {
if (x < 0) return -1;
if (x > 0) return 1;
return 0;

}

The resulting code for the i386 architecture was 3 instructions excluding
the return, and for the m68000 it was 4 instructions.

In software testing, this method is the foundation for fuzzing : throw
lots of random data at the program and see if it crashes or violates its
internal assertions.

3.3.6 Look for wasted work in a simple method

It can be productive to start by designing a simple algorithm to solve a
problem, and then analyze it to the extent that the critically costly parts
of it can be identified. It may then be clear that, even if the algorithm
is not optimal, it is good enough for your needs; or it may be possible
to invent techniques that explicitly attack its weaknesses. You may view
under this light the various elaborate ways of ensuring that binary search
trees are kept well balanced (sections 4.5 and 4.6).

3.3.7 Seek a formal mathematical lower bound

The process of establishing a proof that some task must take at least
a certain amount of time can sometimes lead to insight into how an
algorithm attaining that bound might be constructed—we did something
similar with Selectsort (section 2.6). A properly proved lower bound can
also prevent wasted time seeking improvement where none is possible.

60 Algorithms (2018–2019)



Chapter 4

Data structures

Chapter contents

Primitive data structures. Abstract data
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Hash tables. Binary search trees. Red-black
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Typical programming languages such as C or Java provide primitive
data types such as integers, reals and boolean values. They allow these
to be organized into arrays1 which generally have a statically determined
size. It is also common to provide for record data types, where an instance
of the type contains a number of components, or possibly pointers to
other data. C, in particular, allows the user to work with a fairly low-
level idea2 of a pointer to a piece of data. In this course a “data structure”
will be implemented in terms of these language-level constructs, but will
always be thought of in association with a collection of operations that
can be performed with it and a number of consistency conditions which
must always hold. One example of this would be the structure “sorted
vector” which might be thought of as just a normal array of numbers but
subject to the extra constraint that the numbers must be in ascending

1Which we have already used informally from the start.
2A C pointer is essentially a memory address, and it’s “low level” in the sense

that you can increment it to look at what’s at the next address, even though nothing
guarantees that it’s another item of the appropriate type, or even that it’s a memory
address that you are allowed to read. A pointer in a higher level language might in-
stead only give you access to the item being pointed to, without facilities for accessing
adjacent portions of memory.
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order. Having such a data structure may make some operations (for
instance finding the largest, smallest and median numbers present) easier,
but setting up and preserving the constraint (in that case ensuring that
the numbers are sorted) may involve work.

Frequently, the construction of an algorithm involves the design of
data structures that provide natural and efficient support for the most
important steps used in the algorithm, and these data structures then
call for further code design for the implementation of other necessary but
less frequently performed operations.

4.1 Implementing data structures

This section introduces some fundamental data types and their machine
representation. Variants of all of these will be used repeatedly as the
basis for more elaborate structures.

Textbook

Study chapter 10 in CLRS3.

4.1.1 Machine data types, arrays, records and point-
ers

It first makes sense to agree that boolean values, characters, integers and
real numbers will exist in any useful computer environment. At the level
of abstraction used in this course it will generally be assumed that integer
arithmetic never overflows, that floating point arithmetic can be done as
fast as integer work and that rounding errors do not exist. There are
enough hard problems to worry about without having to face up to the
exact limitations on arithmetic that real hardware tends to impose!

The so-called “procedural” programming languages provide for arrays
of these primitive types: an array is an ordered collection of a predefined
number of elements of the same type, where an integer index can be used
to select a particular element of the array, with the access taking unit
time. For the moment it is only necessary to consider one-dimensional
arrays.

It will also be supposed that one can declare record data types: a
record is a collection of a predefined number of elements of potentially
different types and each element, normally known as a field of the record,
is usually referred to not by a positional index but by a field name. Where
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records are dynamically allocated (as is frequently the case), we assume
that some mechanism is provided for allocating new instances of records
and (where appropriate) getting rid of unwanted ones.

The introduction of dynamically allocated records naturally intro-
duces the use of pointers. While a statically allocated object already
has a name within the program, a dynamically allocated object doesn’t:
the programmer needs some kind of handle to refer to the dynamically
allocated object and to distinguish it from all other dynamically allo-
cated objects of the same type. A pointer provides such a handle. At
the machine level, it is simply the memory address of the object. In a
typed system, knowing the type of object that the pointer refers to also
says, among other things, how large an area of memory is logically being
pointed at; whereas, at the level of machine code, all the pointer says is
where that area starts.

This course will not concern itself much about type security (de-
spite the importance of that discipline in keeping whole programs self-
consistent), provided that the proof of an algorithm guarantees that all
operations performed on data are proper.

It is common to use some form of boxes-and-arrows drawing to repre-
sent dynamically allocated objects and the pointers between them. For
lack of a universally accepted name, we shall refer to such graphical rep-
resentations as records-and-pointers diagrams. Roughly speaking, a
basic machine data type is drawn as a rectangle; a record is drawn as
a rectangle containing other shapes (its fields); and a pointer is repre-
sented as a circle, out of which emanates an arrow to the dynamically
allocated record being pointed to, or an X (or sometimes a “ground con-
nection”) to represent a null pointer. For example, you might represent a
two-dimensional (2D) array as a 1D-array of 1D-arrays, or as a 1D-array
of pointers to 1D-arrays (see section 4.1.2 next) and once you represent
them as a records and pointers diagram then the differences become ob-
vious: which of the two is more space-efficient? Which of the two is
fastest in accessing a given element? Which of the two makes it easier to
swap two rows? Which of the two makes it easier to swap two columns?
Which of the two could most efficiently represent the lines of a piece of
text? And so forth.
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It is worth remembering that the records-and-pointers diagram is a
pretty low level representation, but not quite as low level as the actual
machine view of the world. At the lowest level, every box on the diagram
is allocated somewhere in memory, but without any guarantee that items
that appear next to each other in the diagram are anywhere near each
other, or even in the same order, in the memory layout. At the level of
abstraction of this course we shall generally ignore such details.

4.1.2 Vectors and matrices

Some authors use the terms “vector” and “array” interchangeably. Others
make the subtle distinction that an array is simply a raw low-level type
provided natively by the programming language, while a vector is an
abstract data type (section 4.2) with methods and properties. We lean
towards the second interpretation but won’t be very pedantic on this.

A vector supports two basic operations: the first operation (read)
takes an integer index and returns a value. The second operation (write)
takes an index and a new value and updates the vector. When a vector
is created, its size will be given and only index values inside that pre-
specified range will be valid. Furthermore it will only be legal to read a
value after it has been set—i.e. a freshly created vector will not have any
automatically defined initial contents. Even something this simple can
have several different possible implementations.

At this stage in the course we will just think about implementing
vectors as blocks of memory where the index value is added to the base
address of the vector to get the address of the cell wanted. Note that
vectors of arbitrary objects can be handled by multiplying the index value
by the size of the objects to get the physical offset of an item in memory
with respect to the base, i.e. the address of the 0-th element.

As we said in passing in the previous section, there are two sim-
ple ways of representing two-dimensional (and indeed arbitrary multi-
dimensional) matrices. The first takes the view that an n × m matrix
can be implemented as an array with n items, where each item is an array
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of length m. The other representation starts with an array of length n
which has as its elements the addresses of other arrays of length m. One
of these representations needs a multiplication (by m) for every access,
the other an additional memory access. Although there will only be a
constant factor between these costs, at this low level it may (just about)
matter; but which works better may also depend on the exact nature of
the hardware involved3.

Exercise 25
Draw the memory layout of these two representations for a 3×5
matrix, pointing out where element (1,2) would be in each case.

There is scope for wondering about whether a matrix should be stored
by rows or by columns (for large matrices and particular applications
this may have a big effect on the behaviour of virtual memory systems),
and how special cases such as boolean matrices, symmetric matrices and
sparse matrices should be represented.

4.1.3 Simple lists and doubly-linked lists

A simple and natural implementation of lists is in terms of a record
structure.

3Note also that the multiplication by m may be performed very quickly with just
a shift if m is a power of 2. In cases where speed is of paramount importance, aligning
the array rows on such boundaries (which implies increasing the row size to the next
power of 2) may be beneficial even at the cost of some wasted memory.
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In the records-and-pointers diagrams above, we clearly see that the
list is like a little train with zero or more wagons (carriages), each of
which holds one list value (the payload of the wagon) and a pointer to
rest of the list (i.e. to the next wagon4, if there is one). In C one might
write

0 struct ListWagon {
1 int payload; /* We just do lists of integers here */
2 struct ListWagon *next; /* Pointer to the next wagon, if any */
3 };

where all lists are represented as pointers to ListWagon items. In C it
would be very natural to use the special NULL pointer to stand for an
empty list. We have not shown code to allocate and access lists here.

In other languages, including Java, the analogous declaration would
hide the pointers:

0 class ListWagon {
1 int payload;
2 ListWagon next; /* The next wagon looks nested, but isn’t really. */
3 };

There is a subtlety here: if pointers are hidden, how do you represent
lists (as opposed to wagons)? Can we still maintain a clear distinction be-
tween lists and list wagons? And what is the sensible way of representing
an empty list?

Exercise 26
Show how to declare a variable of type list in the C case and then
in the Java case. Show how to represent the empty list in the
Java case. Check that this value (empty list) can be assigned to
the variable you declared earlier.

Exercise 27
As a programmer, do you notice any uncomfortable issues with
your Java definition of a list? (Requires some thought and O-O
flair.)

4You might rightfully observe that it would be more proper to say “to a train
with one fewer wagon”: anything pointed to by a pointer-to-ListWagon is a train.
Congratulations—you are thinking like a proper computer scientist, and you seem to
have got the hang of recursion. Read on and do the exercises.
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A different but actually isomorphic view will store lists in an array.
The items in the array will be similar to the C ListWagon record structure
above, but the next field will just contain an integer. An empty list
will be represented by the value zero, while any non-zero integer will
be treated as the index into the array where the record with the two
components of a non-empty list can be found. Note that there is no
need for parts of a list to live in the array in any especially neat order—
several lists can be interleaved in the array without that being visible to
users of the abstract data type5. In fact the array in this case is roughly
equivalent to the whole memory in the case of the C ListWagon.

If it can be arranged that the data used to represent the payload and
next components of a non-empty list be the same size (for instance both
might be held as 32-bit values) then the array might be just an array of
storage units of that size. Now, if a list somehow gets allocated in this
array so that successive items in it are in consecutive array locations, it
seems that about half the storage space is being wasted with the next
pointers. There have been implementations of lists that try to avoid that
by storing a non-empty list as a payload element plus a boolean flag
(which takes one bit6) with that flag indicating if the next item stored in
the array is a pointer to the rest of the list (as usual) or is in fact itself
the rest of the list (corresponding to the list elements having been laid
out neatly in consecutive storage units).

Exercise 28
Draw a picture of the compact representation of a list described
in the notes.

The variations on representing lists are described here both because
lists are important and widely-used data structures, and because it is
instructive to see how even a simple-looking structure may have a num-
ber of different implementations with different space/time/convenience
trade-offs.

The links in lists make it easy to splice items out from the middle of
lists or add new ones. Lists provide one natural implementation of stacks
(see section 4.2.1), and are the data structure of choice in many places
where flexible representation of variable amounts of data is wanted.

A feature of lists is that, from one item, you can progress along the list
in one direction very easily; but, once you have taken the next of a list,

5Cfr. section 4.2.
6And thereby slightly reduces the space available for the payload.
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there is no way of returning (unless you independently remember where
the original head of your list was). To make it possible to traverse a list
in both directions one might define a new type called Doubly Linked List
(DLL) in which each wagon had both a next and a previous pointer.

The following equation

w.next.previous == w

would hold for every wagon w except the last, while the following equation

w.previous.next == w

would hold for every wagon w except the first7. Manufacturing a DLL
(and updating the pointers in it) is slightly more delicate than working
with ordinary uni-directional lists. It is normally necessary to go through
an intermediate internal stage where the conditions of being a true DLL
are violated in the process of filling in both forward and backwards point-
ers.

7Yet another variant would be the circular doubly linked list, in which these
equations would hold for all elements without exceptions. You shall use circular
doubly linked lists when you implement Fibonacci heaps in the second half of the
course.
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4.1.4 Graphs

We won’t give a formal definition of a graph until the second half of the
course, but you probably already have a reasonable mental image of a
bunch of nodes (vertices) with arrows (edges) between them. If a graph
has n vertices then it can be represented by an n×n “adjacency matrix”,
which is a boolean matrix with entry gij true if and only if the graph
contains an edge running from vertex i to vertex j. If the edges carry
data (for instance the graph might represent an electrical network and
we might need to represent the impedance of the component on each
edge) then the cells of the matrix might hold, say, complex numbers (or
whatever else were appropriate for the application) instead of booleans,
with some special value reserved to mean “no link”.

An alternative representation would represent each vertex by an inte-
ger, and have a vector such that element i in the vector holds the head of
a list (an “adjacency list”) of all the vertices connected directly to edges
radiating from vertex i.

The two representations clearly contain the same information, but
they do not make it equally easily available. For a graph with only a
few edges attached to each vertex, the list-based version may be more
compact, and it certainly makes it easy to find a vertex’s neighbours,
while the matrix form gives instant responses to queries about whether a
random pair of vertices are joined, and can be more compact (especially
when there are very many edges, and if the bit-array is stored in packed
form to make full use of machine words). We shall have much more to
say about graphs later in the course.

4.2 Abstract data types

When designing data structures and algorithms it is desirable to avoid
making decisions based on the accident of how you first sketch out a
piece of code. All design should be motivated by the explicit needs of
the application. The idea of an Abstract Data Type (ADT) is to support
this8. The specification of an ADT is a list of the operations that may
be performed on it, together with the identities (invariants) that they
satisfy. This specification does not show how to implement anything in
terms of any simpler data types. The user of an ADT is expected to
view this specification as the complete description of how the data type
and its associated functions will behave—no other way of interrogating

8The idea is generally considered good for program maintainability as well, but
that is not the primary concern of this particular course.

c© Frank Stajano 69



Chapter 4. Data structures

or modifying data is available, and the response to any circumstances
not covered explicitly in the specification is deemed undefined.

In Java, the idea of the Abstract Data Type can be expressed with
the interface language construct, which looks like a class with all the
so-called “signatures” of the class methods (i.e. the types of the input
and output parameters) but without any implementations. You can’t
instantiate objects from an interface; you must first derive a genuine
class from the interface and then instantiate objects from the class. And
you can derive several classes from the same interface, each of which
implements the interface in a different way—that’s the whole point. In
the rest of this chapter I shall describe ADTs with pseudocode resembling
Java interfaces. One thing that is missing from the Java interface
construct, however, is a formal way to specify the invariants that the
ADT satisfies; on the other hand, at the level of this course we won’t
even attempt to provide a formal definition of the semantics of the data
type through invariants, so I shall informally just resort to comments in
the pseudocode.

Using the practice we already introduced when describing sorting
algorithms, each method will be tagged with a possibly empty precon-
dition9 (something that must be true before you invoke the method,
otherwise it won’t work) then with an imperative description (labelled
behaviour) of what the method must do and finally with a possibly empty
postcondition (something that the method promises will be true after its
execution, provided that the precondition was true when you invoked it).

Examples given later in this course should illustrate that making an
ADT out of even quite simple operations can sometimes free one from
enough preconceptions to allow the invention of amazingly varied collec-
tions of implementations.

4.2.1 The Stack abstract data type

Let us now introduce the Abstract Data Type for a Stack: the standard
mental image is that of a pile of plates in your college buttery. The
distinguishing feature of this structure is that the only easily accessible
item is the one on top of the stack. For this reason this data structure is
also sometimes indicated as LIFO, which stands for “Last in, first out”.

9Some programming languages allow you to enter such invariants in the code not
just as comments but as assertions—a brilliant feature that programmers should learn
to use more frequently.
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0 ADT Stack {
1 boolean isEmpty();
2 // BEHAVIOUR: return true iff the structure is empty.
3

4 void push(item x);
5 // BEHAVIOUR: add element <x> to the top of the stack.
6 // POSTCONDITION: isEmpty() == false.
7 // POSTCONDITION: top() == x
8

9 item pop();
10 // PRECONDITION: isEmpty() == false.
11 // BEHAVIOUR: return the element on top of the stack.
12 // As a side effect, remove it from the stack.
13

14

15 item top();
16 // PRECONDITION: isEmpty() == false.
17 // BEHAVIOUR: Return the element on top of the stack (without removing it).
18 }

In the ADT spirit of specifying the semantics of the data structure
using invariants, we might also add that, for each stack s and for each
item x, after the following two-operation sequence

0 s.push(x)
1 s.pop()

the return value of the second statement is x and the stack s “is the same
as before”; but there are technical problems in expressing this correctly
and unambiguously using the above notation, so we won’t try. The idea
here is that the definition of an ADT should collect all the essential details
and assumptions about how a structure must behave (although the ex-
pectations about common patterns of use and performance requirements
are generally kept separate). It is then possible to look for different ways
of implementing the ADT in terms of lower level data structures.

Observe that, in the Stack type defined above, there is no description
of what happens if a user tries to compute top() when isEmpty() is
true, i.e. when the precondition of the method is violated. The outcome
is therefore undefined, and an implementation would be entitled to do
anything in such a case—maybe some garbage value would get returned
without any mention of the problem, maybe an error would get reported
or perhaps the computer would crash its operating system and delete all
your files. If an ADT wants exceptional cases to be detected and reported,
it must specify this just as clearly as it specifies all other behaviour10

10For example, it would be a great idea for the ADT to specify that all its methods
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The stack ADT given above does not make allowance for the push
operation to fail—although, on any real computer with finite memory,
it must be possible to do enough successive pushes to exhaust some re-
source. This limitation of a practical realization of an ADT is not deemed
a failure to implement the ADT properly: at the level of abstraction of
this introductory algorithms course, we do not really admit to the exis-
tence of resource limits!

There can be various different implementations of the Stack data type,
but two are especially simple and commonly used. The first represents
the stack as a combination of an array and an index (pointing to the
“top of stack”, or TOS). The push operation writes a value into the array
and increments the index11, while pop does the converse. The second
representation of stacks is as linked lists, where pushing an item just
adds an extra cell to the front of a list, and popping removes it. In both
cases the push and pop operations work by modifying stacks in place, so
(unlike what might happen in a functional language such as ML) after
invoking either of them the original stack is no longer available.

Stacks are useful in the most diverse situations. The page description
language PostScript is actually, as you may know, a programming lan-
guage organized around a stack (and the same is true of Forth, which may
have been an inspiration). Essentially in such languages the program is
a string of tokens that include operands and operators. During program
execution, any operands are pushed on the stack; operators, instead, pop
from the stack the operands they require, do their business on them and
finally push the result back on the stack. For example, the program

3 12 add 4 mul 2 sub
computes (3 + 12) × 4 − 2 and leaves the result, 58, on the stack. This
way of writing expressions is called Reverse Polish Notation and one of
its attractions is that it makes parentheses unnecessary (at the cost of
having to reorder the expression and making it somewhat less legible).

Exercise 29
Invent (or should I say “rediscover”?) a linear-time algorithm to
convert an infix expression such as
(3+12)*4 - 2
into a postfix one without parentheses such as
3 12 + 4 * 2 -.
By the way, would the reverse exercise have been easier or harder?

could raise a “Precondition violation” exception when appropriate.
11Note that stacks growing in the reverse direction are also plausible and indeed

frequent. (Why is that?)
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4.2.2 The List abstract data type

We spoke of linked lists as a basic low level building block in section
4.1.3, but here we speak of the ADT, which we define by specifying
the operations that it must support. Note how you should be able to
implement the List ADT with any of the implementations described in
4.1.3 (wagons and pointers, arrays and so forth) although sometimes
the optimizations will get in the way (e.g. packed arrays). The List
version defined here will allow for the possibility of re-directing links in
the list. A really full and proper definition of the ADT would need to say
something rather careful about when parts of lists are really the same (so
that altering one alters the other) and when they are similar in structure
and values but distinct12. Such issues will be ducked for now but must
be clarified before writing programs, or they risk becoming the source of
spectacular bugs.

0 ADT List {
1 boolean isEmpty();
2 // BEHAVIOUR: Return true iff the structure is empty.
3

4 item head(); // NB: Lisp people might call this ‘‘car’’.
5 // PRECONDITION: isEmpty() == false
6 // BEHAVIOUR: return the first element of the list (without removing it).
7

8 void prepend(item x); // NB: Lisp people might call this ‘‘cons’’.
9 // BEHAVIOUR: add element <x> to the beginning of the list.

10 // POSTCONDITION: isEmpty() == false
11 // POSTCONDITION: head() == x
12

13 List tail(); // NB: Lisp people might call this ‘‘cdr’’.
14 // PRECONDITION: isEmpty() == false
15 // BEHAVIOUR: return the list of all the elements except the first (without
16 // removing it).
17

18 void setTail(List newTail);
19 // PRECONDITION: isEmpty() == false
20 // BEHAVIOUR: replace the tail of this list with <newTail>.
21 }

You may note that the List type is very similar to the Stack type
mentioned earlier. In some applications it might be useful to have a
variant on the List data type that supported a setHead() operation to
update list contents (as well as chaining) in place, or an isEqualTo()

12For example, does the tail() method return a copy of the rest of the list or a
pointer to it? And similarly for setTail().
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test. Applications of lists that do not need setTail() may be able to
use different implementations of lists.

4.2.3 The Queue and Deque abstract data types

In the Stack ADT, the item removed by the pop() operation was the
most recent one added by push(). A Queue13 is in most respects similar
to a stack, but the rules are changed so that the item accessed by top()
and removed by pop() will be the oldest one inserted by push() (we
shall rename these operations to avoid confusion). Even if finding a neat
way of expressing this in a mathematical description of the Queue ADT
may be a challenge, the idea is simple. The above description suggests
that stacks and queues will have very similar interfaces. It is sometimes
possible to take an algorithm that uses a stack and obtain an interesting
variant by using a queue instead; and vice-versa.

0 ADT Queue {
1 boolean isEmpty();
2 // BEHAVIOUR: return true iff the structure is empty.
3

4 void put(item x);
5 // BEHAVIOUR: insert element <x> at the end of the queue.
6 // POSTCONDITION: isEmpty() == false
7

8 item get();
9 // PRECONDITION: isEmpty() == false

10 // BEHAVIOUR: return the first element of the queue, removing it
11 // from the queue.
12

13 item first();
14 // PRECONDITION: isEmpty() == false
15 // BEHAVIOUR: return the first element of the queue, without removing it.
16

17

18 }

A variant is the perversely-spelt Deque (double-ended queue), which
is accessible from both ends both for insertions and extractions and there-
fore allows four operations:

0 ADT Deque {
1 boolean isEmpty();
2

3 void putFront(item x);

13Sometimes referred to as a FIFO, which stands for “First In, First Out”.
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4 void putRear(item x);
5 // POSTCONDITION for both: isEmpty() == false
6

7 item getFront();
8 item getRear();
9 // PRECONDITION for both: isEmpty() == false

10 }

The Stack and Queue may be seen as subcases of the Deque in which
only one put and one get (as opposed to two of each) are enabled.

4.2.4 The Dictionary abstract data type

We are concerned with the kind of data structure that associates keys
(e.g. a word, or the name of a person) with values (e.g. the word’s def-
inition, or the person’s postal address) and allows you to look up the
relevant value if you supply the key. Note that, within the dictionary,
the mapping between keys and values is a function14: you cannot have
different values associated with the same key. For generality we assume
that keys are of type Key and that values are of type Value.

0 ADT Dictionary {
1 void set(Key k, Value v);
2 // BEHAVIOUR: store the given (<k>, <v>) pair in the dictionary.
3 // If a pair with the same <k> had already been stored, the old
4 // value is overwritten and lost.
5 // POSTCONDITION: get(k) == v
6

7 Value get(Key k);
8 // PRECONDITION: a pair with the sought key <k> is in the dictionary.
9 // BEHAVIOUR: return the value associated with the supplied <k>,

10 // without removing it from the dictionary.
11

12 void delete(Key k);
13 // PRECONDITION: a pair with the given key <k> has already been inserted.
14 // BEHAVIOUR: remove from the dictionary the key-value pair indexed by
15 // the given <k>.
16 }

Observe that this simple version of a dictionary does not provide a
way of asking if some key is in use, and it does not mention anything
about the number of items that can be stored in a dictionary. Practical
implementations may concern themselves with both these issues.

14As opposed to a generic relation. In other words, only one arrow goes out of
each source element.
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Dictionaries are also variously known as Maps, Tables, Associative
arrays or Symbol tables.

Probably the most important special case of a dictionary is when the
keys are known to be drawn from the set of integers in the range 0..n for
some modest n. In that case the dictionary can be modelled directly by
a simple vector, and both set() and get() operations have unit cost.
If the key values come from some other integer range (say a..b) then
subtracting a from key values gives a suitable index for use with a vector.
This simple and efficient strategy is known as direct addressing. If the
number of keys that are actually used is much smaller than the number
b−a of items in the range that the keys lie in, direct addressing becomes
extremely inefficient (or even infeasible) in space, even though its time
performance remains optimal, namely O(1) worst-case.

Exercise 30
How would you deal efficiently with the case in which the keys
are English words? (There are several possible schemes of various
complexity that would all make acceptable answers provided you
justified your solution.)

For sparse dictionaries one could try holding the data in a list, where
each item in the list could be a record storing a key-value pair. The
get() function can just scan along the list, searching for the key that is
wanted; if the desired key is not found, the behaviour of the function is
undefined15. But now there are several options for the set() function.
The first natural one just sticks a new key-value pair at the front of the
list, allowing get() to be coded so as to retrieve the first value that
it finds. The second one would scan the list and, if a key was already
present, it would update the associated value in place. If the required
key was not present it would have to be added.

Exercise 31
Should the new key-value pair added by set() be added at the
start or the end of the list? Or elsewhere?

Since in this second case duplicate keys are avoided, the order in which
15In a practical implementation we would do well to define what happens: raising

a “key not found” exception would be a sensible option. A less clean but commonly
used alternative might be to return a special value meaning “not found”.
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items in the list are kept will not affect the correctness of the data type,
and so it would be legal (if not always useful) to make arbitrary permu-
tations of the list each time it was touched.

If one assumes that the keys passed to get() are randomly selected
and uniformly distributed over the complete set of keys used, the linked
list representation calls for a scan down (an average of) half the length
of the list. For the version that always adds a new key-value pair at the
head of the list, this cost increases without limit as values are changed.
The other version keeps that cost down but has to scan the list when
performing set() operations as well as get()s.

To try to get rid of some of the overhead of the linked list representa-
tion, keep the idea of storing a dictionary as a bunch of key-value pairs
but now put these in an array rather than a linked list. Now suppose
that the keys used are ones that support an ordering, and sort the ar-
ray on that basis. Of course there now arise questions about how to do
the sorting and what happens when a new key is mentioned for the first
time—but here we concentrate on the data retrieval part of the process.
Instead of a linear search as was needed with lists, we can now probe
the middle element of the array and, by comparing the key there with
the one we are seeking, can isolate the information we need in one or the
other half of the array. If the comparison has unit cost, the time needed
for a complete look-up in an array with n cells will satisfy

f(n) = f(n/2) + k

and the solution to this recurrence shows us that the complete search can
be done in Θ(lg n).

Exercise 32
Solve the f(n) = f(n/2) + k recurrence, again with the trick of
setting n = 2m.

Another representation of a dictionary that also provides O(lg n) costs
is obtained by building a binary tree, where the tree structure relates very
directly to the sequence of comparisons that could be done during binary
search in an array. If a tree of n items can be built up with the median
key from the whole data set in its root, and each branch is similarly well
balanced, the greatest depth of the tree will be around lg n.
Having a linked representation makes it fairly easy to adjust the structure
of a tree when new items need to be added, but details of that will be left
until section 4.3. Note that, in such a tree, all items in the left sub-tree
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come before the root in sorting order, and all those in the right sub-tree
come after.

4.2.5 The Set abstract data type

There are very many places in the design of larger algorithms where it
is necessary to have ways of keeping sets of objects. In different cases,
different operations will be important, and finding ways in which various
subsets of the possible operations can be best optimized leads to the
discussion of a large range of sometimes quite elaborate representations
and procedures. We shall cover some of the more important (and more
interesting) options in this course.

Until we are more specific about the allowed operations, there isn’t
much difference between a Set and the Dictionary seen in the previous
section: we are still storing key-value pairs, and keys are unique. But
now we are going to be more specific, and define extra operations for the
Set by adding to the basic ones introduced for the Dictionary. We may
think of many plausible extensions that are quite independent of each
other. Since this is a course on data structures and not on object-oriented
programming, in the pseudocode I shall gloss over the finer points of
multiple inheritance, mixin classes and diamond diagrams, but I hope
the spirit is clear: the idea is that you could form a Set variant that suits
your needs by adding almost any combination of the following methods
to the Dictionary ADT seen earlier.

Simple variants could just add elementary utilities:

0 boolean isEmpty()
1 // BEHAVIOUR: return true iff the structure is empty.
2

3 boolean hasKey(Key x);
4 // BEHAVIOUR: return true iff the set contains a pair keyed by <x>.
5

6 Key chooseAny();
7 // PRECONDITION: isEmpty() == false
8 // BEHAVIOUR: Return the key of an arbitrary item from the set.

For a more sophisticated variant, let us introduce the assumption that
there exists a total order on the set of keys—something that the Dictio-
nary did not require16. We may then meaningfully introduce methods

16One might argue that, in mathematics, one of the defining characteristics of a
set is that its elements are not ordered. But this does not prevent from making a set
out of elements on which an order is defined, nor from asking what is the smallest
element in the set, and so forth.
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that return the smallest or largest key of the set, or the next largest or
next smallest with respect to a given one.

0 Key min();
1 // PRECONDITION: isEmpty() == false
2 // BEHAVIOUR: Return the smallest key in the set.
3

4 Key max();
5 // PRECONDITION: isEmpty() == false
6 // BEHAVIOUR: Return the largest key in the set.
7

8 Key predecessor(Key k);
9 // PRECONDITION: hasKey(k) == true

10 // PRECONDITION: min() != k
11 // BEHAVIOUR: Return the largest key in the set that is smaller than <k>.
12

13 Key succcessor(Key k);
14 // PRECONDITION: hasKey(k) == true
15 // PRECONDITION: max() != k
16 // BEHAVIOUR: Return the smallest key in the set that is larger than <k>.

Another interesting and sometimes very useful feature is the ability
to form a set as the union of two sets. Note how a proper ADT definition
would have to be much more careful about specifying whether the original
sets are preserved or destroyed by the operation, as well as detailing what
to do if the two sets contain pairs with the same key but different values.

0 Set unionWith(Set s);
1 // BEHAVIOUR: Change this set to become the set obtained by
2 // forming the union of this set and <s>.

The remaining sections in this chapter will describe implementations
of specific variations on the Dictionary/Set theme, each with its own
distinctive features and trade-offs in terms of supported operations and
efficiency in space and time.

4.3 Binary search trees

Textbook

Study chapter 12 in CLRS3.

A binary search tree requires a key space with a total order and
implements the Set variant that also supports the computation of min(),
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max(), predecessor() and successor().
Each node of the binary tree will contain an item (consisting of a

key-value pair17) and pointers to two sub-trees, the left one for all items
with keys smaller than the stored one and the right one for all the items
with larger keys.

Searching such a tree is simple: just compare the sought key with
that of the visited node and, until you find a match, recurse down in the
left or right subtree as appropriate. The maximum and minimum values
in the tree can be found in the leaf nodes discovered by following all left
or right pointers (respectively) from the root.

Exercise 33
(Clever challenge, straight from CLRS3—exercise 12.2-4.) Pro-
fessor Bunyan thinks he has discovered a remarkable property of
binary search trees. Suppose that the search for key k in a binary
search tree ends up in a leaf. Consider three sets: A, the keys to
the left of the search path; B, the keys on the search path; and
C, the keys to the right of the search path. Professor Bunyan
claims that any three keys a ∈ A, b ∈ B, and c ∈ C must sat-
isfy a ≤ b ≤ c. Give a smallest possible counterexample to the
professor’s claim.

To find the successor18 s of a node x whose key is kx, look in x’s
17If the value takes up more than a minimal amount of space, it is actually stored

elsewhere as “satellite data” and only a pointer is stored together with the key.
18The case of the predecessor is analogous, except that left and right must be

reversed.
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right subtree: if that subtree exists, the successor node s must be in
it—otherwise any node in that subtree would have a key between kx and
ks, which contradicts the hypothesis that s is the successor. If the right
subtree does not exist, the successor may be higher up in the tree. Go up
to the parent, then grand-parent, then great-grandparent and so on until
the link goes up-and-right rather than up-and-left, and you will find the
successor. If you reach the root before having gone up-and-right, then
the node has no successor: its key is the highest in the tree.

Exercise 34
Why, in BSTs, does this up-and-right business find the successor?
Can you sketch a proof?

Exercise 35
(Important.) Prove that, in a binary search tree, if node n has
two children, then its successor has no left child.

To insert in a tree, one searches to find where the item ought to be
and then inserts there. Deleting a leaf node is easy. To delete a non-leaf
is harder, and there will be various options available. A non-leaf with
only one child can be simply replaced by its child. For a non-leaf with two
children, an option is to replace it with its successor (or predecessor—
either will work). Then the item for deletion can’t have two children (cfr.
exercise above) and can thus be deleted in one of the ways already seen;
meanwhile, the newly moved up object satisfies the order requirements
that keep the tree structure valid.

Exercise 36
Prove that this deletion procedure, when applied to a valid binary
search tree, always returns a valid binary search tree.

Most of the useful operations on binary search trees (get(), min(),
max(), successor() and so on) have cost proportional to the depth of
the tree. If trees are created by inserting items in random order, they
usually end up pretty well balanced, and this cost will be O(lg n). But the
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tree pictured as an example at the beginning of this section, while valid,
is instead very unbalanced: it has a depth almost equal to its number of
nodes. An easy way to obtain a worst-case BST is to build it by inserting
items in ascending order: then the tree degenerates into a linear list of
height n. It would be nice to be able to re-organize things to prevent
that from happening. In fact there are several methods that work, and
the trade-offs between them relate to the amount of space and time that
will be consumed by the mechanism that keeps things balanced. The
next section describes two (related) sensible compromises.

4.4 2-3-4 trees

We were not able to guarantee logarithmic performance for Binary Search
Trees because we could not be sure they would always be balanced. So
let’s now discuss a more ingenious alternative, 2-3-4 trees19. Practically
nobody uses 2-3-4 trees nowadays, but understanding their principles is
instructive because it will help us make sense of both Red-Black Trees
(which are balanced BSTs based on seemingly arcane rules and axioms)
and the much larger B-trees that let you index more data than would
physically fit in your RAM. We’ll be studying all of these data structures
next.

Binary trees had one key and two outgoing pointers in each node. 2-3-
4 trees generalize this structure to allow nodes to contain more keys and
pointers. Specifically, besides binary nodes (2-nodes) with 2 children
and 1 key, they also allow 3-nodes, with three outgoing pointers and
therefore 2 keys, and 4-nodes, with 4 outgoing pointers and therefore 3
keys. As with regular binary trees, the pointers are all to subtrees which
only contain key values separated by the keys in the parent node: in
the following picture, the branch labelled β leads to a subtree containing
keys k such that “A” ≤ k ≤ “B”.

19Note that 2-3-4 trees are one of the very few topics in this course’s syllabus that
are not discussed in the CLRS3 textbook—so pay special attention.
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Searching a 2-3-4 tree is almost as easy as searching a binary tree. Any
concern about extra work within each node should be balanced by the
realization that, with a larger branching factor, 2-3-4 trees will generally
be shallower than pure binary trees.

Inserting into a 2-3-4 node also ends up being fairly easy, and—even
better—it turns out that a simple insertion process automatically leads
to trees that are always balanced. To insert, search down through the
tree looking for where the new item must be added. If an item with the
same key is found, just overwrite it20—the structure of the tree does not
change at all in this trivial case. If you can’t find the key, continue until
the bottom level (never add a new item into a node in the middle of the
tree, even if there’s space) to reach the place where the new key should
be added. If that place is a 2-node or a 3-node, then the item can be
stuck in without further ado, upgrading that node to a 3-node or 4-node
respectively. If the insertion was going to be into a 4-node, something
has to be done to make space for the newcomer. The operation needed
is to decompose the 4-node into a pair of 2-nodes before attempting the
insertion—this then means that the parent of the original 4-node will gain
an extra key (the middle key of the former 4-node) and an extra child,
which in turn will be a pain if the parent was itself a 4-node. To ensure
that there will always be room for insertion, we apply some foresight:
while searching down the tree to find where to make an insertion, if we
ever come across a 4-node we split it immediately; thus, by the time we
go down and look at its offspring and have our final insertion to perform,
we can be certain that there are no 4-nodes in the path from the root to
where we are. If the root node gets to be a 4-node, it can be split into
three 2-nodes, and this is the only circumstance in which the height of
the tree increases.

The key to understanding why 2-3-4 trees remain balanced is the
recognition that splitting a 4-node (other than the root) does not alter
the length of any path from the root to a leaf of a tree. Splitting the
root increases the length of all paths by 1. Thus, at all times, all paths
through the tree from root to a leaf have the same length. The tree has

20Meaning: replace the old value (or pointer to satellite data) with the new.
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a branching factor of at least 2 at each level, and so, in a tree with n
items, all items will be at worst lg n down from the root.

Once again, deletions require some more intellectual effort and atten-
tion to detail and we don’t have time to cover all of that here. The key
point is that, to preserve the 2-3-4 structure, deletions may only happen
in the bottom layer21; therefore, if you must delete an item that resides
elsewhere, you must first move things around a bit. Our experience with
BSTs suggests swapping the item to be deleted with its successor or pre-
decessor (at least one of which must be in the bottom layer) and then
deleting it there. That’s a good idea, but it’s not the whole story: what
if the bottom node you’re deleting from was already a 2-node? What
would it become? Stay tuned until we talk of B-tree deletions in section
4.6.2, where we shall describe in detail an even more general case.

4.5 Red-black trees

Textbook

Study chapter 13 in CLRS3.

4.5.1 Definition of red-black trees

Red-black trees are special binary search trees that are guaranteed always
to be reasonably balanced: no path from the root to a leaf is more than
twice as long as any other. They are defined by mystical rules that, in
your textbook, seem to come out of the blue. But now, with 2-3-4 trees
under our belt, we have the intellectual key to unravel the mystery. Let’s
have a look.

(Imagine that the nodes with a thin border are red. If we could afford
the luxury of colour printing, they would be. Feel free to colour them
in.)

21Otherwise, if you deleted a key from a node in a non-bottom layer, such as “O”
in the picture above, what would happen to the subtrees hanging off that key to its
left (“N”) and right (“RSU”)?
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Formally, a red-black tree can be defined as a binary search tree that
satisfies the following five invariants.

1. Every node is either red or black.

2. The root is black.

3. All leaves are black and never contain key-value pairs22.

4. If a node is red, both its children are black.

5. For each node, all paths from that node to descendent leaves contain
the same number of black nodes.

The most important property is clearly the last: the others are only
relevant as a framework that allows us to enforce the last property.

22Since leaves carry no information, they are sometimes omitted from the drawings;
but they are necessary for the consistency of the remaining invariants.
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The above formulation sometimes confuses people, leading alert read-
ers wondering whether a linear list of alternating black and red nodes
wouldn’t match the properties and yet be maximally unbalanced. Or do
the rules say anywhere that each node of the binary tree is forced to have
two children? The answer is somewhat subtle. No, the rules don’t require
each node to have two “full” children, meaning children with keys and
values (if they did, it would be impossible to have a tree of finite size);
however each binary node will have two pointers to its children and, if
either or both of these children is missing, the corresponding pointer(s)
will be null. The subtlety is that we consider all these null pointers to be
empty black leaves. You could imagine memory position 0, where null
pointers point, to be holding the archetypal black leave; and, since leaves
carry no information, we don’t need to store distinct ones—an indicator
that “there’s a black leaf there” is sufficient, and that’s precisely what the
null pointer does. In practice, people often don’t even draw the empty
black leaves when drawing the Red-Black tree, since their position is ob-
vious and they carry no information. But what matters is that those
hidden leaves are there, so the tree above, shaped like a linear list, is
not a valid Red-Black tree because the paths from the root to the little
black leaves hanging off the side of each node in the chain violate the
fifth invariant.
From invariant 4 you see that no path from root to leaf may contain two
consecutive red nodes. Therefore, since each path starts with a black
root (invariant 2) and ends with a black leaf (invariant 3), the number
of red nodes in the path is at most equal to that of the black non-leaf
nodes. Since, by invariant 5, the number of black non-leaf nodes in each
path from the root to any leaf, say b, is the same across the tree, all such
paths have a node count between b and 2b.

Exercise 37
What are the smallest and largest possible number of nodes of a
red-black tree of height h, where the height is the length in edges
of the longest path from root to leaf?

It is easy to prove from this that the maximum depth of an n-node red-
black tree is O(lg n), which is therefore the time cost of get(), min(),
max(), successor() and so on. Methods that only inspect the tree,
without changing it, are identical to those for the Binary Search Tree.
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4.5.2 Understanding red-black trees

How did this structure and these invariants come about? With a little
thought you will now recognize Red-Black trees as really nothing more
than a trick to transport the clever ideas of 2-3-4 trees into the more uni-
form and convenient realm of pure binary trees. The 2-3-4 trees are easier
to understand but less convenient to code, because of all the complica-
tion associated with having three different types of nodes and several keys
(and therefore comparison points) for each node. The binary red-black
trees have complementary advantages and disadvantages.

The idea is that we can represent any 2-3-4 tree as a red-black tree:
a black node stands for the “core” (the root, actually) of a regular 2-3-4
node, while red nodes are used as a way of providing extra pointers. Just
as 2-3-4 trees have the same number (k, say) of nodes from root to each
leaf, red-black trees always have k black nodes on any path, and can have
from 0 to k red nodes as well. Thus the depth of the new red-black tree
is at worst twice that of a 2-3-4 tree. Insertions and node splitting in
red-black trees will just have to follow rules equivalent to those that were
set up for 2-3-4 trees.

The key to understanding red-black trees is to map out explicitly the
isomorphism between them and 2-3-4 trees. So, to set you off in the right
direction. . .

Exercise 41
For each of the three possible types of 2-3-4 nodes, draw an iso-
morphic “node cluster” made of 1, 2 or 3 red-black nodes. The
node clusters you produce must:

• Have the same number of keys, incoming links and outgoing
links as the corresponding 2-3-4 nodes. as the corresponding
2-3-4 nodes.

• Respect all the red-black rules when composed with other
node clusters.

But what about set(), i.e. inserting a new item? Finding the correct
place in the tree involves an algorithm very similar to that of get(), but
as we discussed for 2-3-4 trees we can’t just insert in the middle of the
tree because we also need to preserve the red-black properties, and this
can be tricky. There are complicated recipes to follow, based on left and
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right rotations, for restoring the RBT invariants after an insertion, and
we’ll look at them next.

First, though, rotations.

4.5.3 Rotations

A rotation is a local transformation of a BST (any BST, not necessarily a
Red-Black one) that changes the shape of the BST but preserves the BST
properties. It is a useful operation for someone who wishes to rebalance
a BST. When we say a “local” transformation, we mean that a rotation
involves rewriting a small and finite number of pointers. This operation
has a constant cost that does not depend on the size of the BST or on
the position in the tree of the nodes on which we perform the rotation.

Two types of rotation are possible: a left and a right rotation. Some-
times people speak of a rotation of a node, but really what is being
rotated is an edge connecting a pair of nodes. In the diagram below,
when moving from the situation on the left to that on the right we per-
form a right rotation, and what is being rotated to the right is the BD
edge.

Some authors may speak of a right rotation of the D node (the “par-
ent” among the two nodes), but calling it a right rotation of the BD edge
is probably much clearer.

Exercise 38
With reference to the rotation diagram in the handout, and to
the stupid way of referring to rotations that we don’t like, what
would a left rotation of the D node be instead? (Hint: it would
not be the one marked as “Left rotation” in the diagram.)

Note how, in the right rotation shown, node D changes from being
the parent of B to being its right child. Also, while A remains B’s left
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child and E remains D’s right child, C changes from being B’s right child
to becoming D’s left child. Clearly it could not stay on as B’s right child
since now B has acquired D as its new right child! And conversely D
has lost its left child (formerly B), so there is a convenient empty space
there.

The end result is another tree, with a slightly different shape, but
still definitely a BST, as you can easily verify. A, and all the other nodes
in the subtree rooted at A, was < B, as B’s left child, and continues to
be so, since it is still B’s left child. Similarly, E and all the nodes of
E’s subtree were > D and still are, as D’s right child. As for C and its
subtree: it used to be > B, as B’s right child, but also < D, by virtue of
being within B’s subtree with B a left child of D. After the rotation, C
and its subtree are still > B, by virtue of having moved into D’s subtree,
and are < D because they are D’s left child. So, with a slight abuse of
notation, we can write that A < B < C < D < E holds before and after
the rotation.

Note also how, in the right rotation, “B goes up and D goes down”.
Depending on the heights of the A, C and E subtrees, this may cause the
heights of B and D to change. This is why a rotation (or, more likely,
a carefully chosen sequence of rotations) may be useful in rebalancing a
tree.

One thing that may not be immediately obvious from the diagram is
that the rotation does not necessarily have to be performed at the root of
the tree: any edge of the BST can be rotated. The top node of the edge
being rotated (D in the example above) may well be the child of another
parent node, say for example the right child of some higher node P. At
the end of the rotation, the new right child of P will be B, the node that
has replaced D as the root of the subtree involved in the rotation (or, in
other words, the node at the other end of the DB edge being rotated).

4.5.4 Implementing red-black trees

If we want to implement the main methods of a red-black-tree class,
namely set(), get() and delete(), we must ensure that every invoca-
tion of every method preserves the five RBT invariants.

As we already noted, methods that don’t change the tree, such as
get(), are identical to those of a BST (which the RBT also is).

Let’s look at insertion next: the set() method does change the tree,
and indeed in the case of the BST might cause an inbalance (think of in-
serting the values of an ascending sequence), which would clearly violate
the RBT invariants. So we expect the RBT version to be different if it
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is going to yield a balanced23 tree.
In how many ways could an insertion violate the invariants? The

new node n is always appended to a parent node p, except if the tree
was empty (in which case n becomes the root and the only node, and
won’t violate any invariants so long as we paint it black). If parent p was
black, by appending a red n we satisfy all invariants automatically and
insertion is concluded. However, if p was red, we are in trouble whatever
we do: if we append a black n we have introduced a path with a different
black-height from p (compared to the path going to the other child of p),
violating invariant 5; whereas, if we append a red n, we have introduced
two consecutive reds, violating invariant 4. Changing the black-height of
one path and not the others sounds like a lot of trouble, so let’s instead
choose always to insert a red n into a red p and fix things up. Sometimes
this causes trouble further up the tree, which by then is temporarily not
a valid RBT, so we have to be quite careful about our preconditions and
invariants if we want to produce a correct algorithm. There are several
cases to consider.

The red parent node p in turn has a parent (it must do, because
the root can’t be red thanks to invariant 2, so the red p can’t be the
root), which we’ll call g for “grandparent”, and this g may well have
another child u, the sibling of p and therefore the “uncle” of n. What
are the possible relative positions and colours of these nodes? Clearly
g is always at the top of this subtree, and has u (if it exists) and p as
its children, and p may be the left or the right child of g. We have
already established that p is red (because if it’s black then no invariants
are violated by appending a red child to it, so we don’t need to do any
further fix-up work), which means that g must be black (else the original
tree would violate invariant 4, as red node g would have a red child p,
and two consecutive reds are not allowed). We might be tempted to say
that u, if it exists, must be red too (else the original tree would violate
invariant 5 about all paths from g to descendent leaves having the same
number of black nodes), but unfortunately this is not necessarily true.

Exercise 39
During RBT insertion, if p is red and g is black, how could u ever
possibly be black? How could p and u ever be of different colours?
Would that not be an immediate violation of invariant 5?

So, starting with the premise that n and p are red and that g is
23Not literally: only in the RBT sense that all paths from a node to its descendent

leaves have lengths within a factor of 2 of each other.
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black, we distinguish three cases. Case 1 is when u is red. If u is black or
doesn’t exist, we have one of the other two cases. If the path g → p→ n
makes a zig-zag (left-right or right-left), it’s case 2; if instead it’s straight
(left-left or right-right), it’s case 3. Case 2 can be reduced to case 3 with
a rotation.

Exercise 40
Draw the three cases by yourself and recreate, without reading,
the correct procedure to fix each of them. Then apply it to figure
13.4.(a) of CLRS3, without looking at the rest of the figure.

When in case 1 (n, p, u red and g black, as above), simply flip the
colour of p, u and g. As a result, the subtree rooted at g no longer
violates invariant 4 (if a node is red, its children must be black). If g has
a black parent we have finished. If not, the only possible RBT violation
is either that g is the root (has no parent) and is red (violating invariant
2) or that g and its parent are both red. In the former case it suffices
to recolour g black, because no other part of the tree is affected. In the
latter case, the problem of two consecutive red nodes is moved two levels
up the tree (rename g as the new n, g’s red parent as p and so forth) and
must be dealt with again as one of the three cases.

When in case 2 (n, p red, g, u black, g → p → n is a zig-zag, as
above), perform a rotation on the p − n edge to transform the zig-zag
into a straight g → n → p. Note how this has made n the parent of p,
so the names are no longer appropriate. If you swap the names of n and
p, however, you are now in case 3.
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When in case 3 (n, p red, g, u black, g → p → n is straight, as
above), swap the colours of p and g and rotate the p − g edge to make
p become the root of the subtree instead of g. You end up with p as a
black root-of-subtree with two red children (n and g), and g has a black
child. Since p is black, it can be child of any node (or no node) without
violating invariants 2 or 4. You no longer have any local RBT violations
anywhere and you may stop.

This summary does cover all possible cases and gives a fair idea of
what happens but proving that everything is correct is not trivial (par-
ticularly proving that the global invariant 5 is maintained). The crucial
part of the correctness proof is establishing and maintaining the loop
invariant, which unfortunately will be less clean than a naïve “the tree
obeys the five RBT invariants” because previous iterations of the loop
(of case 1 in particular) may have violated some of them, and we may
not have fixed them back yet. Deletion is even more involved and we
won’t have time to look at the detailed rules for the red-black version;
but we’ll deal with deletion for B-trees, which are a more general version
of 2-3-4 trees, which in turn are another form of red-black trees. . .

When you come to writing and debugging actual code (always a rec-
ommended, instructive and enjoyable activity in this course) you will
probably feel that there seem to be uncomfortably many pointers to
keep track of and cases to deal with, and that it is tedious having to cope
with both each case and its mirror image. But, with a clear head, it is
still fundamentally OK.

4.6 B-trees

Textbook

Study chapter 18 in CLRS3.

The trees described so far (BSTs, red-black trees and 2-3-4 trees) are
meant to be instantiated in dynamically allocated main memory. With
data structures kept on disc, instead, it is sensible to make the unit of
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data fairly large—perhaps some size related to the natural storage unit
that your physical disc uses (a sector, cluster or track). Minimizing the
total number of separate disc accesses will be more important than get-
ting the ultimately best packing density. There are of course limits, and
use of over-the-top data blocks will use up too much fast main memory
and cause too much unwanted data to be transferred between disc and
main memory along with each necessary bit.

B-trees are a good general-purpose disc data structure. We start by
generalizing the idea of a sorted binary tree to a tree with a very high
branching factor. The expected implementation is that each node will
be a disc block containing an alternation of keys24 and pointers to sub-
trees. This will tend to define the maximum branching factor that can
be supported in terms of the natural disc block size and the amount of
memory needed for each key. When new items are added to a B-tree it
will often be possible to add the item within an existing block without
overflow. Any block that becomes full can be split into two, and the single
reference to it from its parent block expands to the two references to the
new half-empty blocks. For B-trees of reasonable branching factor, any
reasonable amount of data can be kept in a quite shallow tree: although
the theoretical cost of access grows with the logarithm of the number of
data items stored, in practical terms it is constant.

Each node of a B-tree has a lower and an upper bound on the number
of keys it may contain25. When the number of keys exceeds the upper
bound, the node must be split; conversely, when the number of keys goes
below the lower bound, the node must be merged with another one—and
either of these operations might potentially trigger other rearrangements.
The tree as a whole is characterized by an integer parameter t ≥ 2 called
the minimum degree of the B-tree: each node must have between t
and 2t pointers26, and therefore between t−1 and 2t−1 keys. There is a
variant known as B*-tree (“b star tree”) in which non-root internal nodes
must be at least 2/3 full, rather than at least 1/2 full as in the regular
B-tree. The formal rules can be stated as follows.

1. There are internal nodes (with keys and payloads and children) and
leaf nodes (without keys or payloads or children).

24More precisely key-value pairs, as usual, since the reason for looking up a key is
ultimately to retrieve the value or satellite data associated with it. In practice the
“payload” shown below each key in the picture will often be a pointer to the actual
payload, unless values are of small and constant size.

25Except that no lower bound is imposed on the root, otherwise it would be im-
possible to represent B-trees that were nearly empty.

26See footnote 25 again.
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2. For each key in a node, the node also holds the associated payload27.

3. All leaf nodes are at the same distance from the root.

4. All internal nodes have at most 2t children; all internal nodes except
the root have at least t children.

5. A node has c children iff it has c− 1 keys.

The example above assumes a B-tree with t = 64, meaning each
internal node will have between 64 and 128 pointers to children and
thus between 63 and 127 keys (numbered from 0, so reaching up to 126
at most). The particular internal node pictured holds n = 101 keys
(numbered from 0 to 100) and thus points to 102 children.

The algorithms for adding new data into a B-tree ensure that the
tree remain balanced. This means that the cost of accessing data in
such a tree can be guaranteed to remain low even in the worst case.
The ideas behind keeping B-trees balanced are a generalization of those
used for 2-3-4-trees28 but note that the implementation details may be
significantly different, firstly because the B-tree will have such a large
branching factor and secondly because all operations will need to be
performed with a view to the fact that the most costly step is reading a
disc block. In contrast, 2-3-4-trees are typically used as in-memory data
structures so you count memory accesses rather than disc accesses when
evaluating and optimizing an implementation.

27Or, more likely, a pointer to it, unless the payload has a small fixed size compa-
rable to that of the pointer.

28Structurally, you can view 2-3-4 trees as a subcase of B-trees with t = 2.
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4.6.1 Inserting

To insert a new key (and payload) into a B-tree, look for the key in the
B-tree in the usual way. If found, update the payload in place. If not
found, you’ll be by then in the right place at the bottom level of the tree
(the one where nodes have keyless leaves as children); on the way down,
whenever you find a full node, split it in two on the median key and
migrate the median key and resulting two children to the parent node
(which by inductive hypothesis won’t be full). If the root is full when
you start, split it into three nodes (yielding a new root with only one
key and adding one level to the tree). Once you get to the appropriate
bottom level node, which won’t be full or you would have split it on your
way there, insert there.

Exercise 42
(The following is not hard but it will take somewhat more than
five minutes.) Using a soft pencil, a large piece of paper and an
eraser, draw a B-tree with t = 2, initially empty, and insert into
it the following values in order:

63, 16, 51, 77, 61, 43, 57, 12, 44, 72, 45, 34, 20, 7, 93, 29.

How many times did you insert into a node that still had room?
How many node splits did you perform? What is the depth of the
final tree? What is the ratio of free space to total space in the
final tree?

4.6.2 Deleting

Deleting is a more elaborate affair because it involves numerous subcases.
You can’t delete a key from anywhere other than a bottom node (i.e.

one whose children are keyless leaves), otherwise you upset its left and
right children that lose their separator. In addition, you can’t delete
a key from a node that already has the minimum number of keys. So
the general algorithm consists of creating the right conditions and then
deleting (or, alternatively, deleting and then readjusting).

To move a key to a bottom node for the purpose of deleting it, swap it
with its successor (which must be in a bottom node). The tree will have
a temporary inversion, but that will disappear as soon as the unwanted
key is deleted.
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Exercise 43
Prove that, if a key is not in a bottom node, its successor, if it
exists, must be.

To refill a node that has too few keys, use an appropriate combination
of the following three operations, which rearrange a local part of a B-tree
in constant time preserving all the B-tree properties.

Merge The first operation merges two adjacent sibling nodes and the
key that separates them from the parent node. The parent node
loses one key.

Split The reverse operation splits a node into three: a left sibling, a
separating key and a right sibling. The separating key is sent up
to the parent.

Redistribute The last operation redistributes the keys among two ad-
jacent sibling nodes. It may be thought of as a merge followed by
a split in a different place29, and this different place will typically
be the centre of the large merged node.

Each of these operations is only allowed if the new nodes thus formed
respect their min and max capacity constraints.

Here is then the pseudocode algorithm to delete a key k from the
B-tree.

0 def delete(k):
1 """B-tree method for deleting key k.
2 PRECONDITION: k is in this B-tree.
3 POSTCONDITION: k is no longer in this B-tree."""
4

5 if k is in a bottom node B:
6 if B can lose a key without becoming too small:
7 delete k from B locally
8 else:
9 refill B (see below)

10 delete k from B locally
11 else:
12 swap k with its successor
13 # ASSERT: now k is in a bottom node
14 delete k from the bottom node with a recursive invocation

29We say “thought of” because such a merge might be disallowed as a stand-alone
B-tree operation—the resulting node might end up having more than the allowed
number of keys.
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The following pseudocode, invoked as a subroutine by the previous frag-
ment, refills a node B that currently has the minimum allowed number
of keys.

0 def refill(B):
1 """B-tree method for refilling node B.
2 PRECONDITION: B is an internal node of this B-tree, with t-1 keys.
3 POSTCONDITION: B now has more than t-1 keys."""
4

5 if either the left or right sibling of B can afford to lose any keys:
6 redistribute keys between B and that sibling
7 else:
8 # ASSERT: B and its siblings all have the min number of keys, t-1
9 merge B with either of its siblings

10 # ...this may require recursively refilling the parent of B,
11 # because it will lose a key during the merge.

4.7 Hash tables

Textbook

Study chapter 11 in CLRS3.

A hash table implements the general case of the Dictionary ADT,
where keys may not have a total order defined on them. In fact, even
when the keys used do have an order relationship associated with them,
it may be worth looking for a way of building a dictionary without using
this order. Binary search makes locating items in a dictionary easier by
imposing a coherent and ordered structure; hashing, instead, places its
bet the other way, on chaos.

A hash function h(k) maps a key of arbitrary length onto an integer
in the range 0 to m − 1 for some size m and, for a good hash function,
this mapping will appear to have hardly any pattern. Now, if we have
an array of size m, we can try to store a key-value pair with key k at
location h(k) in the array. Unfortunately, sometimes two distinct keys
k1 and k2 will map to the same location h(k1) = h(k2); this is known as
a collision. There are two main strategies for handling it, called chaining
and open addressing and illustrated below30.

30See footnote 33.
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Chaining. We can arrange that the locations in the array hold little
linear lists31 that collect all the keys that hash to that particular
value. A good hash function will distribute keys fairly evenly over
the array, so with luck this will lead to lists with average length
dn/me if n keys are in use32.

Exercise 44
(Trivial) Make a hash table with 8 slots and insert into it the
following values:

15, 23, 12, 20, 19, 8, 7, 17, 10, 11.

Use the hash function

h(k) = (k mod 10) mod 8

and, of course, resolve collisions by chaining.

Open addressing. The second way of using hashing is to use the hash
value h(n) as just a first preference for where to store the given
key in the array. On adding a new key, if that location is empty
then well and good—it can be used; otherwise, a succession of
other probes are made of the hash table according to some rule
until either the key is found to be present or an empty slot for
it is located. The simplest (but not the best) method of collision
resolution is to try successive array locations on from the place of

31These lists are dynamically allocated and external to the array.
32Note that n might be � m.
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the first probe, wrapping round at the end of the array33. Note
that, with the open addressing strategy, where all keys are kept
in the array, the array may become full, and that its performance
decreases significantly when it is nearly full; implementations will
typically double the size of the array once occupancy goes above a
certain threshold.

Exercise 45
Non-trivial Imagine redoing the exercise above but resolving col-
lisions by open addressing. When you go back to the table to
retrieve a certain element, if you land on a non-empty location,
how can you tell whether you arrived at the location for the de-
sired key or on one occupied by the overspill from another one?
(Hint: describe precisely the low level structure of each entry in
the table.)

Exercise 46
How can you handle deletions from an open addressing table?
What are the problems of the obvious naïve approach?

The worst-case cost of using a hash table can be dreadful. For instance,
given some particular hash function, a malicious adversary could select
keys so that they all hashed to the same value. The average case, however,
is pretty good: so long as the number of items stored is sufficiently smaller
than the size of the hash table, then both adding and retrieving data
should have constant cost. When the hash table is mostly empty this
result can be derived trivially. The analysis of expected costs for hash
tables that have a realistic load is of course more complex but, so long
as the hash table isn’t too close to being full, we still get constant-time
performance for the average case.

33In the picture above, keys 12 and 7 both hash to array index 1. In the chaining
version, they are both stored in a linked list at array position 1. In the open addressing
version, with linear probing, key 12 was stored at position 1 but, on attempting to
store key 7, it was found that h(7) = 1 was an already occupied position. So, position
2 was tried; but that too was occupied, by 34 whose hash was 2. So the next free
position was used, which turned out to be 3, even though h(7) 6= 3.
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4.7.1 A short note on terminology

Confusingly, some people (not us) use the terms “open hashing” to refer
to “chaining” and “closed hashing” to refer to “open addressing”—be ready
for it. But we shall instead consistently use the terminology in CLRS3,
as indicated above.

4.7.2 Probing sequences for open addressing

Many strategies exist for determining the sequence of slots to visit until
a free one is found. We may describe the probe sequence as a function of
the key k and of the attempt number j (in the range from 0 to m − 1).
Using a Java-like pseudocode to show argument types:

0 int probe(Key k, int j);
1 // BEHAVIOUR: return the array index to be probed at attempt <j>
2 // for key <k>.

So as not to waste slots, the curried function obtained by fixing the
key to any constant value must be a permutation of 0, . . . ,m − 1 (the
range of indices of the array). In other words, we wish to avoid probe
sequences that, for some keys, fail to explore some slots.

Linear probing This easy probing function just returns h(k) + j mod
m. In other words, at every new attempt, try the next cell in sequence.
It is always a permutation. Linear probing is simple to understand and
implement but it leads to primary clustering : many failed attempts hit
the same slot and spill over to the same follow-up slots. The result is
longer and longer runs of occupied slots, increasing search time.

Quadratic probing With quadratic probing you return h(k) + cj +
dj2 mod m for some constants c and d. This works much better than
linear probing, provided that c and d are chosen appropriately: when
two distinct probing sequences hit the same slot, in subsequent probes
they then hit different slots. However it still leads to secondary clustering
because any two keys that hash to the same value will yield the same
probing sequence.

Double hashing With double hashing the probing sequence is h1(k)+
j · h2(k) mod m, using two different hash functions h1 and h2. As a
consequence, even keys that hash to the same value (under h1) are in
fact assigned different probing sequences. It is the best of the three
methods in terms of spreading the probes across all slots, but of course
each access costs an extra hash function computation.
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How should the probing sequence be used? The get(), set() and
delete() methods all need first to determine the array slot to read from,
write to or delete respectively. To do that, they keep calling the probing
function until they reach the correct slot or until they have tried m times
unsuccessfully.

In the case of get(), the correct slot is the first one in the sequence
that contains the sought key; and if an empty slot is found along the way,
then the key is not in the dictionary even if fewer than m probes have
been attempted.

In the case of set(), if a slot with the sought key is found, that’s
the one to use, and we are overwriting a previous value for the same key;
otherwise, the first empty slot in the probing sequence should be used,
and we’ll be setting a value for this key for the first time. If m probes
are all unsuccessful, then the array is full and insertion cannot take place
without first resizing it.

In the case of deletion, there are complications. Assuming that we
found the slot with the key to be deleted, if we naïvely marked it as
empty we would be potentially interrupting some chains and making it
impossible for get() to reach any stored keys whose probing sequence
had that slot in a previous position. What we need to do is mark the slot
as deleted (a special value distinct from empty) and change the imple-
mentations of get() and set() to treat the deleted value appropriately
(treating it like non-empty for get() but like empty for set()).

Unfortunately, even with this fix, one moment’s thought shows that
a long sequence of set() and delete() operations will eventually re-
sult in the array running out of empty slots even though many may be
marked deleted. As a result, the get() operation will become slower
and slower (because chains of deleted slots need to be traversed until the
sought value is found or an empty cell is reached) until, in the limit, all
unsuccessful searches will cost m probes. This is of course unacceptable
and therefore, when a dictionary must support deletions, it should either
be implemented with chaining or, in case of open addressing, it should
be rehashed well before it runs out of empty cells.

Rehashing a dictionary consists of creating a new array (usually twice
as large, to amortize the cost of the operation; clearly with a new hash
function, since the index range is different), inserting every key-value
pair of the old array into the new one and deleting the old array. Deleted
slots are not copied and are therefore implicitly transformed into empty
ones. Even without deletions, the resizing and rehashing procedure is
also necessary to preserve performance when the load factor (array cells
in use divided by array cells available) becomes too high, simply as a
consequence of too many insertions for the size of the array. In the
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HashMap data structure supplied with the Java library, for example, by
default a rehash is triggered when the load factor reaches 75%.

4.8 Priority queues and heaps

Textbook

Study chapter 6 in CLRS3.

If we concentrate on the operations set(), min() and delete(), sub-
ject to the extra condition that the only item we ever delete will be the
one just identified as the minimum one in our set, then the data struc-
ture we have is known as a priority queue. As the name says, this data
structure is useful to keep track of a dynamic set of “clients” (e.g. op-
erating system processes, or graph edges), each keyed with its priority,
and have the highest-priority one always be promoted to the front of the
queue, regardless of when it joined. Another operation that this structure
must support is the “promotion” of an item to a more favourable position
in the queue, which is equivalent to rewriting the key of the item.

A priority queue is thus a data structure that holds a dynamic set
of items and offers convenient access to the item with highest priority34,
as well as facilities for extracting that item, inserting new items and
promoting a given item to a priority higher than its current one.

0 ADT PriorityQueue {
1 void insert(Item x);
2 // BEHAVIOUR: add item <x> to the queue.
3

4 Item first(); // equivalent to min()
5 // BEHAVIOUR: return the item with the smallest key (without
6 // removing it from the queue).
7

8 Item extractMin(); // equivalent to delete(), with restriction
9 // BEHAVIOUR: return the item with the smallest key and remove it

10 // from the queue.
11

12 void decreaseKey(Item x, Key new);
13 // PRECONDITION: new < x.key
14 // PRECONDITION: Item <x> is already in the queue.

34“Highest priority” by convention means “earliest in the sorting order” and there-
fore “numerically smallest” in case of integers. Priority 1 is higher than priority 3.
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15 // POSTCONDITION: x.key == new
16 // BEHAVIOUR: change the key of the designated item to the designated
17 // value, thereby increasing the item’s priority (while of course
18 // preserving the invariants of the data structure).
19

20 void delete(Item x);
21 // PRECONDITION: item <x> is already in the queue.
22 // BEHAVIOUR: remove item <x> from the queue.
23 // IMPLEMENTATION: make <x> the new minimum by calling decreaseKey with
24 // a value (conceptually: minus infinity) smaller than any in the queue;
25 // then extract the minimum and discard it.
26 }
27

28 ADT Item {
29 // A total order is defined on the keys.
30 Key k;
31 Payload p;
32 }

As for implementation, you could simply use a sorted array, but you’d
have to keep the array sorted at every operation, for example with one
pass of bubble-sort, which gives linear time costs for any operations that
change the priority queue.

Exercise 47
Why do we claim that keeping the sorted-array priority queue
sorted using bubble sort has linear costs? Wasn’t bubble sort
quadratic?

Operation Cost with sorted array
creation of empty queue O(1)
first() O(1)
insert() O(n)
extractMin() O(n)
decreaseKey() O(n)
delete() O(n)

But we can do better than this.
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4.8.1 Binary heaps

A good representation for a priority queue is the binary heap, which is
the data structure implicitly used in the heapsort algorithm35 of section
2.12. It is a clever yet comparatively simple construction that allows you
to read out the highest priority item in constant time cost (if you don’t
remove it from the queue) and lets you achieve O(lg n) costs for all other
priority queue operations.

A min-heap is a binary tree that satisfies two additional invariants:
it is “almost full” (i.e. all its levels except perhaps the lowest have the
maximum number of nodes, and the lowest level is filled left-to-right)
and it obeys the “heap property” whereby each node has a key less than
or equal to those of its children.

As a consequence of the heap property, the root of the tree is the
smallest element. Therefore, to read out the highest priority item, just
look at the root (constant cost). To insert an item, add it at the end of
the heap and let it bubble up (following parent pointers) to a position
where it no longer violates the heap property (max number of steps:
proportional to the height of the tree). To extract the root, read it out,
then replace it with the element at the end of the heap, letting the latter
sink down until it no longer violates the heap property (again the max
number of steps is proportional to the height of the tree). To reposition
an item after decreasing its key, let it bubble up towards the root (again
in no more steps than the height of the tree, within a constant factor).

Since the tree is balanced (by construction, because it is always “al-
most full”), its height never exceeds O(lg n), which is therefore the asymp-
totic complexity bound on all the priority queue operations that alter the
tree.

35Except that heapsort uses a max-heap and here we use a min-heap.
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Operation Cost with binary min-heap
creation of empty heap O(1)
first() O(1)
insert() O(lg n)
extractMin() O(lg n)
decreaseKey() O(lg n)
delete() O(lg n)

These logarithmic costs represent good value and the binary heap,
which is simple to code and compact to store36, is therefore a good choice,
in many cases, for implementing a priority queue.

4.8.2 Binomial heaps

Exercise 48
Before reading ahead: what is the most efficient algorithm you
can think of to merge two binary heaps? What is its complexity?

For some applications you might need to merge two priority queues
(each with at most n elements) into a larger one. With a binary heap, a
trivial solution is to extract each of the elements from the smaller queue
and insert them into the other, at a total cost bounded by O(n lg n). A
smarter solution is to concatenate the two underlying arrays and then
heapify the result in O(n) time.

A more complex implementation of the priority queue is the binomial
heap, whose main additional advantage is that it allows you to merge
two priority queues, still at a time cost not exceeding O(lg n).

0 ADT BinomialHeap extends PriorityQueue {
1 void merge(BinomialHeap h);
2 // BEHAVIOUR: combine the current heap with the supplied heap h. In
3 // the process, make the supplied heap h empty and incorporate all its
4 // elements into the current heap.
5 }

A binomial heap is a forest of binomial trees, with special properties
detailed below.

36The array representation does not even require any extra space for pointers.

c© Frank Stajano 105



Chapter 4. Data structures

A binomial tree (not heap) of order 0 is a single node, containing
one Item. It has height 0.

A binomial tree of order k is a tree obtained by combining two
binomial trees of order k−1, by appending one of the trees to the root of
the other as the (new) leftmost child37. By induction, it contains 2k nodes
(since the number of nodes doubles at each new order). By induction,
the number of child subtrees of the root of the tree (known as the degree
of the tree) is k, the same as the tree’s order (since at each new order
the tree gains one more child). By induction, the height of the tree is
also k, again same as the tree’s order (since at each new order the tree
grows taller by one level, because the new child is as tall as the previous
order’s tree and is shifted down by one).

A binomial heap is a collection of binomial trees (at most one for
each tree order), sorted by increasing size, each obeying the “heap prop-
erty” by which each node has a key less than or equal to those of its
children. If the heap contains n nodes, it contains O(lg n) binomial trees
and the largest of those trees38 has degree O(lg n).

Exercise 49
Draw a binomial tree of order 4.

37Note that a binomial tree is not a binary tree: each node can have an arbitrary
number of children. Indeed, by “unrolling” the recursive definition above, you can
derive an equivalent one that says that a tree of order k consists of a root node with
k children that are, respectively, binomial trees of all the orders from k − 1 down to
0.

38And hence a fortiori also each of the trees in the heap.
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Exercise 50
Give proofs of each of the stated properties of binomial trees (triv-
ial) and heaps (harder until you read the next paragraph—try
before doing so).

The following property is neat: since the number of nodes and even
the shape of the binomial tree of order k is completely determined a
priori, and since each binomial heap has at most one binomial tree for
any given order, then, given the number n of nodes of a binomial heap,
one can immediately deduce the orders of the binomial trees contained in
the heap just by looking at the “1” digits in the binary representation of n.
For example, if a binomial heap has 13 nodes (binary 1101 = 23+22+20),
then the heap must contain a binomial tree of order 3, one of order 2 and
one of order 0—just so as to be able to hold precisely 13 nodes.

Exercise 51
Prove that the sequence of trees in a binomial heap exactly
matches the bits of the binary representation of the number of
elements in the heap.

The operations that the binomial heap data structure provides are
implemented as follows.

first() To find the element with the smallest key in the whole binomial
heap, scan the roots of all the binomial trees in the heap, at cost
O(lg n) since there are that many trees.

extractMin() To extract the element with the smallest key, which is
necessarily a root, first find it, as above, at cost O(lg n); then cut it
out from its tree. Its children now form a forest of binomial trees of
smaller orders, already sorted by decreasing size. Reverse this list
of trees39 and you have another binomial heap. Merge this heap
with what remains of the original one. Since the merge operation
itself (q.v.) costs O(lg n), this is also the total cost of extracting the
minimum.

39An operation linear in the number of child trees of the root that was just cut off.
Since the degree of a binomial tree of order k is k, and the number of nodes in the
tree is 2k, the number of child trees of the cut-off root is bounded by O(lg n).
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merge() To merge two binomial heaps, examine their trees by increasing
tree order and combine them following a procedure similar to the
one used during binary addition with carry with a chain of full
adders.

“binary addition” procedure. Start from order 0
and go up. At each position, say that for tree order j,
consider up to three inputs: the tree of order j of the
first heap, if any; the tree of order j of the second heap,
if any; and the “carry” from order j − 1, if any. Produce
two outputs: one tree of order j (or none) as the result
for order j, and one tree of order j + 1 (or none) as the
carry from order j to order j + 1. All these inputs and
outputs are either empty or they are binomial trees. If
all inputs are empty, all outputs are too. If exactly one
of the three inputs is non-empty, that tree becomes the
result for order j, and the carry is empty. If exactly two
inputs are non-empty, combine them to form a tree of
order j + 1 by appending the tree with the larger root
to the other; this becomes the carry, and the result for
order j is empty. If three inputs are non-empty, two of
them are combined as above to become the carry towards
order j + 1 and the third becomes the result for order j.

The number of trees in each of the two binomial heaps to be merged
is bounded by O(lg n) (where by n we indicate the total number of
nodes in both heaps together) and the number of elementary opera-
tions to be performed for each tree order is bounded by a constant.
Therefore, the total cost of the merge operation is O(lg n).

insert() To insert a new element, consider it as a binomial heap with
only one tree with only one node and merge it as above, at cost
O(lg n).

decreaseKey() To decrease the key of an item, proceed as in the case
of a normal binary heap within the binomial tree to which the item
belongs, at cost no greater than O(lg n) which bounds the height
of that tree.
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Operation Cost with binomial heap
creation of empty heap O(1)
first() O(lg n)
insert() O(lg n)
extractMin() O(lg n)
decreaseKey() O(lg n)
delete() O(lg n)
merge() O(lg n)

Although the programming complexity is greater than for the binary
heap, these logarithmic costs represent good value and therefore imple-
menting a priority queue with a binomial heap is a good choice for appli-
cations where an efficient merge operation is required. If however there
is no need for efficient merging, then the binary heap is less complex and
somewhat faster.

Having said that, when the cost of an algorithm is dominated by
specific priority queue operations, and where very large data sets are in-
volved, as will be the case for some of the graph algorithms from the
second half of the course when applied to a country’s road network, or
to the Web, then the search for even more efficient implementations is
justified. We shall describe even more efficient (albeit much more com-
plicated) priority queue implementations in the next chapter. If your
analysis shows that the performance of your algorithm is limited by that
of your priority queue, you may be able to improve asymptotic complex-
ity by switching to a Fibonacci heap or a van Emde Boas tree. Since
achieving the best possible computing times may occasionally rely on
the performance of data structures as elaborate as these, it is important
at least to know that they exist and where full details are documented.
But be aware that the constant hidden by the big-O notation can be
quite large.

Finally, have your say

Those of you who tell me what they liked about this course motivate me
to keep on improving it. Please leave your feedback, on paper and/or
online.

End of lecture course

Thank you, and best wishes for the rest of your Tripos.
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