

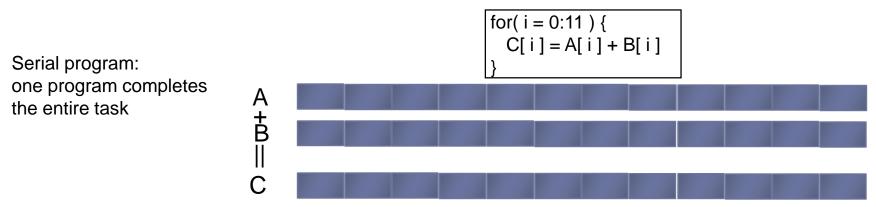
Parallel programming in OpenCL

Advanced Graphics & Image Processing

Rafał Mantiuk Computer Laboratory, University of Cambridge

Single Program Multiple Data (SPMD)

Consider the following vector addition example



Multiple copies of the same program execute on different data in parallel

SPMD program: multiple copies of the same program run on different chunks of the data A = B = C $C = B = 0:3 \{ for(i = 0:3) \{ C[i] = A[i] + B[i] \} = A[i] + B[i] \}$

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

- In the vector addition example, each chunk of data could be executed as an independent thread
- On modern CPUs, the overhead of creating threads is so high that the chunks need to be large
 - In practice, usually a few threads (about as many as the number of CPU cores) and each is given a large amount of work to do
- For GPU programming, there is low overhead for thread creation, so we can create one thread per loop iteration

Parallel Software – SPMD

Single-threaded (CPU)

```
// there are N elements
for(i = 0; i < N; i++)
C[i] = A[i] + B[i]</pre>
```

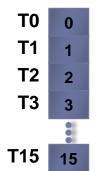
Multi-threaded (CPU)

// tid is the thread id
// P is the number of cores
for(i = 0; i < tid*N/P; i++)
C[i] = A[i] + B[i]</pre>

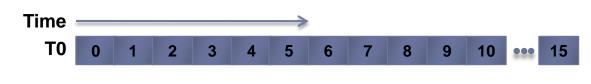
T0 1 0 2 3 T1 4 5 6 7 T2 8 9 10 11 **T**3 12 13 14 15

Massively Multi-threaded (GPU)

// tid is the thread id
C[tid] = A[tid] + B[tid]

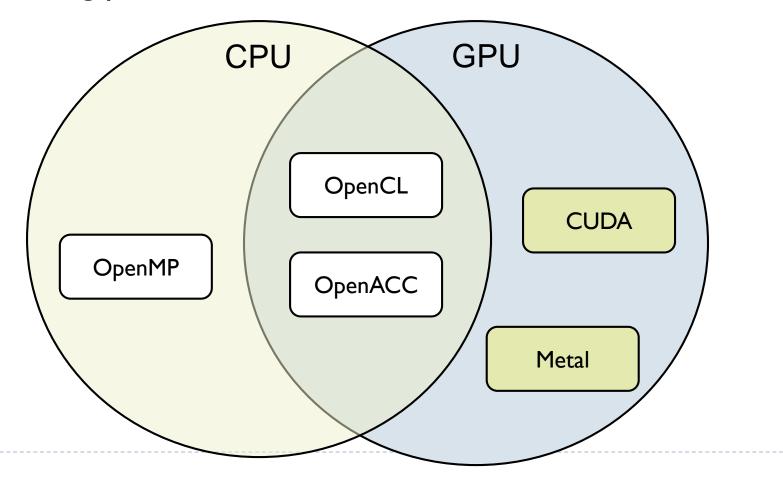


= loop iteration



Parallel programming frameworks

 These are some of more relevant frameworks for creating parallelized code



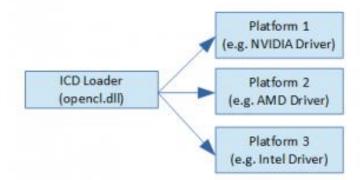
OpenCL

- OpenCL is a framework for writing parallelized code for CPUs, GPUs, DSPs, FPGAs and other processors
- Initially developed by Apple, now supported by AMD, IBM, Qualcomm, Intel and Nvidia ^(reluctantly)
- Versions
 - Latest: OpenCL 2.2
 - OpenCL C++ kernel language
 - SPIR-V as intermediate representation for kernels
 - □ Vulcan uses the same Standard Portable Intermediate Representation
 - AMD, Intel
 - Mostly supported: OpenCL 1.2
 - Nvidia, OSX

OpenCL platforms and drivers

To run OpenCL code you need:

- Generic ICD loader
 - Included in the OS
- Installable Client Driver
 - From Nvidia, Intel, etc.

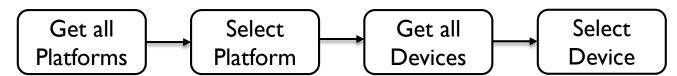


- > This applies to Windows and Linux, only one platform on Mac
- To develop OpenCL code you need:
 - OpenCL headers/libraries
 - Included in the SDKs
 - Nvidia CUDA Toolkit
 - □ Intel OpenCL SDK
 - But lightweight options are also available

Programming OpenCL

- OpenCL natively offers C99 API
- But there is also a standard OpenCL C++ API wrapper
 - Strongly recommended reduces the amount of code
- Programming OpenCL is similar to programming shaders in OpenGL
 - Host code runs on CPU and invokes kernels
 - Kernels are written in C-like programming language
 - In many respects similar to GLSL
 - Kernels are passed to API as strings and compiled at runtime
 - Kernels are usually stored in text files
 - Kernels can be precompiled into SPIR from OpenCL 2.1

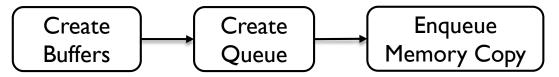
Example: Step 1 - Select device



```
//get all platforms (drivers)
std::vector<cl::Platform> all_platforms;
cl::Platform::get(&all platforms);
if (all platforms.size() == 0){
    std::cout << " No platforms found. Check OpenCL installation!\n";</pre>
    exit(1);
}
cl::Platform default platform = all platforms[0];
std::cout << "Using platform: " << default_platform.getInfo<CL_PLATFORM NAME>() << "\n";</pre>
//get default device of the default platform
std::vector<cl::Device> all devices;
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);
if (all devices.size() == 0){
    std::cout << " No devices found. Check OpenCL installation!\n";</pre>
    exit(1);
}
cl::Device default device = all devices[0];
std::cout << "Using device: " << default_device.getInfo<CL_DEVICE NAME>() << "\n";</pre>
```

Example: Step 2 - Build program Load sources Create Create Build (usually from files) Program Program context cl::Context context({ default_device }); cl::Program::Sources sources; // kernel calculates for each element C=A+B std::string kernel_code = "__kernel void simple_add(__global const int* A, __global const int* B, __global int* C) {" " int index = get global id(0);" " C[index] = A[index] + B[index];" "};"; sources.push back({ kernel code.c str(), kernel code.length() }); cl::Program program(context, sources); try { program.build({ default device }); } catch (cl::Error err) { std::cout << " Error building: " <<</pre> program.getBuildInfo<CL PROGRAM BUILD LOG>(default device) << "\n";</pre> exit(1); }

Example: Step 3 - Create Buffers and copy memory



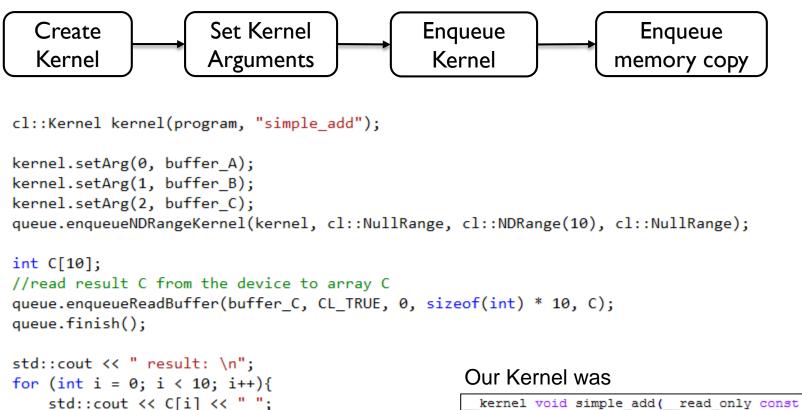
// create buffers on the device cl::Buffer buffer_A(context, CL_MEM_READ_WRITE, sizeof(int) * 10); cl::Buffer buffer_B(context, CL_MEM_READ_WRITE, sizeof(int) * 10); cl::Buffer buffer C(context, CL_MEM_READ_WRITE, sizeof(int) * 10);

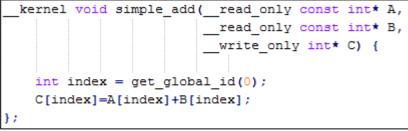
int A[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int B[] = { 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 };

//create queue to which we will push commands for the device.
cl::CommandQueue queue(context, default_device);

//write arrays A and B to the device queue.enqueueWriteBuffer(buffer_A, CL_TRUE, 0, sizeof(int) * 10, A); queue.enqueueWriteBuffer(buffer_B, CL_TRUE, 0, sizeof(int) * 10, B);

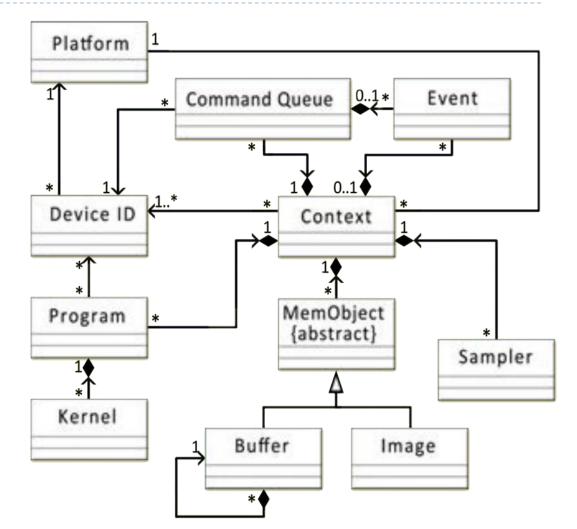
Example: Step 4 - Execute Kernel and retrieve the results





OpenCL API Class Diagram

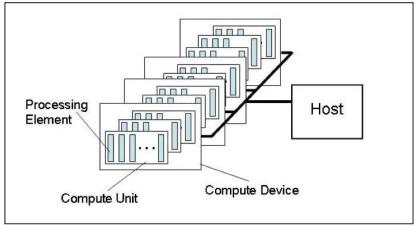
- Platform Nvidia CUDA
- Device GeForce 780
- Program collection of kernels
- Buffer / Image device memory
- Sampler how to interpolate values for Image
- Command Queue put a sequence of operations there
- Event to notify that something has been done



From: OpenCL API 1.2 Reference Card

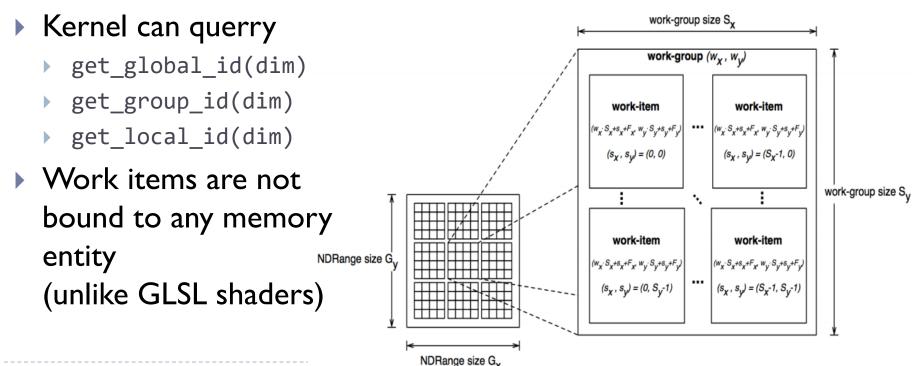
Platform model

- The host is whatever the OpenCL library runs on
 - Usually x86 CPUs for both NVIDIA and AMD
- Devices are processors that the library can talk to
 - CPUs, GPUs, DSP,s and generic accelerators
- For AMD
 - All CPUs are combined into a single device (each core is a compute unit and processing element)
 - Each GPU is a separate device



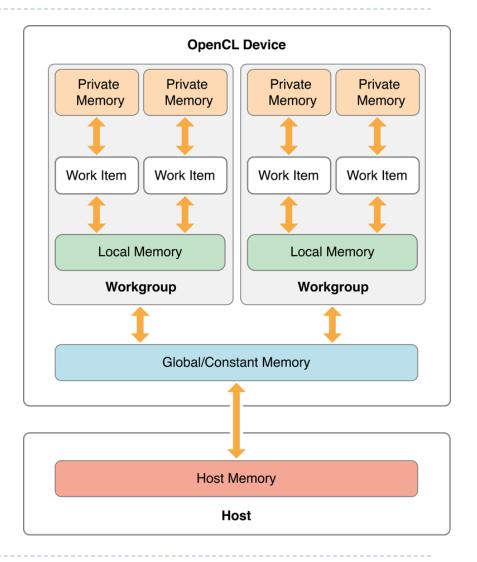
Execution model

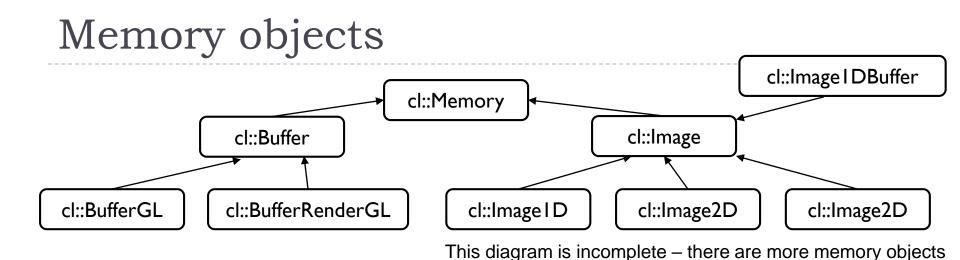
- Each kernel executes on ID, 2D or 3D array (NDRange)
- The array is split into work-groups
- Work items (threads) in each work-group share some local memory



Memory model

- Host memory
 - Usually CPU memory, device does not have access to that memory
- Global memory [__global]
 - Device memory, for storing large data
- Constant memory [___constant]
- Local memory [__local]
 - Fast, accessible to all work-items (threads) within a workgroup
- Private memory [___private]
 - Accessible to a single work-item (thread)





Buffer

- ArrayBuffer in OpenGL
- Accessed directly via C pointers
- Image
 - Texture in OpenGL
 - Access via texture look-up function
 - Can interpolate values, clamp, etc.

Programming model

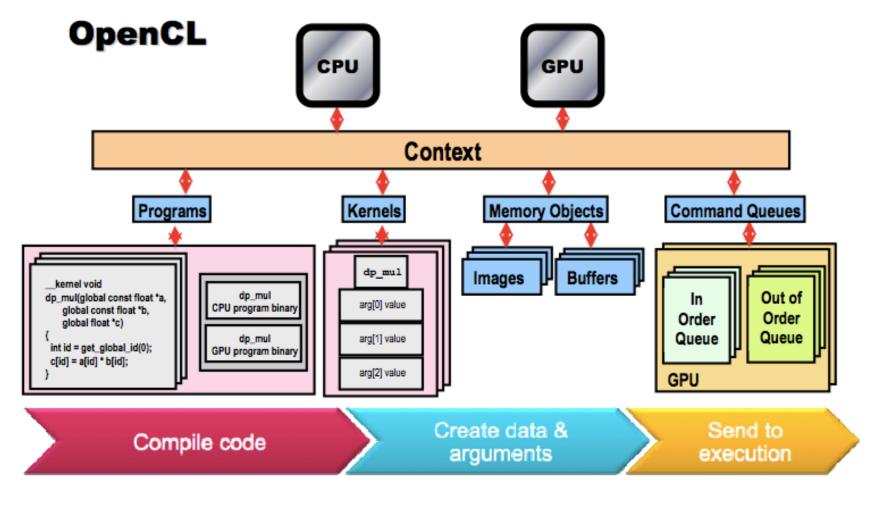
- Data parallel programming
 - Each NDRange element is assigned to a work-item (thread)
- Task-parallel programming
 - Multiple different kernels can be executed in parallel
 - Each kernel can use vector-types of the device (float4, etc.)
- Command queue

queue.enqueueWriteBuffer(buffer_A, CL_TRUE, 0, sizeof(int)*10, A);

CL_TRUE - Execute in-order CL_FALSE – Execute out-of-order

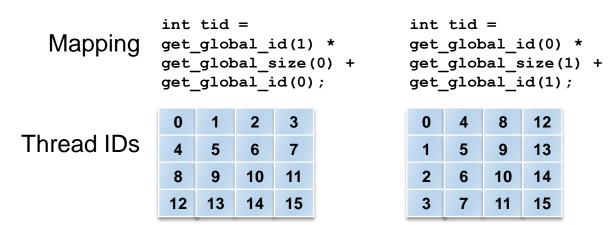
Provides means to both synchronize kernels and execute them in parallel

Big Picture



Thread Mapping

- By using different mappings, the same thread can be assigned to access different data elements
 - The examples below show three different possible mappings of threads to data (assuming the thread id is used to access an element)
 int group_size =



0	1	4	5
2	3	6	7
8	9	12	13
10	11	14	15

20 From: OpenCL 1.2 University Kit - <u>http://developer.amd.com/partners/university-programs/</u>

*assuming 2x2 groups

Thread Mapping

Consider a serial matrix multiplication algorithm

for(i1=0; i1 < M; i1++)
for(i2=0; i2 < N; i2++)
for(i3=0; i3 < P; i3++)
C[i1][i2] += A[i1][i3]*B[i3][i2];</pre>

This algorithm is suited for output data decomposition

- We will create N x M threads
 - Effectively removing the outer two loops
- Each thread will perform P calculations
 - The inner loop will remain as part of the kernel
- Should the index space be MxN or NxM?

22 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Thread Mapping

• Thread mapping I: with an MxN index space, the kernel would be:

int tx = get_global_id(0); int ty = get_global_id(1); for(i3=0; i3<P; i3++) C[tx][ty] += A[tx][i3]*B[i3][ty];

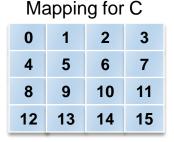
Thread mapping 2: with an NxM index space, the kernel would be:

int tx = get_global_id (0); int ty = get_global_id (1); for(i3=0; i3<P; i3++) C[ty][tx] += A[ty][i3]*B[i3][tx];

Both mappings produce functionally equivalent versions of the program

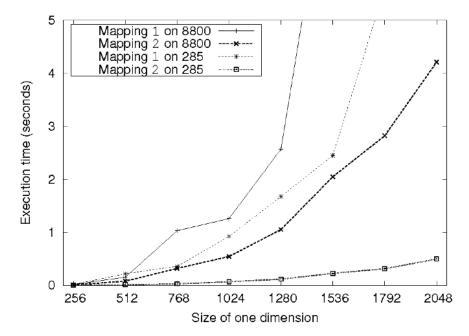
Mapping for O					
0	4	8	12		
1	5	9	13		
2	6	10	14		
2	7	11	15		

Manning for C



Thread Mapping

 This figure shows the execution of the two thread mappings on NVIDIA GeForce 285 and 8800 GPUs



 Notice that mapping 2 is far superior in performance for both GPUs

Thread Mapping

- The discrepancy in execution times between the mappings is due to data accesses on the global memory bus
 - Assuming row-major data, data in a row (i.e., elements in adjacent columns) are stored sequentially in memory
 - To ensure coalesced accesses, consecutive threads in the same wavefront should be mapped to columns (the second dimension) of the matrices
 - This will give coalesced accesses in Matrices B and C
 - For Matrix A, the iterator *i*3 determines the access pattern for rowmajor data, so thread mapping does not affect it

Reduction

- GPU offers very good performance for tasks in which the results are stored independently
 - Process N data items and store in N memory location

```
float reduce_sum(float* input, int length)
{
  float accumulator = input[0];
  for(int i = 1; i < length; i++)
    accumulator += input[i];
  return accumulator;
}</pre>
```

- But many common operations require reducing N values into 1 or few values
 - sum, min, max, prod, min, histogram, ...
- Those operations require an efficient implementation of reduction

- The following slides are based on AMD's OpenCL[™] Optimization Case Study: Simple Reductions
 - http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/

Reduction tree for the min operation

```
__kernel
```

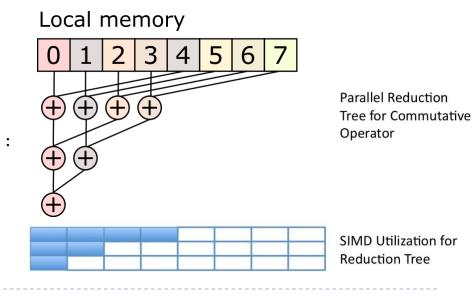
}

```
int global_index = get_global_id(0);
int local_index = get_local_id(0);
// Load data into local memory
if (global_index < length) {
    scratch[local_index] = buffer[global_index];
} else {
    scratch[local_index] = INFINITY;
}
barrier(CLK_LOCAL_MEM_FENCE);
for(int offset = get_local_size(0) / 2;
    offset > 0; offset >>= 1) {
    if (local_index < offset) {
      float other = scratch[local_index + offset];
      float mine = scratch[local_index];
      scratch[local_index] = (mine < other) ? mine :
other;
```

```
barrier(CLK_LOCAL_MEM_FENCE);
}
if (local_index == 0) {
  result[get group id(0)] = scratch[0];
```

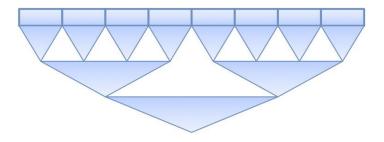
```
    barrier ensures that all threads
(work units) in the local group
reach that point before execution
continue
```

 Each iteration of the for loop computes next level of the reduction pyramid



Multistage reduction

- The local memory is usually limited (e.g. 50kB), which restricts the maximum size of the array that can be processed
- Therefore, for large arrays need to be processed in multiple stages
 - The result of a local memory reduction is stored in the array and then this array is reduced

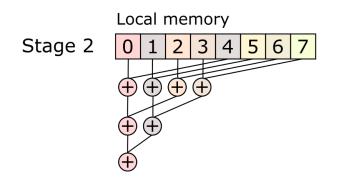


Two-stage reduction

Stage 1

Different colours denote different threads

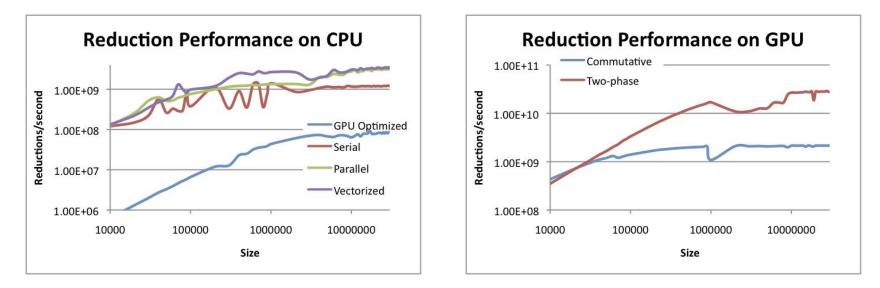
Global memory



- First stage: serial reduction by N concurrent threads
 - Number of threads < data items</p>
- Second stage: parallel reduction in local memory

```
kernel
void reduce( global float* buffer,
            local float* scratch,
            const int length,
            global float* result) {
  int global index = get global id(0);
  float accumulator = INFINITY;
  // Loop sequentially over chunks of input
vector
  while (global index < length) {</pre>
    float element = buffer[global index];
    accumulator = (accumulator < element) ?</pre>
accumulator : element;
    global index += get global size(0);
  }
  // Perform parallel reduction
  [The same code as in the previous example]
}
```

Reduction performance CPU/GPU



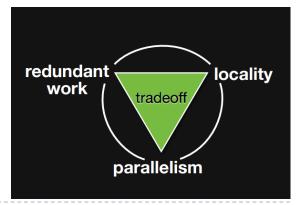
- Different reduction algorithm may be optimal for CPU and GPU
- This can also vary from one GPU to another

D

The results from: http://developer.amd.com/resources/articles-whitepapers/opencloptimization-case-study-simple-reductions/

Better way?

- Halide a language for image processing and computational photography
 - http://halide-lang.org/
 - Code written in a high-level language, then translated to x86/SSE, ARM, CUDA, OpenCL
 - > The optimization strategy defined separately as a schedule
 - Auto-tune software can test thousands of schedules and choose the one that is the best for a particular platform
 - Automatically find the best trade-offs for a particular platform
 - Designed for image processing but similar languages created for other purposes



OpenCL resources

- https://www.khronos.org/registry/OpenCL/
- Reference cards
 - Google: "OpenCL API Reference Card"
- AMD OpenCL Programming Guide
 - http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OC L_Programming_Guide-2013-06-21.pdf