IV. Approximation Algorithms via Exact Algorithms
Thomas Sauerwald

Easter 2019

[UNIVERSITY OF
QP CAMBRIDGE

Outline

The Subset-Sum Problem

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > , X < L.
O

i: x;€S

(This problem is NP—hardj

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

>
RRE
I Il
—
>lo

X3=5
X4 =6
X5 =1

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

>
RRE
I Il
—
>lo

X3=5
X4 =6
X5 =1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons
()
[
X3=5
X4:6
|
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <L

it x€

t =13 tons
X1:10 r 1
[
X2:4
xX3=>5 X1+ x5 =11
| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons
[)
[
X3=5
| _—>
X4:6
| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

X1:10 r 1
X2:4

| _—>
xX3=>5 X3+ X4+ X5 =12

| _—>

| _—>
X5=1

S R
&:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

ﬁ!a

;,! 5 IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo ={0)

3 fori =1ton

4 L; = MERGE-LISTS (L;_;. Li_; + x;) (§+X:={st+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S| Returns the merged list (in sorted}

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

[implementable in time O(|L;_+|) (like Merge-Sort)]

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢

return the largest element in L,

n =S| Returns the merged list (in sorted}

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

Example:

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10
* Lo =(0)

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
= Lo:<0>

- L1 :<0,1>

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
- Lo=<0>

= L1:<0,1>

- L2:<0717475>

ﬁla

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3=10,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3 =0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

= S={1,45},t=10

=Ly = <0>

=L = <07 1>

'L2:<0717475>

= [3=1(0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;_j A==
5 remove from L; every element th[Cﬁn be shown by induction on n]
6 return the largest gk dint. Z

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

= S={1,45},t=10

* Lo=(0)

= L= <07 1>

= [, =(0,1,4,5)

= [3=1(0,1,4,5,6,9,10)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +2% + ... +2") = 0(2")
Example:
= S={1,45},t=10
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +: 22 4 ... 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {x, Xz, . .. x,}]
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=]|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +22 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {xi, Xo, . . x,}] Better runtime if ¢
= Lo =(0) and/or |L;| are small.
L= <07 1>
.L2:<0717475>
= [3=(0,1,4,5,6,9,10)

IV. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

ﬁ!a

;,! 5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

v
140

z<Ly

S

<z
[= [= (10,11,12, 15,20, 21, 22, 23, 24, 29)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

<
[= [= (10,11,12, 15,20, 21, 22, 23, 24, 29)
= 5=0.1

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

L S V4 S y
[. L= (10,11,12, 15,20, 21,22, 23, 24, 29)
"= 5=0.1
= [’ = (10,12, 15, 20, 23, 29)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

(TRIM works in time ©(m), if L is given in sorted order.]

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +§) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L=

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L' = (10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last
L=(10,11,12,15,20,21,22, 23,24, 29)

L' = (10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20, 23)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L,)

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

I n=]|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, Ly + x;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

Gy IV. Approximation via Exact Algorithms

The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

<

EXACT-SUBSET-SUM(S,)

n =S| 1 n=1S|
Ly = {0) 2 Lo =(0)

fori = 1ton 3 fori =1ton
L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,

let z* be the largest value in L,

return z*

5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

0 2 | WUn[s W~

|

|

EXACT-SUBSET-SUM(S,)

n=|S| 1 n=1S|
Lo = (0) 2 Lo = (0)
fori = 1ton 3 fori =1ton
L; = MERGE-LISTS (L;—1, Li—; + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,
let z* be the largest value in L,
return z [
Repeated application of TRIM
to make sure L;'s remain short.
5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S,)
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

bl - e

IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

o

The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S,)
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

AN

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S,)
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS(L;—y, L;—; + x;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

AN

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

[Solution is a careful choice of 6!]

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

bl - e

Gy IV. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

bl

|

n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

= Input: S = (104,102,201,101),t =308,¢ = 0.4

e

[,

IV. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

bl - e

Gy IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

bl - e

g IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

* line 2: Ly = (0)

* line 4: Ly = (0,104)

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

* line 2: Ly = (0)

* line 4: Ly = (0,104

= line 5: Ly = (0,104

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

= line 4: Ly = (0,104
= line 5: Ly = (0,104
= line 6: Ly = (0,104

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)
= line 4: Ly = (0,104
line 5: Ly = (0,104
= line6: Ly =
line 4: L, = (0,102, 104, 206)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

= line 4: Ly = (0,104

= line 5: Ly = (0,104

= line 6: Ly = (0,104

= line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102,206)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

* Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)
= line 4: Ly = (0,104
= line 5: Ly = (0,104
= line 6: Ly = (0,104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102,206
= line 6: L, = (0,102,206

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

* Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter' d=c¢€/(2-n)=¢/8=0.05

=
L]
L]
L]
L]
L]
L]

line 2:
line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

line 4: L.

Lo=(0
Ly = o 104
Ly = (0,104
Ly = {0,104
L, = (0,102,104, 206)
L, = {0,102, 206
1_2 = (0,102, 206
= (0,102,201, 206, 303, 407)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102,104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)

i
E:E IV. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S=
Trimming parameter' d=c¢€/(2-n)=¢/8=0.05

=
L]
L]
L]
L]
L]
L]
L]
L]

i
E:? IV. Approximation via Exact Algorithms

line 2:

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

:
;
:

(104,102,201,101), t =308, = 0.4

0,104
O 104

0,102,104, 206)
0,102, 206
0,102, 206

0,102,201,206,303,407)
0,102,201, 303, 407)
0,102,201 303)

O 104§

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li—y + x;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line5: L, = O 102 206
= line 6: L, = O 102 206
» line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: L3 = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: Ly = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line5: Ly = 0,101 201, 302 404)

i
IV. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
* Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: Ly = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302 404)
= line6: Ly = O 101 201 302)

i
IV. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
» line 6: L3 = {0, 102, 201, 303}
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line 5: Ly = (0,101,201 302 404)
= line 6: L4 =

0,101,201 302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

IV. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v/

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
y

Greeny -7

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:

_ry
(1+¢/(2n)y

1

[Can be shown by induction on i]

<z<y

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
Y <<y M
(1 +¢/(2n))

1
[Can be shown by induction on i]

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n) (1+¢/(2m)"
/1

[Can be shown by induction on i]

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
* n
o Y o(i+2),
[Can be shown by induction on 1] z 2n

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
* n
o Y o(i+2),
[Can be shown by induction on 1] z 2n

and now using the fact that (1 + inz)n "23° e¢/2 yields

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
* n
o Y o(i+2),
[Can be shown by induction on 1] z 2n

and now using the fact that (1 + inz)n "23° e¢/2 yields

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
/1 y* e\"
< —
[Can be shown by induction on i] z = (1 + 2n> ’

and now using the fact that (1 + inz)n "23° e¢/2 yields

E < e/? (Taylor approximation of ej
z =

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
* n
o Y o(i+2),
[Can be shown by induction on 1] z 2n

and now using the fact that (1 + inz)n "23° e¢/2 yields

ec/2 (Taylor approximation of ej
/
<1 +e/2+ (e/2)?

IN

v
z

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n)) (1+¢/(2m)"
* n
o Y o(i+2),
[Can be shown by induction on 1] z 2n

and now using the fact that (1 + inz)n "23° e¢/2 yields

ec/2 (Taylor approximation of ej
/
<1+e/24 (/22 <1+e

IN

v
z

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

i
E:? IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [l0gy_ (25] additional values.

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

IoQ1+s/(2n) t+2=

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,
Int

lo f42=—— 12
9t+e/(2n) In(1 + ¢/(2n)) *

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,
Int

lo f42=—— 12
9t+e/(2n) In(1 + ¢/(2n)) *

[Forx> =1,In(1 +x) > 735

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.

Hence,
Int
~ (1 + </(2n))
2n(1+¢/(2n)) Int 42

€

IoQ1+s/(2n) t+2

[Forx> =1,In(1 +x) > 735

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

_ Int
~In(1 +¢/(2n))
2n(1+¢/(2n)) Int 42

€

IogHE/(z”) t+2

o 3nint
1+x

[Forx>—1,|n(1 +Xx) > + 2.

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.

Hence,
Int
~ (1 + </(2n))
2n(1+¢/(2n)) Int 42

€

IoQ1+s/(2n) t+2

3nint

+ 2.

[Forx> =1,In(1 +x) > 735

= This bound on |L;| is polynomial in the size of the input and in 1/e.

IV. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

_ Int
~In(1 +¢/(2n))
2n(1+¢/(2n)) Int 42

€

IogHE/(z”) t+2

[Forx>—1,|n(1+x)2% 3n|nt+2.
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
N

(Need log(t) bits to represent t and n bits to represent Sj

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi < L.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

t

~——— Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

\

)

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.

\

il
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies 3, cq w; < t

P
LAIgorithm very similar to APPROX-SUBSET-SUM
— Theorem -

There is a FPTAS for the Knapsack problem.]

il
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

Parallel Machine Scheduling

E:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mz, ..., My,

= Given: njobs Ji, s, ..., Jn with processing times py, po, . . .

, Pn, and

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., My,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
midentical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

w(u 7) i
ms JC e)
6 1 2 3 4 5 6 7 8 9 1'0 1'1 1'2 1'3 14 15

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

A ST
L O e
6 1 2 3 4 5 6 7 8 9 1'0 1'1 1'2 1'3 14 15

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

A ST
L O e
6 1 2 3 4 5 6 7 8 9 1'0 1'1 1'2 1'3 14 15

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 12

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
() D |

m | o _)

1

} T T T T T T T T

T

0 1éé4'156%8é1'01'11'21'31'41'5

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
vk 0 JCa

M1[. Jo . _]i

1

I T T
L T T

0 1éé4'156%591'01'11'21'31'41'5

LIST SCHEDULING(J1, oo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[. Jo . _]i

T
T

0 1éé4'156%591'01'11'21'31'41'5

I T
L T

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

SR IV. Approximation via Exact Algorithms Parallel Machine Scheduling

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[. Jo . _]i

T
T

O1éé456%59101112131415

I T
L T

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?]

Sl

6 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Chax > Max Pg.
max = 1§ks”pk

ﬁ!a

;,! 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Chax > Max Pg.
max = 1§ks”pk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

ﬁ!a

;,H,, IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Chax > Max Pg.
max = 1§ks”pk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

Proof:

ﬁ!a

;,H,, IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crmax > Mmax p.
max = 1§kgnpk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

Proof:

b. The total processing times of all n jobs equals Y ;_, p«

ﬁla

;,H,, IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crmax > Mmax p.
max = 1§kgnpk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

Proof:
b. The total processing times of all n jobs equals Y ;_, p«
= One machine must have a load of at least 1 - S°7_; p«

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Crmax < — max P.
max > m;pk+1gkgnpk

\

Hence list scheduling is a poly-time 2-approximation algorithm.

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Crmax < — max P.
max > m;pk+1gkgnpk

\

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cinax < E;pk + max pg.

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ,D;(+ max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

@ E&EEnC

M; Ji

A L p—

@
[.
B i

Cmax

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

@ E&EEnC
(O S
S e —

mn 0

M; Ji

A L p—

Cmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

I @EC
e |
S G —

8 0 G —pi

M; Ji

A L p—

Cmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

@@ Cy
e |
I G —

8 0 G —pi

M; Ji

A L p—

Cmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m
Ci—p<— C
di i n];é; k

(O G/ S) D
Ty
e EEEEnC)
0 Ci — pi

ﬁ!ﬁ

M; Ji

A L p—

Cmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m 1 n
Ci—pi< EZC": Ezpk
k=1 k=1
() D G) G
|
S S T G—
0 Ci — pi
ﬁ!ﬁ

M; Ji

A L p—

Cmax

,,E 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

m n n
O -PSE>G=53m = G pmaxe
k=1 k=1 k=1 -
(G G S b G G
@
S CU— —
0 G —pi
ﬁ!ﬁ

M; Ji

A L p—

Cmax

,,E %5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: [Using Ex 35542 &b.]

n

1 m 1 n 1 ~NJ
Cj—P/‘SE;Ck:E;Pk = Cjémkzz;pk+1r2[§§xnpk
)

T

D)
) G|

Cj — Pi Crmax

- P - - -

[
" I
;[7

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over K yields: [Using Ex 355 a. &b.]

n

1 1 o 1 N
Cj_pISE;Ck:E;pK = C/SE;Pk+1f2ka§)(npk§2'Cmax

D)
) G|

Cj — Pi Cmax

o)
)

- P - - -

(
" I
%[F

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?

ﬁ!i

;,! 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=SuU{j},C= C,-+p,-
: end for
creturn Sy, ..., Sy

—_
o

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]
N

[This can be shown to be tight (see next inde).J

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling

B

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

Cmax = Cj = (Cj—pi)+pi

ﬁ!ﬁ

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

* 1 Sk
Cmax - Cj - (C/ - p/) + pi < Cmax + Ecmax
1
(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))

X
O 17— —

1)

—

R
pAS
—

<~
-

R NS

Cj — Pi Cmax

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
Cmax = Cj = (C] —pi)+ Ppi < Cpax + Ecmax = ECmax- O

ﬁ!ﬁ

,,E % IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= m machines

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof of an instance which shows tightness:
= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: P

Con

BESEE

SEREEEE

| 1l ‘\ ‘\ 1 1 ‘\ ‘1 N YT
s Sllgitgtl 1

o :\ :\7\\7\\ T T Y
My e
My SERREEEE RN
M, OO O O (8 O B O O O (O
M1[9] I L O O R L

0123456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
l

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

8)
9)
9) -
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

‘\
|
9) !
9] L RS L U S U
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

|
I
9) !
9] __W_)‘L_l‘__“__“__
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

e s WS U
2 X G) 515015
8 6) oS
9) SRR
9] _H _H__\

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

I

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

)
8 X 6)
)
)

9) 5) -
12345678 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

)
)
)
)

9) 5 J 5)
12345678 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

Crnax = 19

)
)
8) 6)
)

9][5) 5)

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

Ms
M,
M
Mo
M; (9) <o
0123456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

9)
9) -
123 456 7 8 91011121314151617 181920

I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
l

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11:

8)
9)
9) -
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

‘\
|
9) !
9] L RS L U S U
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

g X 7)
8 X 7)

9)
9) -
123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

9 I 6)
§

8 X 7) Bl i
8 X 7) S8
9] ,‘: I _u__:

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

8) 7
8) 7
9)(6
9) 6)
1 23456 7 8 91011121314151617 181920

)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

i
8 g 7) .
8) 7) 1
9 I 6)]

(9) 6)
0123 456 7 8 91011121314151617 1819 20

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

)
8 X 7)
)

9) 6) -
12345678 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

)
)
8 X 7)
)
)

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19

Crax = 15

)
)
8 X 7)
)
)

+

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19
Optimum is Crax = 15

Crax = 15

)
)
8 X 7)
)
)

+

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m

m=5n=11: LPT gives Crnax = 19
Optimum is Crax = 15

Crax = 15

D L W

9)(6]
9) 6 }
1 23 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

ﬁla

;,! 5 IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)

1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

_;:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma
‘ SUBROUTINE can be implemented in time n°(/<").]

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
‘ SUBROUTINE can be implemented in time n°(/<").

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := S"7__ px.

\ J

5

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := S"7__ px.

\ J

5

Proof (using Key Lemma):
PTAS(J1, o, . .., Jn, m)
1. Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := S"7__ px.

5

Since 0 < Crax < P and Cr. is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps. }
PTAS(J1,J2,...,JH,ITI) —_—
1. Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

el b
< B

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\ J

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := S"7_, px.

5

Since 0 < Crax < P and Cr. is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps. }
PTAS(J1,J2,...,JH,ITI) —_—
1. Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

el b
< B

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := S"7_, px.

—2.

(polynomial in the size of the input Since 0 < Cihax < P and Cla is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps.
PTAS(J1,J2,...,JH,ITI) —_—
1. Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Cnax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

5

el b
< B

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < e- T} and Jiarge = [N] \ Jsmal-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < e- T} and Jiarge = [N] \ Jsmal-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Ci—p < mzpk
A k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Cj_piﬁmzpk =
A k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula)

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1
(the “well-known” formula) <e- T+ Cra

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1
(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsman = {i: pi < e- T} and Jiarge = [N] \ Jsmal-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
Nk k=1
(the “well-known” formula) < e T+ Crax
< (146 -max{T,Cia} O

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

ﬁ!a

L.!-.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

ﬁl;

'«Ha

Let b be the smallest integer with 1/b < e.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

ﬁla

'«Ha

h2
Let b be the smallest integer with 1/b < ¢. Define processing times p; = [%] .

T

b2

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

P

Hﬁam

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T “ =05
125.T B
1.7 "b=2
075-T + |pi
05.T
025.T
:

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.T “ =05
125.T B
1.7 "b=2
075-T + |pi
05T +{- E ————————
025.T
:

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15.

5T "e=0.5
125.-T
[= 2
1-T b
0.75- T + |P1
05 - TH{ (1P [} — -
025-T
0
Jlarge lJsma\ll

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

h2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ

15T e =05 15T
1.25-T . 1.25-T
1.7 b=2 — 1.T
0.75- T + |P1 0.75-T
05 - TH{ {1} - - 05T
025-T 025-T
0 0
Jlarge lJsmall

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [%] . b—TZ
15.-T " e=05 15.T
125.-T . h— 125.T
1-T b=2 1-T
0.75- T + |P1 0.75- T +|p}
05 - TH{ {1} - - 05T Ph
025-T 025-T P3
0 0
Jlarge lJsmall Jlarge

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] L

b2
= Every pI{ = - b_TZ fora=b,b+1,..., b2 {Can assume there are no jobs with p; > T!J

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T JA
0 0-—— —
Jlarge lJsma\ll Jlarge

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] L

b2
= Evel’yp;:a~b—2f0ra:b,b+1,...,b2

= LetCbe all (Sp, Sp1,-- -, Sye) with S5 - - L<rT
15.T " e¢=05 1.5.T
125-T 125-T
L] = 2
1.T b 1-T
0.75- T + |pi > 0.75.T +|p,
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T o
0 0-—— —
Jlarge lJsma\ll Jlarge

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

N
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
T
= Everyp/=a- 5 fora=bb+1,...,b?

2 : -
= LetCbeall (s4.s L so)with S s . j. L < 1. JAssignments to one machine
(S, So41, -+ Sp2) Xinjsid g < with makespan < T.

15.T " e¢=05 1.5.T
125-T 125-T
L] = 2
1.T b 1-T
0.75- T + |pi > 0.75.T +|p,
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T JA
0 0-—— —
Jlarge lJsma\ll Jlarge

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] L
= Everyp/ =a- b—TZ fora=bb+1,..., b2

" LetCheall (Sp, Spii--. S) With 8- j- L < T.

= Let f(np, Npy1, - -

all jobs with makespan < T:

15-
1.25.
1.
0.75 -
0.5
0.25-

S e e

=T
%Iﬁam

" e=0.5
" bhb=2

Jlarge

lJsmall

—_

15.
1.25.
1.
0.75 -
0.5
0.25.

o~~~ —=49-

2
T

b2

., Ng2) be the minimum number of machines required to schedule

E:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

15.T " e¢=05 1.5.-T
125.T o 125.T
1.7 b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T Ph
025-T s 0.25-T 5
0 0-—— —
Jlarge lJsma\ll Jlarge

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,...,b?
. 2 .
Let C be all (Sp, Spy1, - - -, Sz) With zf’:js,- - b—Tz <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
Jlarge lJsma\ll Jlarge

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T: [assign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

. /
f(Nps Nty Mp2) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
Jlarge lJsma\ll Jlarge

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

. .) _— ib
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, Nty M) =1+ min f(Nb — Sby Mpi1 = Sbyty -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

. .) _— ib
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, Nty M) =1+ min f(Nb — Sby Mpi1 = Sbyty -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

. . ' L ib
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] - b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 .
Let C be all (Sp, Spy1, - - -, Sz) With Zf’:js,- - b—T2 <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:

f(0,0,...,0) =0
f(np, Npi1y .-, N2) =1+ min f(Np — Spy Npi1 — Shats -+, Np2 — Sp2)-
(" b2) (8b+Sp115--+,8,2)€C (" " b 2

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,..., b2

. 2)
Let C be all (Sp, Spi1, - - -, Spe) With 37 5+ - b—TZ <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:

f(0,0,...,0) =0
f(np, Npi1y .-, N2) =1+ min f(Np — Spy Npi1 — Shats -+, Np2 — Sp2)-
(+ b2) (S+8b.15+++18,2)EC (+ + b b)

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; _P/{)

i€ Jiarge

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,..., b2

. 2)
Let C be all (Sp, Spi1, - - -, Spe) With 37 5+ - b—TZ <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:

f(0,0,...,0) =0
f(np, Npi1y .-, N2) =1+ min f(Np — Spy Npi1 — Shats -+, Np2 — Sp2)-
(+ b2) (S+8b.15+++18,2)EC (+ + b b)

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; _P/{)

i€ Jiarge

<T4+b.L
b2

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
Let b be the smallest integer with 1/b < . Define processing times p; = [p’T] . b—T2
Every p = o - b—TZ fora=bb+1,..., b2

. 2)
Let C be all (Sp, Spi1, - - -, Spe) With 37 5+ - b—TZ <T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:

f(0,0,...,0) =0
f(np, Nps1y ..., N2) =1 min f(np — Sp, N -5 o, M — Sp2).
(M, Mpy1s - Ny2) +(5ba5b+1w~~,sb2)€c (Mb = Sby Mo1 = Spy1y -+ Mp2 — Spz)
Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; _P/{)

i€ Jiarge

.
STHb o <(+a:T. O

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21

Final Remarks

Graham 1966
| List scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

i
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

~——— Graham 1966

List scheduling has an approximation ratio of 2.

~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := "7 px.

i
IV. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := "7 px.

Can we find a FPTAS (for polynomially bounded processing times)?

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := "7 px.

Can we find a FPTAS (for polynomially bounded processing times)?

No!

i
E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := "1_. py.

\.

Can we find a FPTAS (for polynomially bounded processing times)?

No! =
Because for sufficiently small approximation ratio

1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

22

	The Subset-Sum Problem
	Parallel Machine Scheduling

