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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > , X < L.
O

i: x;€S

( This problem is NP—hardj
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <L

it x€

t =13 tons
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The Subset-Sum Problem

The Subset-Sum Problem
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The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.

t =13 tons

X1:10 r 1
X2:4

| _—>
xX3=>5 X3+ X4+ X5 =12

| _—>
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

ﬁl;
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo ={0)

3 fori =1ton

4 L; = MERGE-LISTS (L;_;. Li_; + x;) (§+X:={st+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S| Returns the merged list (in sorted}

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

[ implementable in time O(|L;_+|) (like Merge-Sort) ]

Lo = (0) order and without duplicates)
fori = 1ton

z-
L; = MERGE-LISTS(L;_1, L;_{ + x;) (3+X ={st+x:s€ S}]
remove from L; every element that is greater than ¢

return the largest element in L,

n =S| Returns the merged list (in sorted}

i
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

Example:
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10

ﬁl;

;,H,, IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:
= S={1,4,5},t=10
* Lo =(0)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
= Lo:<0>

- L1 :<0,1>
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

AN B W=

Example:

= S={1,4,5},t=10
- Lo=<0>

= L1:<0,1>

- L2:<0717475>
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3=10,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)
n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;_y, L;—; + Xx;)
remove from L; every element that is greater than ¢
return the largest element in L,

[NV, I SO I (S

Example:

= S={1,45},t=10

- Lo=<0>

= L1:<0,1>

- L2:<0717475>

= L3 =0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

= S={1,45},t=10

=Ly = <0>

=L = <07 1>

'L2:<0717475>

= [3=1(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;_j A==
5 remove from L; every element th[Cﬁn be shown by induction on n]
6 return the largest gk dint. Z

= Correctness: L, contains all sums of {xi,X,...,Xn}

Example:

= S={1,45},t=10

* Lo=(0)

= L= <07 1>

= [, =(0,1,4,5)

= [3=1(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +2% + ... +2") = 0(2")
Example:
= S={1,45},t=10
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +: 22 4 ... 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {x, Xz, . .. x,}]
=Ly = <0>
=L = <07 1>
'L2:<0717475>
* L3=(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

' Dynamic Progamming: Compute bottom-up all possible sums < t I

EXACT-SUBSET-SUM(S, 1)

1 n=]|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;_y, L;—; + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest gk dint.
= Correctness: L, contains all sums of {xi,X,...,Xn}
= Runtime: O(2' +22 42" = 02"
Example:
- S={1,4, 5}[There are 2' subsets of {xi, Xo, . . x,}] Better runtime if ¢
= Lo =(0) and/or |L;| are small.
L= <07 1>
.L2:<0717475>
= [3=(0,1,4,5,6,9,10)
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

v
140

z<Ly

S

<z
[ = [ = (10,11,12, 15,20, 21, 22, 23, 24, 29)
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

<
[ = [ = (10,11,12, 15,20, 21, 22, 23, 24, 29)
= 5=0.1
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

L S V4 S y
[ . L= (10,11,12, 15,20, 21,22, 23, 24, 29)
"= 5=0.1
= [’ = (10,12, 15, 20, 23, 29)

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5



Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’
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Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z ¢ L':

y
—_— <z <.
116 %Y

TRIM(L, §)

1 let m be the length of L

2 L= ()

3 last = y,

4 fori =2tom

5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’

7 last = y;

8 return L’

(TRIM works in time ©(m), if L is given in sorted order. ]
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +§) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L=

i
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

L=(10,11,12,15,20,21, 22,23, 24, 29)

L' = (10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = (1)

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last
L=(10,11,12,15,20,21,22, 23,24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
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L' = (10,12)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted
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let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



lllustration of the Trim Operation
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let m be the length of L
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if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



lllustration of the Trim Operation

TRIM(L, )
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let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12, 15, 20)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

L
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)

]i
L' = (10,12,15, 20, 23)
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’
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TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’
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L
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

I n=]|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, Ly + x;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

<

EXACT-SUBSET-SUM(S, )

n =S| 1 n=1S|
Ly = {0) 2 Lo =(0)

fori = 1ton 3 fori =1ton
L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,

let z* be the largest value in L,

return z*
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

0 2 | WUn[s W~

|

|

EXACT-SUBSET-SUM(S, )

n=|S| 1 n=1S|
Lo = (0) 2 Lo = (0)
fori = 1ton 3 fori =1ton
L; = MERGE-LISTS (L;—1, Li—; + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
remove from L; every element that is greater than# 6 return the largest element in L,
let z* be the largest value in L,
return z [
Repeated application of TRIM
to make sure L;'s remain short.
5 IV. Approximation via Exact Algorithms The Subset-Sum Problem 7



The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S, )
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

bl - e
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S, )
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li— + X;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

AN

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S, )
1 n=|S| 1 n=1S|
2 Lo =(0) 2 Lo =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS(L;—y, L;—; + x;) 4 L; = MERGE-LISTS(L;_y, L;—; + x;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than# 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

AN

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

[Solution is a careful choice of 6!]

i
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

bl - e
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

bl

|

n =S|
Lo = (0)
fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

= Input: S = (104,102,201,101),t =308,¢ = 0.4

e

[,
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

bl - e
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

bl - e
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

* line 2: Ly = (0)

* line 4: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

* line 2: Ly = (0)

* line 4: Ly = (0,104

= line 5: Ly = (0,104

i
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

= line 4: Ly = (0,104
= line 5: Ly = (0,104
= line 6: Ly = (0,104

i
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t =308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)
= line 4: Ly = (0,104
line 5: Ly = (0,104
= line6: Ly =
line 4: L, = (0,102, 104, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101),t =308, = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)

= line 4: Ly = (0,104

= line 5: Ly = (0,104

= line 6: Ly = (0,104

= line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102,206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

* Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
* line 2: Ly = (0)
= line 4: Ly = (0,104
= line 5: Ly = (0,104
= line 6: Ly = (0,104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = (0,102,206
= line 6: L, = (0,102,206
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

* Input: S = (104,102,201,101), t = 308, ¢ = 0.4
Trimming parameter' d=c¢€/(2-n)=¢/8=0.05

=
L]
L]
L]
L]
L]
L]

line 2:
line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

line 4: L.

Lo=(0
Ly = o 104
Ly = (0,104
Ly = {0,104
L, = (0,102,104, 206)
L, = {0,102, 206
1_2 = (0,102, 206
= (0,102,201, 206, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102,104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|

Lo = (0)

fori = 1ton
L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*

= Input: S=
Trimming parameter' d=c¢€/(2-n)=¢/8=0.05

=
L]
L]
L]
L]
L]
L]
L]
L]

i
E:? IV. Approximation via Exact Algorithms

line 2:

line 4:
line 5:
line 6:

line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

:
;
:

(104,102,201,101), t =308, = 0.4

0,104
O 104

0,102,104, 206)
0,102, 206
0,102, 206

0,102,201,206,303,407)
0,102,201, 303, 407)
0,102,201 303)

O 104§
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS (L;_y, Li—y + x;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line5: L, = O 102 206
= line 6: L, = O 102 206
» line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: L3 = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: Ly = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line5: Ly = 0,101 201, 302 404)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|
2 Loy =(0)
3 fori = 1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
* Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line 5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
= line 6: Ly = (0,102,201 303)
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line 5: Ly = (0,101,201, 302 404)
= line6: Ly = O 101 201 302)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|
2 Loy =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 L; = TRIM(L;,€/2n)
6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,
8 return z*
® Input: S = (104, 102,201,101), t = 308, ¢ = 0.4
= Trimming parameter' d=c¢€/(2-n)=¢/8=0.05
= line2: Ly =
= lined: Ly = O 104
= line 5: Ly = (0,104
= line6: Ly = O 104
= line 4: L, = (0,102, 104, 206)
= line5: L, = O 102 206
= line 6: L, = O 102 206
= line 4: Ly = (0,102,201, 206, 303, 407)
= line 5: Ly = 0,102 201,308, 407)
» line 6: L3 = {0, 102, 201, 303}
= line 4: Ly = (0,101,102,201, 203, 302, 303, 404)
= line 5: Ly = (0,101,201 302 404)
= line 6: L4 =

0,101,201 302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

i
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v/
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
y

Greeny -7
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:

_ry
(1+¢/(2n)y

1

[Can be shown by induction on i]

<z<y
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution
= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
Y <<y M
(1 +¢/(2n))

1
[Can be shown by induction on i]
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,. .., X;, there exists an element z € L; s.t.:
S A e — Y
(1+¢/(2n) (1+¢/(2m)"
/1

[Can be shown by induction on i]
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

i
E:? IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [l0gy_ (25 ] additional values.

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

IoQ1+s/(2n) t+2=

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,
Int

lo f42=—— 12
9t+e/(2n) In(1 + ¢/(2n)) *

52l
IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,
Int

lo f42=—— 12
9t+e/(2n) In(1 + ¢/(2n)) *

[Forx> =1,In(1 +x) > 735

IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.

Hence,
Int
~ (1 + </(2n))
2n(1+¢/(2n)) Int 42

€

IoQ1+s/(2n) t+2

[Forx> =1,In(1 +x) > 735

IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

_ Int
~In(1 +¢/(2n))
2n(1+¢/(2n)) Int 42

€

IogHE/(z”) t+2

o 3nint
1+x

[Forx>—1,|n(1 +Xx) > + 2.

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
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Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.

Hence,
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3nint

+ 2.

[Forx> =1,In(1 +x) > 735

= This bound on |L;| is polynomial in the size of the input and in 1/e.
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [logy_ (25 | additional values.
Hence,

_ Int
~In(1 +¢/(2n))
2n(1+¢/(2n)) Int 42

€

IogHE/(z”) t+2

[Forx>—1,|n(1+x)2% 3n|nt+2.
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
N

(Need log(t) bits to represent t and n bits to represent Sj
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
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Concluding Remarks

The Subset-Sum Problem
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= Goal: Find a subset S’ C S which maximizes )", wes Xi < L.
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~——— Theorem 35.8
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[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
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The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., Xo} and positive integer

= Goal: Find a subset S’ C S which maximizes > g Xi <t
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The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
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2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.
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Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

\

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies 3, cq w; < t

P
LAIgorithm very similar to APPROX-SUBSET-SUM
— Theorem -

There is a FPTAS for the Knapsack problem. ]
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E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 10



Outline

Parallel Machine Scheduling
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Parallel Machine Scheduling

Machine Scheduling Problem

m identical machines My, Mz, ..., My,

= Given: njobs Ji, s, ..., Jn with processing times py, po, . . .

, Pn, and
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., My,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.
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= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cy is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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Parallel Machine Scheduling is NP-complete even if there are only two
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Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
vk 0 JCa

M1[ . Jo . _ ]i

1

I T T
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0 1éé4'156%591'01'11'21'31'41'5

LIST SCHEDULING(J1, oo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[ . Jo . _ ]i

T
T

0 1éé4'156%591'01'11'21'31'41'5
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L T

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G
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T
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Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?]

Sl
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Chax > Max Pg.
max = 1§ks”pk
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crmax > Mmax p.
max = 1§kgnpk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

Proof:

b. The total processing times of all n jobs equals Y ;_, p«
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List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crmax > Mmax p.
max = 1§kgnpk

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1 <
Crax > E;Pk

Proof:
b. The total processing times of all n jobs equals Y ;_, p«
= One machine must have a load of at least 1 - S°7_; p«
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Crmax < — max P.
max > m;pk+1gkgnpk

\

Hence list scheduling is a poly-time 2-approximation algorithm.
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cinax < E;pk + max pg.

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ,D;( + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
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For the schedule returned by the greedy algorithm it holds that
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Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
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List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966) N\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

@@ Cy
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Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
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List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
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1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: [Using Ex 35542 &b.]
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Improving Greedy

Analysis can be shown to be almost tight. Is there a better algorithm?
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Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=SuU{j},C= C,-+p,-
: end for
creturn Sy, ..., Sy
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Si=0
: end for
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Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i =argmin, ., Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
N

[This can be shown to be tight (see next inde).J
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Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

Cmax = Cj = (Cj—pi)+pi
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

* 1 Sk
Cmax - Cj - (C/ - p/) + pi < Cmax + Ecmax
1
(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).

= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then Ciax > 2 - pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
Cmax = Cj = (C] —pi)+ Ppi < Cpax + Ecmax = ECmax- O
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Tightness of the Bound for LPT
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| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
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= n=2m+ 1 jobs of length2m — 1,2m — 2, ..., m and one job of length m
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Tightness of the Bound for LPT
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Proof of an instance which shows tightness:
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Tightness of the Bound for LPT
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Proof of an instance which shows tightness:
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m=5n=11: LPT gives Crnax = 19
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)

1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

_;:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling



A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Key Lemma
‘ SUBROUTINE can be implemented in time n°(/<"). ]

E:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19



A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.
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Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T
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Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsman = {i: pi < €- T} and Jiage = [N] \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman Yields a solution with makespan (1 + €) - max{T, Crax}-
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

ﬁ!a

L.!-.
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0.25-

S e e
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—_
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o~~~ —=49-

2
T
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., Ng2) be the minimum number of machines required to schedule
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

. . ) _— ib
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, Nty M) =1+ min f(Nb — Sby Mpi1 = Sbyty -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
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Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

. . ) _— ib
Let b be the smallest integer with 1/b < ¢. Define processing times p; = ['J’T] . b—TZ
Every p = o - b—TZ fora=bb+1,..., b2
. 2 ;
LetC be all (sp, Spi1, - -, Spe) With o785/ - & < T.
Let f(np, Np41, . .., Np2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(Np, Nty M) =1+ min f(Nb — Sby Mpi1 = Sbyty -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC
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Final Remarks

Graham 1966
| List scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).
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~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := "1_. py.

\.

Can we find a FPTAS (for polynomially bounded processing times)?

No! =
Because for sufficiently small approximation ratio

1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.
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