VI. Approx. Algorithms: Randomisation and Rounding
Thomas Sauerwald

Easter 2019

UNIVERSITY OF
P CAMBRIDGE

Outline

Randomised Approximation

i
.n;,

VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C* satisfy:

c C
max (—) p(n)

Sl

.;,I,, VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c cr
— < .
max (-,) < p(n)

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c c*
= =)< .
maX<C*, C)fp(n)

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)

= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

t’n‘n
a0

VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c cr
— < .
max (-,) < p(n)

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

[extends in the natural way to randomised algorithms]

Approximation Schemes 1

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)

= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

t’n‘n
B

VI. Randomisation and Rounding Randomised Approximation 3

Outline

MAX-3-CNF

g oy VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

ﬁla

;,H,, VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

g VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

|

——— MAX-3-CNF Satisfiability

7
v

clauses as possible.

= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

|

——— MAX-3-CNF Satisfiability

7
v

clauses as possible.

= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

Example:

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)

VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
N
[x1 =1,x%=0,x3 =1, x4 = 0 and xs = 1 satisfies 3 (out of 4 clauses)j

i
&:E VI. Randomisation and Rounding MAX-3-CNF 5

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

7
v

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
N
[x1 =1,%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

' Idea: What about assigning each variable uniformly and independently at random? '

VI. Randomisation and Rounding MAX-3-CNF 5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

i VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:

bl - e
'!:‘E' VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}

bl - e
'!:‘E' VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

sl
'!:‘E VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

. i 11 1 1
Pr[clausellsnotsatlsfled]:5-—-—:—

sl
'!:‘E VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

ii ., 11 1 1
Pr [clause i is not satisfied] = = - = - = -1
2 2 8
1
= Pr[clause i is satisfied] = 1 — 5<%

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=Pr[Yi=1]-1=2.

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=Pr[Yi=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=Pr[Yi=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y]

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=Pr[Yi=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] :E{zm:Y,}
i=1

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=PriY,=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,
m
E[Y] =E {Z Y,}
i=1

(Linearity of Expectations)

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=PriY,=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,
m m
E[Y] =E {ZY:} => E[Y]
i=1 i=1

(Linearity of Expectations)

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1
Pr[clauseiisnotsatisfied]:—-—.1:l
2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]=PriY,=1]-1=2.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] =E{ZY,} =S E[V] :Z%
i=1 i=1 i=1

(Linearity of Expectations)

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

. i 11 1 1
Pr[clause i is not satisfied] = -

2 2 8
- . 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
7
= E[Y,-]:Pr[Y,-:1]~1:§_

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

ELY] =E{ZY1} = E[Y] :Z§=Z.m.
=1 i=1 i=1

8

(Linearity of Expectations)

VI. Randomisation and Rounding MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

. i 11 1 1
Pr[clause i is not satisfied] = -

2 2 8
- . 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
7
= E[Y,-]:Pr[Y,-:1]~1:§_

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

ELY] =E{ZY1} = E[Y] :2§=Z.m.
=1 i=1 i=1

8

(Linearity of Expectations) (maximum number of satisfiable clauses is m)

S R
VI. Randomisation and Rounding MAX-3-CNF

6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

. i 11 1 1
Pr[clause i is not satisfied] = -

2 2 8
- . 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
7
= E[Y,-]:Pr[Y,-:1]~1:§_

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y]:E{zm:yl} :iE[Yi]=ig=z-m. 0
i=1 i=1 i=1

8

(Linearity of Expectations) (maximum number of satisfiable clauses is m)

S R
VI. Randomisation and Rounding MAX-3-CNF

6

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

'
'!:‘,' VI. Randomisation and Rounding MAX-3-CNF

Interesting Implications

—— Theorem 35.6 \
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

i VI. Randomisation and Rounding MAX-3-CNF

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1
[There s w € 2 such that Y(w) > E[Y]]

VI. Randomisation and Rounding MAX-3-CNF

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

A il 1 .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

VI. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

A1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

VI. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

A1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

VI. Randomisation and Rounding MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

sl
'!:‘,,' VI. Randomisation and Rounding MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
!

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

S R
VI. Randomisation and Rounding MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]:%-E[Y|x1:1]+%-E[Y|x1:0].

Y is defined as in
the previous proof. J

VI. Randomisation and Rounding MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

E[Y]:%-E[Y|x1:1]+%-E[Y|x1:0].

Y is defined as in S
the previous proof. J [One of the two conditional expectations is at least E [Y]!]

VI. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
!

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]:%-E[Y|x1:1]+%-E[Y|x1:0].

Y is defined as inJ [N

the previous proof. One of the two conditional expectations is at least E | Y]!]
/]
L

Algorithm: Assign x; so that the conditional
expectation is maximized and recurse.

VI. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
!

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]= E[Y|x1_1]+— E[Y | xy =0].
Y is defined as in S
the previous proof. J [One of the two conditional expectations is at least E | Y]!]
GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n
2: ComputeE[Y\x1:v1. JXi—1 = Vj_1, x5 =1]
3: Compute E[Y | x1 =v1,...,X—1 = Vj—1, X, = 0]
4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vy, va,..., vy

VI. Randomisation and Rounding MAX-3-CNF 8

Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

= Step 1: polynomial-time algorithm

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm ,
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

E[Y|X1 =Vi, ., X :Vj?hXj:‘IJ

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
=

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,x=1] =D E[Yi[xi=vi,...,x 1 =Vi_q,5=1]
i=

computable in O(1)

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,x=1] =D E[Yi[xi=vi,...,x 1 =Vi_q,5=1]
i=

computable in O(1)

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
p

= Step 2: satisfies at least 7/8 - m clauses

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
p

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
i=1
= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
p

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
p

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]
>E[Y]

VI. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/ ,
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

= A smarter way is to use linearity of (conditional) expectations:
m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]

>E[Y]:g-m,

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/ ,
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

= A smarter way is to use linearity of (conditional) expectations:
m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]

>E[Y]:g-m,

VI. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/ ,
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,5=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
p

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]
7
SE[Y] =< m O
8
MAX-3-CNF 9

VI. Randomisation and Rounding

Run of GREEDY-3-CNF (¢, n, m)

(aVxeVxs)A(a VX VXa) AV xe VX)) AR VXV Xe) A(X Ve VXa) AT Ve VXe) A GV Xe VXs) ARGV XV Xs) A (Xi VX3V Xe) A (X2 V X5V Xe)

2?77

X1:0 X1=1
X2 =0 Xo =1 X2 =0 Xo =1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1

6 VI. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(aVxeVxs)A(a VX VXa) AV xe VX)) AR VXV Xe) A(X Ve VXa) AT Ve VXe) A GV Xe VXs) ARGV XV Xs) A (Xi VX3V Xe) A (X2 V X5V Xe)

2?77

X1:0 X1=1

0???| 8.625

6 VI. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(aVxeVxs)A(a VX VXa) AV xe VX)) AR VXV Xe) A(X Ve VXa) AT Ve VXe) A GV Xe VXs) ARGV XV Xs) A (Xi VX3V Xe) A (X2 V X5V Xe)

????| 8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1

x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1

A A A 7 A 7 A 7 AR T AY:
// \ Il \ 4 \! I A\ I \ I \ I \ I \
o - (o) - (o) - o - o - (e} - <) - o -
0000 0010 0100 m 1000 1010|1011 1100 1110|1111

el
VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(aVxeVxs)A(a VX VXa) AV xe VX)) AR VXV Xe) A(X Ve VXa) AT Ve VXe) A GV Xe VXs) ARGV XV Xs) A (Xi VX3V Xe) A (X2 V X5V Xe)

????|.8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1

x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1

A A A 7 A 7 A 7 AR T AY:
// \ Il \ 4 \! I A\ I \ I \ I \ I \
o - (o) - (o) - o - o - (e} - <) - o -
0000 0010 0100 m 1000 1010|1011 1100 1110|1111

el
VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(X TR A (T T A (X T A RV XV Xa) A N TG A RV XV XE) A GRV Xe V Xs) A GV Xz V Xs) A (X MR A (X V X V Xa)

8.75

x1 =0 xy =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Av-R A ¥
I \ Il \ 4 \! I \ I \ I \
o - (o) - (o) - S - (o) - o -

0000 0010 m 0100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IANTATAGGVX)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
o o T
ST\E SE SE A AR AT
I \ Il \ 4 \! I \ I \ Il \!
o - o - (@) - [« - [« - o -

0000 0010 m 0100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IANTATAGGVX)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Y AV-R A ¥
I \ Il \ 4 \! I \ I \ Il \!
o - (o) - S - (e} - (<) -

-~ o
oooo 0010(0011] (0100 1010|[1011] [1100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IANTATAGGVX)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Y AV-R A ¥
I \ Il \ 4 \! I \ I \ Il \!
o - (o) - S - (e} - (<) -

-~ o
oooo 0010(0011] (0100 1010|[1011] [1100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGV X)) A ARG A (Y X3) A (X ¥R5) AT A (VX3 V Xs)

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Y AV-R A ¥
I \ Il \ 4 \! I \ I \ Il \!
o - (o) - S - (e} - (<) -

-~ o
oooo 0010(0011] (0100 1010|[1011] [1100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KGV Xq)

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Y AV-R A ¥
I \ Il \ 4 \! I \ I \ Il \!
o - (o) - S - (e} - (<) -

-~ o
oooo 0010(0011] (0100 1010|[1011] [1100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KGV Xq)

????|.8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
¥ NFAYS < [\¥ YAV NVAYS

AT AV ST AYS
AN\ LR AR S SR N N A S N A N

&
1l
(e} (o] (e} - (e}

el
VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KGV Xq)

????|.8.75
x; =0 xy =1
0???] 8.625 1??2?| 8.875
X2 =0 X2 =1 X2 =0 X2 =1
1072] 9 1177] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 x3 =0 X3 =1

STAV-EE ST AV ST A S

Il \ Il \ 4 \! I

>) > A IS & S

\! I \ I \ I

1007 9 101?| 9 110?
3 ST\

\ Il \!
-

(e} - (e} - (e} - (@) - [e) - [« - [« - o
EnEn o))

6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGEY R ATATA () AT AT AGEV Xs)

????|.8.75
x; =0 xy =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-R A v- Ry A v- Ry A vy A v- R A V- AV
I \ Il \ 4 \!

I \! I \ I \ I \ Il \!
-

(e} - (e} - (e} - (@) - [e) - [« - [« - o
EnEn o))

6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x; =0 xy =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-R A v- Ry A v- Ry A vy A v- R A V- AV
I \ Il \ 4 \!

I \! I \ I \ I \ Il \!
-

(e} - (e} - (e} - (@) - [e) - [« - [« - o
EnEn o))

6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x; =0 xy =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-R A v- Ry A v- Ry A vy A v- R A V- AV
I \ Il \ 4 \!

I \! I \ I \ I \ Il \!
-

(e} - (e} - (e} - (@) - [e) - [« - [« - o
EnEn o))
9 9

6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-I A v- Ry A v- R A vy A v- R A V- AV
I \ Il \ 4 \! I A\ I \ I \ I \ Il \!
o - (o) - S - o - o - (e} - (<) - () -
o) (o9or) o) (o) (o))
9 9
el
MAX-3-CNF 10

VI. Randomisation and Rounding

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875

X2 =0 Xo =1 X2 =0 Xo =1

1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-I A v- Ry A v- R A vy A v- R A V- AV
I \ Il \ 4 \! I A\ I \ I \ I \ Il \!
S - o - o - N

S} - o) - o - o
10 9 9

el
VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x; =0 xy =1
0???] 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
00??| 8 01??| 9.25 10??] 9 11??] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 x3 =0 X3 =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?] 9 101?] 9 9 111?| 8.5
Ay Av-RE Ly AT AN A - A v AT A

Il \ Il \ 4 \ Il \ I \ I \ / \ Il \!
o -

o - o B~ - o - - o > o > o
EnEn o)) (@ om)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

i
E:E VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x; =0 xy =1
0???] 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
00??| 8 01??| 9.25 10??] 9 11??] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 x3 =0 X3 =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?] 9 101?] 9 9 111?| 8.5
Ay Av-RE L AT AN A TRy A VR AT A

Il \ Il \ 4 \ Il \ I \ I \ / \ Il \!
o -

o - o B~ - o - - o > o > o
EnEn @) (@(er)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

i
E:E VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
00??| 8 01??] 9.25 10??| 9 11??] 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5
AT ARy AV AT A vy A VR AV A ¥
I \ Il \ 4 \! I A\ I \ I \ I \ Il \!
<) -

o - o B~ - o - - o > o > o
EnEn @) (@(er)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. j

el
6 VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., X, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Gy VI. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., X, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Gy VI. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., X, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any e > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-CNF unless P=NP.

ﬁla

;,H,, VI. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any e > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-CNF unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!J

Gy VI. Randomisation and Rounding MAX-3-CNF

Outline

Weighted Vertex Cover

a8 VI Randomisation and Rounding

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(=)=
“’Q‘
w

@ (o)
~(2)

iy VI. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(=)=
“’Q‘
w

= (2)
~(2)

iy VI. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(20>
“’Q‘
w

«(°)
~(@)

iy VI. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

A\

[This is (still) an NP-hard problem.]

(20>
“’Q‘
w

«(°)
~@®

i VI. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

A\

[This is (still) an NP-hard problem.]

Applications:

(20>
“’Q‘
w

«(°)
~@®

i VI. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

w

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)
= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

N
\

[This is (still) an NP-hard problem.]

el

«(°)
~@®

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

i VI. Randomisation and Rounding Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such that e
if (u,v) € E(G),thenue V' orveV. 5
N

A\

[This is (still) an NP-hard problem.j ° o
3 1

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person

VI. Randomisation and Rounding Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

A\

[This is (still) an NP-hard problem.]

Applications:

w

4
()
2
(O—@
3 1

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

i VI. Randomisation and Rounding Weighted Vertex Cover

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

i VI. Randomisation and Rounding Weighted Vertex Cover

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© O ©
T 1 1

6 VI. Randomisation and Rounding Weighted Vertex Cover 14

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]

VI. Randomisation and Rounding Weighted Vertex Cover 14

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

© ©© O ©
1 1 1 1
)
[Optimal solution has weight 4]

VI. Randomisation and Rounding Weighted Vertex Cover 14

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

ﬁl;

;,H,, VI. Randomisation and Rounding Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv
subject to x(u) +x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V

ﬁl;

;,H,, VI. Randomisation and Rounding Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv

subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) {0,1} foreachv e V

m

Linear Program

minimize > w(v)x(v)

veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) [0,1] foreachv e V

m

ﬁl;

;,H,, VI. Randomisation and Rounding Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

/
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

g VI. Randomisation and Rounding Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
) weight of a minimum weight-cover.
Linear Program
/
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]'

i VI. Randomisation and Rounding Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)

1 C=9

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 ifx(v) >1/2

5 C =CU{v}

6 return C

g VI. Randomisation and Rounding Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=49
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

[Y N O R

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

i
E:E VI. Randomisation and Rounding Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=49
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

[Y N O R

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

A

L
[is polynomial-time because we can solve the linear program in polynomial time]

S R
VI. Randomisation and Rounding Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

[Y(a) —%(b) = %(e) = 1, %(d) = 1, %(c) = o]
|4

3
b

4
(@)
()
2

9@

3

fractional solution of LP
with weight = 5.5

S R
VI. Randomisation and Rounding

Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =x(e) = % x(d) =1,x(c) = O] [x(a) =x(b) =x(e) =1, x(d) =1, x(c) = 0]
|74 =

3 3
b b

4 4
(@) @
Rounding
—_— e

()
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10

kel - tad
@' VI Randomisation and Rounding Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =x(e) = % x(d) =1,x(c) = O] [x(a) =x(b) =x(e) =1, x(d) =1, x(c) = 0]
|74 =

3 3 3
b b b

4 4 4
(@) @ (@)
Rounding
—_— e

() O
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

kel - tad
@' VI Randomisation and Rounding Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

ﬁla

;,H,, VI. Randomisation and Rounding Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Gy VI. Randomisation and Rounding Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem

g VI. Randomisation and Rounding Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

i VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

i VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:

i VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1

i VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2

i VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

i
E:E VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

il
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

i
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Z" < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

i
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z =) w(v)X(v)

veV

i
E:E VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C)>z" =Y wvx(v) = > W(v)~%

veV veV:x(v)>1/2

i
E:E VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C)>z" = wvx(v) > > wy)- % = %W(C).

veV veV:x(v)>1/2

i
E:E VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

MC) 22 =Y wR) > Y w(v) 3 = 2w(C).

veV veV:x(v)>1/2

i
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z = wx(v) > S w(v)- % - %W(C). 0

veV veV:x(v)>1/2

i
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Outline

Weighted Set Cover

@59 VI. Randomisation and Rounding

Weighted Set Cover

The Weighted Set-Covering Problem

Set Cover Problem

= Given: set X and a family of subsets F,

and a cost function ¢ : F — R

= Goal: Find a minimum-cost subset C C F

st X= U S.

Sec

i
'«Ha

VI. Randomisation and Rounding

Weighted Set Cover

20

The Weighted Set-Covering Problem

[]
Set Cover Problem Si
= Given: set X and a family of subsets F, d
and a cost function ¢ : F — R*
= Goal: Find a minimum-cost subset C C F °
Sum over the costs | St X = U S.
of all sets in C sec i
I
Ss

Sz

o oo =

@59 VI. Randomisation and Rounding

Weighted Set Cover

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem Si .
= Given: set X and a family of subsets F, s hd o)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F °) 2 °
Sum over the costs | St X = U S.

of all sets in C sec i L4 L4

' Ss Ss

S S S5 S S5 Ss
c:2 3 3 5 1 2

VI. Randomisation and Rounding Weighted Set Cover 20

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem Si .
= Given: set X and a family of subsets F, d hd o)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F Y o e
Sum over the costs | S:t. X = U S.

of all sets in C sec L4 L4 L4

' Ss Ss

S1 S S5 84 S5 S
Remarks: c:2 33 5 12
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

Gy VI. Randomisation and Rounding Weighted Set Cover 20

Setting up an Integer Program

@9 V. Randomisation and Rounding

Weighted Set Cover

21

Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF

subject to dovs) = 1 for each x € X
SeF: xe8

y(S) € {0,1} foreachSeF

g VI. Randomisation and Rounding Weighted Set Cover

21

Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dovs) = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreachSeF
Linear Program
minimize > e(S)y(S)
ser
subject to Soys) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F

ﬁla

;,H,, VI. Randomisation and Rounding

Weighted Set Cover

21

Back to the Example

[J [J [J
S
° e |0
S
o| (o _ZJ
[J [J [J
S; Ss
S1 Sg 83 S4 SS SG
c 2 3 3 5 1 2

VI. Randomisation and Rounding

Weighted Set Cover

22

Back to the Example

y(): 1/2 1)2

[J [J
S
o T8
S
. _ZJ
o o
S; Ss
S1 82 S4 85 86
C: 2 3 5 1 2

1/2 12 1 1/2

VI. Randomisation and Rounding

Weighted Set Cover

22

Back to the Example

| ©
|

[] [] []
Ss Ss

S1 Sg 83 S4 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2

Cost equals 8.5

VI. Randomisation and Rounding Weighted Set Cover 22

Back to the Example

| ©
|

[] [] []
Ss Ss

S1 32 83 84 85 86
c: 2 3 3 5 1 2
y(): 172 1/2 12 1/2 1 1/2
7\
[The strategy employed for Vertex-Cover would take all 6 sets!j

Cost equals 8.5

S R
&:E VI. Randomisation and Rounding Weighted Set Cover 22

Back to the Example

[] [[
Sy

[
&

[

S1 Sz Ss 84 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2

Cost equals 8.5

/\

[The strategy employed for Vertex-Cover would take all 6 sets!j
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!j

Sl

@5 VI Randomisation and Rounding Weighted Set Cover

Randomised Rounding

31 82 83 S4 85 SG
Cc: 2 3 3 5 1 2

y(): t1/2 1/2 1/2 1/2 1 1)2

VI. Randomisation and Rounding Weighted Set Cover

Randomised Rounding

C:

y():

Sy
2
1/2

Sz
3
1/2

Ss
3
1/2

Si Ss
5 1
12 1

Se
2
1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

i
'«!..

VI. Randomisation and Rounding

Weighted Set Cover

23

Randomised Rounding

81 32 33 S4 85 SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

_ 1 with probability y(S)
= for all :
y(S) {0 otherwise. orall S 7

bl - e

g VI. Randomisation and Rounding Weighted Set Cover

23

Randomised Rounding

81 32 33 S4 85 SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

7(S) = 1 with pr9bablllty y(S) foral S e F.
0 otherwise.

= Therefore, E[y(S)] = y(S).

bl - e

g VI. Randomisation and Rounding Weighted Set Cover

23

Randomised Rounding

81 32 33 S4 85 SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

ﬁ!ﬁ

;,E 5 VI. Randomisation and Rounding Weighted Set Cover 23

Randomised Rounding

81 32 33 S4 85 SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

E[c(C)]=) c(S)-¥(S)

SeF

ﬁ!a

;,! 5 VI. Randomisation and Rounding Weighted Set Cover 23

Randomised Rounding

81 32 33 S4 85 SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

E[c(C)]=) c(S)-¥(S)

SeF

= The probability that an element x € X is covered satisfies

Pr{erS]M—%.

Sec

ﬁl;

;,! 5 VI. Randomisation and Rounding Weighted Set Cover

23

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

bl - e

g VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

g VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

Elc(O)]

g VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)]

Sec

g VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

Ef[c(C)] =E [ZC(S)] =E {Z 15ec-0(5)]

Sec SeF

Gy VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[c(c)] =E [Zc(S)] ~E {Z 1ch-c(S)]
Sec SeF

= > Pr[Sec]-c(S)

SeF

Gy VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

Ef[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|

Sec SeF

=Y Pr[Sec]-c(S)= > y(S) c(9).

SeF SeF

bl - e

Gy VI. Randomisation and Rounding Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C v/

E[c(c)] =E [Zc(S)] ~E {Z 1ch-c(S)}
Sec SeF

=Y Pr[Sec]-c(S)= > y(S) c(9).

SeF SeF

Gy VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

g oy VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix ¢ UsecS]

g VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF Ser
= Step 2: The probability for an element to be (not) covered
PrixZUsccSl =] PriSgc]

SeF: xeS8

VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SEC'C(S):|

Sec Ser
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

i VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

(1 + x < eX for any xﬁ

VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

S H efy(s)
(1 + x < e for any xﬁ SeFixes

VI. Randomisation and Rounding Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

S H efy(s)
(1 + x < e for any xﬁ SeFixes
— e~ 2ser: xes V(5

VI. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

— e~ 2ser: xes V(5

VI. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1

VI. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1

VI. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1 O

VI. Randomisation and Rounding Weighted Set Cover 24

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

bl - e

g VI. Randomisation and Rounding Weighted Set Cover

25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).

» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

/
—

[Problem: Need to make sure that every element is covered!j

VI. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

/
—

[Problem: Need to make sure that every element is covered!j

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. '

Gy VI. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).

» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

/
—

[Problem: Need to make sure that every element is covered!j

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. '

WEIGHTED SET COVER-LP(X, F,¢)
1: compute y, an optimal solution to the linear program
2:C=10
3: repeat 2In ntimes
4: foreach Se F
5
6

let C = C U {S} with probability y(S)
: return C

i
E:E VI. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

/
—

[Problem: Need to make sure that every element is covered!j

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. '

WEIGHTED SET COVER-LP(X, F,¢)
1: compute y, an optimal solution to the linear program

22C=10

3: repeat 2In ntimes

4: foreach S e F

5 let C = C U {S} with probability y(S) __ ~_

6: return C clearly runs in polynomial—time!j

VI. Randomisation and Rounding Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

g VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:

g VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover

g VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= The expected approximation ratio is 21In(n).

= With probability at least 1 — 15 the returned set C is a valid cover of X.

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

B VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= The expected approximation ratio is 21In(n).

= With probability at least 1 — 15 the returned set C is a valid cover of X.

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2inn
Prix ¢ UseeS] < ()

B VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Pr[X€U36C8]§ (—) = —.
e n2

6 VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ

= This implies for the event that all elements are covered:

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ

= This implies for the event that all elements are covered:

PrX = UsccS] =

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ

= This implies for the event that all elements are covered:

Pr{X =UgecS]=1-Pr |: U {x QUSECS}:|

xeX

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Prix ¢ UsecS] < (5) ==
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

[Pr[AUB] < Pr[A]—i—Pr[B]}

6 VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

[Pr[AuB] < Pr[A]—i—Pr[B]}z 1 —ZPI'[XQUsecS]

xeX

6 VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

[Pr[AuB] < Pr[A]—i—Pr[B]}Z 1 —ZPT[X€Usec3] >1 —n‘lz
xexX n

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

1 1
(Priaus) < priaj+prig) o - YPrixg UseeS) 2o m 1=

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

1 1
(Priaus) < priaj+prig) o - YPrixg UseeS) 2o m 1=

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Prix ¢ UsecS] < (5) ==
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

1 1
(Priaus) < priaj+prig) o - YPrixg UseeS) 2o m 1=

= Step 2: The expected approximation ratio

6 VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

P

roof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Prix ¢ UsecS] < (5) ==
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priaus) < prial«Pr(B] b1 - S Prixg UseeS] 1 -0 L =1 -

1
n2 n’

<

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).

VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Pria]+Pr(8] o 1 - S Prixgusecs] > 1-n 11
n? n
xeX
= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
* Linearity = E[c(C)] < 2In(n) - >-gc 7 ¢(S) - ¥(S)

i
E:? VI. Randomisation and Rounding Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Prial+PriB] So 1 - S PrixguseeS] 1 -n- 4 = 1- 1
n? n
xeX
= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
* Linearity = E[c(C)] < 2In(n) - >"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)

i
E:? VI. Randomisation and Rounding Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Pria]+Pr(8] o 1 - S Prixgusecs] > 1-n 11
n? n
xeX
= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
* Linearity = E[c(C)] < 2In(n) - >"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)

i
E:? VI. Randomisation and Rounding Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2lnn 1
Pr[X€U36C8]§ (g) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Pria]+Pr(8] o 1 - S Prixgusecs] > 1-n 11
n? n
xeX
= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
* Linearity = E[c(C)] < 2In(n) - >"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*) O

i
E:? VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

[By Markov's inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]

VI. Randomisation and Rounding Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1,
solution is within a factor of 4 In(n) of the optimum.

VI. Randomisation and Rounding Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 21In(n).

A\
[By Markov's inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

VI. Randomisation and Rounding Weighted Set Cover 26

Outline

MAX-CNF

@59 VI. Randomisation and Rounding

MAX-CNF

27

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

ﬁ!a

;,! 5 VI. Randomisation and Rounding MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (x1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

g VI. Randomisation and Rounding MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (x1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

i VI. Randomisation and Rounding MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (x1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

bl - e
'!:‘,' VI. Randomisation and Rounding MAX-CNF 28

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

ﬁl;

;,H,, VI. Randomisation and Rounding MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

bl - e

a8 VI Randomisation and Rounding MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

a8 VI Randomisation and Rounding MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

a8 VI Randomisation and Rounding MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.

i VI. Randomisation and Rounding MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y := YT, Y; be the number of satisfied clauses. Then,

i=1 i=1 i=1

E[Y]=E

VI. Randomisation and Rounding MAX-CNF 29

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

ﬁl;

;,H,, VI. Randomisation and Rounding MAX-CNF 30

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

Gy VI. Randomisation and Rounding MAX-CNF 30

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

m

maximize Z z

i=1
subjectto Y y+ > (1-y)

>z foreachi=1,2,...,m

ject jec;
zi € {0,1} foreachi=1,2,...,m
y, € {0,1} foreachj=1,2,...,n

Gy VI. Randomisation and Rounding MAX-CNF 30

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

m

maximize Z z

i=1
subjectto Y y+ > (1-y)
ject jec;
! z
C; is the index set of the un- v
negated variables of clause i.

A%

m m

Z foreachi=1,2,...

,m

{0,1} foreachi=1,2,....m

{0,1} foreachj=1,2,...

)

,n

a8 VI Randomisation and Rounding

MAX-CNF

30

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

o m These auxiliary variables are used to
maximize 212" [reflect whether a formula is satisfied or not]
i
subjectto > y+ > (1-y) = z,-V foreachi=1,2,...,m
jec;t jec;
1 z € {0,1} foreachi=1,2,....m
y, € {0,1} foreachj=1,2,...,n

C; is the index set of the un-
negated variables of clause i.

i VI. Randomisation and Rounding MAX-CNF 30

Approach 2: Guessing with a “Hunch”

First solve a linear program and use fractional values for a biased coin flip.

(The same as randomised rounding!]

— 0-1 Integer Program

o m These auxiliary variables are used to
maximize 212" [reflect whether a formula is satisfied or not]
i
subjectto > y+ > (1-y) = z,-V foreachi=1,2,...,m
jec;t jec;
1 z € {0,1} foreachi=1,2,....,m
y, € {0,1} foreachj=1,2,...,n

negated variables of clause i.

[C; is the index set of the un-]

= |n the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (y*, z") be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y*

VI. Randomisation and Rounding MAX-CNF 30

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. g 1\¢
Pr[clause i is satisfied] > <1 - (1 - Z)) - zf.

g VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. g 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (1/2):

ﬁla

;,H,, VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - Z)) - zf.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

g oy VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - Z)) - zf.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)

i VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - Z)) - zf.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)

= Pr[clause i is satisfied] =

VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - zf.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£
= Pr[clause i is satisfied] = 1 — [[Pr[y; is false]
j=1

VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - zf.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
4 4
= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

J=1 J=1

VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - zf.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
4 4

= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

J=1 J=1

Arithmetic vs. geometric mean:

Ei) aF cac ar El
= = > Yar x ... X &.

bl - e
'!:‘,' VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) - zf.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
4 4

= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

J=1 J=1

Arithmetic vs. geometric mean:

ar. T > Va1 X ... X a.

VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

*

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) -z

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L

= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

=1 j=1

¢
4 *
Arithmetic vs. geometric mean: >1_ 21'21(1 Y)
a+...+a l
% > Yar x ... X ax.

S\
_1—<1— i ’)
]

VI. Randomisation and Rounding MAX-CNF

Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

*

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) -z

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L

= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

=1 j=1

¢
4 *
Arithmetic vs. geometric mean: >1_ 21'21(1 Y)
a+...+a l
% > Yar x ... X ax.

Sy ‘ zZ*
=1 (1= 21—(1——’>.
¢ ;

VI. Randomisation and Rounding MAX-CNF

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

Pr[clause i is satisfied] > <1 — (1 _ -

Proof of Lemma (2/2):
= So far we have shown:

4
Z:
Pr[clause i is satisfied] > 1 — (1 - —’)

g VI. Randomisation and Rounding

MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. g 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

4
Z:
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — E)e_

a8 VI Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

0\ £
z.
Pr[clause i is satisfied] > 1 — (1 - 7;)

= Forany ¢ > 1, define g(z) :=1— (1

- %)e. This is a concave function
with g(0) = 0 and g(1) _1—(—%)

i VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

0\ £
z.
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function
with g(0) = 0 and g(1) = 1 — (- %) 9(2)

i VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

*\ £
z.
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function

with g(0) = 0 and g(1) =1 — (1 - %)Z — 4. 9(2)

= g(z)>pe-z foranyze[0,1] 1-(1-1)°

i VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

*\ £
z.
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function

with g(0) = 0 and g(1) =1 — (1 - %)Z — 4. 9(2)

= g(z)>p-z foranyze[0,1] 1-(1-1)

= Therefore, Pr[clause i is satisfied] > 8¢ - z/".

VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

*\ £
z.
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function

with g(0) = 0 and g(1) =1 — (1 - %)Z — 4. 9(2)

= g(z)>p-z foranyze[0,1] 1-(1-1)

= Therefore, Pr[clause i is satisfied] > 8¢ - z/". O

VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

Pr[clause i is satisfied] > <1 — (1 .

——— Theorem

proximation algorithm for MAX-CNF.

\

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-

~

VI. Randomisation and Rounding

MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\ J

~

Proof of Theorem:

i VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~

\

Proof of Theorem:
= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.

VI. Randomisation and Rounding MAX-CNF

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=Y E[]>

i=1

VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E[YliE[Yf]z i(w(u%)z’).z,*

= i=1 !

VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

m m Zi m

E[Y]=) E[Y]> 2(17(17 L))-zfzz(wl)zr
i=1 i=1 ti 7= e

By Lemma [Since (1=-1/x)< 1/e]

VI. Randomisation and Rounding MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~

\

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=Y E[]> i<17(172i)li)-27‘22m:(1—:—9)~z7‘2 (pj_e).ow

= = / i=1 AN
. LP solution at least
X
By Lemma [Smce (1—=1/x) < 1/e] [as good as optimu]

VI. Randomisation and Rounding MAX-CNF

31

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

ﬁla

;,H,, VI. Randomisation and Rounding MAX-CNF

32

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches J

@a'59 VI. Randomisation and Rounding MAX-CNF 32

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches J

HYBRID-MAX-CNF (¢, n, m) /7‘
1: Let b € {0, 1} be the flip of a fair coin v‘.\ m
. ~=/C
2: If b = 0 then perform random guessing \4
3: If b = 1 then perform randomised rounding & e =
4: return the computed solution e

VI. Randomisation and Rounding MAX-CNF 32

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (e, n, m) >
i: Let b € {0, 1} be the flip of fair coin Vu\ m
2: If b = 0 then perform random guessing = ‘\A
3: If b = 1 then perform randomised rounding & e oo
4: return the computed solution N oé 2

Algorithm sets each variable x; to TRUE with prob. 3 - 3 + 3 - /"
Note, however, that variables are not independently assigned!

VI. Randomisation and Rounding MAX-CNF 32

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

bl - e

iy VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

bl - e

Gy VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*

Gy VI. Randomisation and Rounding MAX-CNF

33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

g oy VI. Randomisation and Rounding MAX-CNF

33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

i VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= Note 2432 —3/4for ¢ € {1,2},

i VI. Randomisation and Rounding MAX-CNF

33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= Note %“3@ =3/4for ¢ € {1,2}, and for £ > 3, “‘#*5‘3 > 3/4 (see figure)

0.5

I
I I

I I I

I I I

I I I

I I I

I I I

I I I

1 2 3 4

0

VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= Note %“3@ =3/4for ¢ € {1,2}, and for £ > 3, “‘#*5‘3 > 3/4 (see figure)

0.5

I
I i

I i i

I I I

I I I

I I I

I I I

I I I

1 2 3 4

0

VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= Note %“3@ =3/4for ¢ € {1,2}, and for £ > 3, “‘#*5‘3 > 3/4 (see figure)

VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= Note %“3@ =3/4for ¢ € {1,2}, and for £ > 3, “‘#*5‘3 > 3/4 (see figure)

VI. Randomisation and Rounding MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4/3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2—¢ = a, > ay - zr.
= Algorithm 2 satisfies it with probability 3, - z;".
= Note %“3@ =3/4 for ¢ € {1,2}, and for £ > 3, “‘#*5‘3 > 3/4 (see figure)
= = HYBRID-MAX-CNF (g, n, m) satisfies it with prob. at least 3/4 - z/ O

VI. Randomisation and Rounding MAX-CNF 33

MAX-CNF Conclusion

Summary

= Since ax = B2 = 3/4, we cannot achieve a better approximation
ratio than 4 /3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

VI. Randomisation and Rounding MAX-CNF

34

Outline

Conclusion

bl - e

@59 VI. Randomisation and Rounding

Conclusion

35

Spectrum of Approximations

FPTAS

i VI. Randomisation and Rounding

Conclusion

36

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

FPTAS

VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

KNAPSACK
SUBSET-SUM

FPTAS PTAS

VI. Randomisation and Rounding

Conclusion

36

Spectrum of Approximations

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS

VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX

VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX

VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX

S R
* VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX

S R
* VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX poly-APX

S R
VI. Randomisation and Rounding Conclusion 36

Spectrum of Approximations

MAX-CLIQUE

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX poly-APX

S R
VI. Randomisation and Rounding Conclusion 36

[Thank you and Best Wishes for the Exam!]

VI. Randomisation and Rounding Conclusion

37

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover
	Weighted Set Cover
	MAX-CNF
	Conclusion

