
Types

12 lectures for CST Part II by Neel Krishnaswami

〈www.cl.cam.ac.uk/teaching/1718/Types/〉

1/106

“One of the most helpful concepts in the whole of programming is the
notion of type, used to classify the kinds of object which are
manipulated. A significant proportion of programming mistakes are
detected by an implementation which does type-checking before it runs
any program. Types provide a taxonomy which helps people to think and
to communicate about programs.”

R. Milner, Computing Tomorrow (CUP, 1996), p264

“The fact that companies such as Microsoft, Google and Mozilla are
investing heavily in systems programming languages with stronger type
systems is not accidental – it is the result of decades of experience
building and deploying complex systems written in languages with weak
type systems.”

T. Ball and B. Zorn, Teach Foundational Language Principles,
Viewpoints, Comm. ACM (2014) 58(5) 30–31

2/106

Uses of type systems

I Detecting errors via type-checking, either statically
(decidable errors detected before programs are executed) or
dynamically (typing errors detected during program
execution).

I Abstraction and support for structuring large systems.

I Documentation.

I Efficiency.

I Whole-language safety.

3/106

Formal type systems

I Constitute the precise, mathematical characterisation of
informal type systems (such as occur in the manuals of most
typed languages.)

I Basis for type soundness theorems: “any well-typed program
cannot produce run-time errors (of some specified kind).”

I Can decouple specification of typing aspects of a language
from algorithmic concerns: the formal type system can define
typing independently of particular implementations of
type-checking algorithms.

4/106

Typical type system judgement
is a relation between typing environments (Γ), program phrases (e)
and type expressions (τ) that we write as

Γ ` e : τ

and read as: given the assignment of types to free identifiers of e
specified by type environment Γ, then e has type τ.
E.g.

f : int list� int, b : bool ` (if b then f nil else 3) : int

is a valid typing judgement about ML.

We consider structural type systems, in which there is a language
of type expressions built up using type constructs (e.g.
int list� int in ML).
(By contrast, in nominal type systems, type expressions are just
unstructured names.)

5/106

Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:
foo :: bar

C/Java-style:
bar foo

6/106

Type checking, typeability, and type inference

Suppose given a type system for a programming language with
judgements of the form Γ ` e : τ.
I Type-checking problem: given Γ, e, and τ, is Γ ` e : τ

derivable in the type system?

I Typeability problem: given Γ and e, is there any τ for which
Γ ` e : τ is derivable in the type system?

Solving the second problem usually involves devising a type
inference algorithm computing a τ for each Γ and e (or failing, if
there is none).

7/106

Progress, type preservation & safety

Recall that the simple, typed imperative language considered in
CST Part IB Semantics of Programming Languages satisfies:

Progress. If Γ ` e : τ and dom(Γ) ⊆ dom(s), then either e is a
value, or there exist e′, s′ such that 〈e, s〉 → 〈e′, s′〉.

Type preservation. If Γ ` e : τ and dom(Γ) ⊆ dom(s) and
〈e, s〉 → 〈e′, s′〉, then Γ ` e′ : τ and dom(Γ) ⊆ dom(s′).

Hence well-typed programs don’t get stuck:
Safety. If Γ ` e : τ, dom(Γ) ⊆ dom(s) and 〈e, s〉 →∗ 〈e′, s′〉,
then either e′ is a value, or there exist e′′, s′′ such that
〈e′, s′〉 → 〈e′′, s′′〉.

8/106

Outline of the rest of the course

I ML polymorphism. Principal type schemes and type inference. [2]
I Polymorphic reference types. The pitfalls of combining ML

polymorphism with reference types. [1]
I Polymorphic lambda calculus (PLC). Explicit versus implicitly

typed languages. PLC syntax and reduction semantics. Examples of
datatypes definable in the polymorphic lambda calculus. [3]

I Dependent types. Dependent function types. Pure type systems.
System F-omega. [2]

I Propositions as types. Example of a non-constructive proof. The
Curry-Howard correspondence between intuitionistic second-order
propositional calculus and PLC. The calculus of Constructions.
Inductive types. [3]

9/106

Polymorphism = has many types

I Overloading (or ad hoc polymorphism): same symbol
denotes operations with unrelated implementations. (E.g. +
might mean both integer addition and string concatenation.)

I Subsumption: subtyping relation τ1 <: τ2 allows any
M1 : τ1 to be used as M1 : τ2 without violating safety.

I Parametric polymorphism (generics): same expression
belongs to a family of structurally related types.
E.g. in Standard ML, length function

fun length nil = 0
| length (x :: xs) = 1 + (length xs)

has type τ list� int for all types τ.

10/106

Type variables and type schemes in Mini-ML

To formalise statements like
“length has type τ list� int, for all types τ”

we introduce type variables α (i.e. variables for which types may
be substituted) and write

length : ∀α (α list� int).

∀α (α list� int) is an example of a type scheme.

11/106

Polymorphism of let-bound variables in ML

For example in

let f = λx (x) in (f true) :: (f nil)

λx (x) has type τ � τ for any type τ, and the variable f to which
it is bound is used polymorphically:

in (f true), f has type bool� bool
in (f nil), f has type bool list� bool list

Overall, the expression has type bool list.

12/106

Forms of hypothesis in typing judgements

I Ad hoc (overloading):
if f : bool� bool
and f : bool list� bool list,
then (f true) :: (f nil) : bool list.

Appropriate for expressions that have different behaviour at
different types.

I Parametric:
if f : ∀α (α� α),
then (f true) :: (f nil) : bool list.

Appropriate if expression behaviour is uniform for different
type instantiations.

ML uses parametric hypotheses (type schemes) in its typing
judgements.

13/106

Mini-ML typing judgement

takes the form
Γ ` M : τ

where
I the typing environment Γ is a finite function from variables

to type schemes.
(We write Γ = {x1 : σ1, . . . , xn : σn} to indicate that Γ has domain
of definition dom(Γ) = {x1, . . . , xn} (mutually distinct variables)
and maps each xi to the type scheme σi for i = 1 . . . n.)

I M is a Mini-ML expression

I τ is a Mini-ML type.

14/106

Mini-ML types and type schemes

Types τ ::= α type variable
| bool type of booleans
| τ � τ function type
| τ list list type

where α ranges over a fixed, countably infinite set TyVar.

Type Schemes σ ::= ∀A (τ)

where A ranges over finite subsets of the set TyVar.

When A = {α1, . . . , αn} (mutually distinct type variables) we write
∀A (τ) as

∀α1, . . . , αn (τ).

When A = {} is empty, we write ∀A (τ) just as τ. In other words,
we regard the set of types as a subset of the set of type schemes
by identifying the type τ with the type scheme ∀{ } (τ).

15/106

Specialising type schemes to types

A type τ is a specialisation of a type scheme
σ = ∀α1, . . . , αn (τ′) if τ can be obtained from the type τ′ by
simultaneously substituting some types τi for the type variables αi
(i = 1, . . . , n):

τ = τ′[τ1/α1, . . . , τn/αn]

In this case we write σ � τ

(N.B. The relation is unaffected by the particular choice of names of
bound type variables in σ.)

The converse relation is called generalisation: a type scheme σ
generalises a type τ if σ � τ.

16/106

Mini-ML expressions

M ::= x variable
| true boolean values
| false
| if M then M else M conditional
| λx (M) function abstraction
| M M function application
| let x = M in M local declaration
| nil nil list
| M :: M list cons
| case M of nil⇒M | x :: x⇒M case expression

17/106

Mini-ML type system, I

(var �)
Γ ` x : τ

if (x : σ) ∈ Γ and σ � τ

(bool)
Γ ` B : bool

if B ∈ {true, false}

(if)
Γ ` M1 : bool Γ ` M2 : τ Γ ` M3 : τ

Γ ` (if M1 then M2 else M3) : τ

18/106

Mini-ML type system, II

(nil)
Γ ` nil : τ list

(cons) Γ ` M : τ Γ ` L : τ list
Γ ` M :: L : τ list

(case)

Γ ` L : τ list Γ ` N : τ′

Γ, x : τ, ` : τ list ` C : τ′

Γ ` (case L of nil⇒ N | x :: `⇒ C) : τ′
if x 6= ` and
x, ` /∈ dom(Γ)

19/106

Mini-ML type system, III

(fn)
Γ, x : τ1 ` M : τ2

Γ ` λx (M) : τ1 � τ2
if x /∈ dom(Γ)

(app)
Γ ` M : τ1 � τ2 Γ ` N : τ1

Γ ` M N : τ2

(let)

Γ ` M1 : τ
Γ, x : ∀A (τ) ` M2 : τ′

Γ ` (let x = M1 in M2) : τ′
if x /∈ dom(Γ) and
A = ftv(τ)− ftv(Γ)

Definition. We write Γ ` M : ∀A (τ) to mean Γ ` M : τ is
derivable from the Mini-ML typing rules and that
A = ftv(τ)− ftv(Γ).

(So (let) is equivalent to Γ ` M1 : σ Γ, x : σ ` M2 : τ′

Γ ` (let x = M1 in M2) : τ′
if x /∈ dom(Γ).)

20/106

Example of using the (let) rule

(let)

Γ ` M1 : τ
Γ, x : ∀A (τ) ` M2 : τ′

Γ ` (let x = M1 in M2) : τ′
if x /∈ dom(Γ) and
A = ftv(τ)− ftv(Γ)

If Γ ` M1 : τ is y : β, z : ∀γ (γ� γ� bool) ` λu (y) : α� β

then A = {α, β}− {β} = {α} and ∀A (τ) = ∀α (α� β).

So if Γ, x : ∀A (τ) ` M2 : τ′ is
y : β, z : ∀γ (γ� γ� bool), x : ∀α (α� β) ` z (x y) (x nil) : bool

then applying (let) yields
y : β, z : ∀γ (γ� γ� bool) ` let x = λu (y) in z (x y) (x nil) : bool

21/106

Two examples involving self-application

M , let f = λx1 (λx2 (x1)) in f f

M′ , (λ f (f f)) λx1 (λx2 (x1))

Are M and M′ typeable in the Mini-ML type system?

22/106

Constraints generated while inferring a type for
let f = λx1 (λx2 (x1)) in f f

A = ftv(τ2) (C0)
τ2 = τ3 � τ4 (C1)
τ4 = τ5 � τ6 (C2)

∀{ } (τ3) � τ6, i.e. τ3 = τ6 (C3)
τ7 = τ8 � τ1 (C4)

∀A (τ2) � τ7 (C5)
∀A (τ2) � τ8 (C6)

23/106

Principal type schemes for closed expressions

A type scheme ∀A (τ) is the principal type scheme of a
closed Mini-ML expression M if

(a) ` M : ∀A (τ)

(b) for any other type scheme ∀A′ (τ′),
if ` M : ∀A′ (τ′), then ∀A (τ) � τ′

24/106

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
` M : σ holds for some type scheme σ), then there is a principal
type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML
expression M as input, decides whether or not it is typeable and
returns a principal type scheme if it is.

25/106

An ML expression with
a principal type scheme
hundreds of pages long

let pair = λx (λy (λz (z x y))) in
let x1 = λy (pair y y) in

let x2 = λy (x1(x1 y)) in
let x3 = λy (x2(x2 y)) in

let x4 = λy (x3(x3 y)) in
let x5 = λy (x4(x4 y)) in

x5(λy (y))

26/106

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
τ1 and τ2 decides whether τ1 and τ2 are unifiable, i.e. whether
there exists a type-substitution S ∈ Sub with

(a) S(τ1) = S(τ2).

Moreover, if they are unifiable, mgu(τ1, τ2) returns the most
general unifier—an S satisfying both (a) and
(b) for all S′ ∈ Sub, if S′(τ1) = S′(τ2), then S′ = TS for some

T ∈ Sub
(any other substitution S′ can be factored through
S, by specialising S with T)

By convention mgu(τ1, τ2) = FAIL if (and only if) τ1 and τ2 are not
unifiable.

27/106

Principal type schemes for open expressions

A solution for the typing problem Γ ` M : ? is a pair (S, σ)

consisting of a type substitution S and a type scheme σ satisfying

S Γ ` M : σ

(where S Γ = {x1 : S σ1, . . . , xn : S σn}, if Γ = {x1 : σ1, . . . , xn : σn}).

Such a solution is principal if given any other, (S′, σ′), there is
some T ∈ Sub with TS = S′ and T(σ) � σ′.

(For type schemes σ and σ′, with σ′ = ∀A′ (τ′) say, we define
σ � σ′ to mean A′ ∩ ftv(σ) = {} and σ � τ′.)

28/106

Example typing problem and solutions

Typing problem

x : ∀α (β� (γ� α)) ` x true : ?

has solutions:
I S1 = {β 7→ bool}, σ1 = ∀α (γ� α)

I S2 = {β 7→ bool, γ 7→ α}, σ2 = ∀α′ (α� α′)

I S3 = {β 7→ bool, γ 7→ α}, σ3 = ∀α′ (α� (α′ � α′))

I S4 = {β 7→ bool, γ 7→ bool}, σ3 = ∀{ } (bool� bool)

Both (S1, σ1) and (S2, σ2) are in fact principal solutions.

29/106

Properties of the Mini-ML typing relation
with respect to substitution

and type scheme specialisation

I If Γ ` M : σ, then for any type substitution S ∈ Sub

SΓ ` M : Sσ

I If Γ ` M : σ and σ � σ′, then

Γ ` M : σ′

30/106

Requirements for a
principal typing algorithm, pt

pt operates on typing problems Γ ` M : ? (consisting of a typing
environment Γ and a Mini-ML expression M).

It returns either a pair (S, τ) consisting of a type substitution
S ∈ Sub and a Mini-ML type τ, or the exception FAIL.

I If Γ ` M : ? has a solution (cf. Slide 28), then pt(Γ ` M : ?)
returns (S, τ) for some S and τ;
moreover, setting A = (ftv(τ)− ftv(S Γ)), then
(S,∀A (τ)) is a principal solution for the problem Γ ` M : ?.

I If Γ ` M : ? has no solution, then pt(Γ ` M : ?) returns
FAIL.

31/106

How the principal typing algorithm pt works

pt(Γ ` M : ?) = (S, τ) | FAIL

I Call pt recursively following the structure of M and guided by
the typing rules, bottom-up.

I Thread substitutions sequentially and compose them together
when returning from a recursive call.

I When types need to agree to satisfy a typing rule, use mgu
(and pt returns FAIL only if mgu does).

I When types are unknown, generate a fresh type variable.

32/106

Some of the clauses in a definition of pt

Function abstractions: pt(Γ ` λx (M) : ?) ,
let α = fresh in
let (S, τ) = pt(Γ, x : α ` M : ?) in (S, S(α)�τ)

Function applications: pt(Γ ` M1 M2 : ?) ,
let (S1, τ1) = pt(Γ ` M1 : ?) in
let (S2, τ2) = pt(S1 Γ ` M2 : ?) in
let α = fresh in
let S3 = mgu(S2 τ1, τ2 � α) in (S3S2S1, S3(α))

33/106

ML types and expressions for mutable
references

τ ::= . . .
| unit unit type
| τ ref reference type

M ::= . . .
| () unit value
| ref M reference creation
| !M dereference
| M := M assignment

34/106

Midi-ML’s extra typing rules

(unit)
Γ ` () : unit

(ref) Γ ` M : τ
Γ ` ref M : τ ref

(get)
Γ ` M : τ ref

Γ ` !M : τ

(set)
Γ ` M1 : τ ref Γ ` M2 : τ

Γ ` M1 := M2 : unit

35/106

Example

The expression

let r = ref λx (x) in
let u = (r := λx′ (ref !x′)) in
(!r)()

has type unit.

36/106

Midi-ML transition system

Small-step transition relations

〈M, s〉 → 〈M′, s′〉
〈M, s〉 → FAIL

where
I M, M′ range over Midi-ML expressions
I s, s′ range over states = finite functions

s = {x1 7→ V1, . . . , xn 7→ Vn} mapping variables xi to values Vi:

V ::= x | λx (M) | () | true | false | nil | V :: V

I configurations 〈M, s〉 are required to satisfy that the free variables
of expression M are in the domain of definition of the state s

I symbol FAIL represents a run-time error

are inductively defined by syntax-directed rules. . .

37/106

Midi-ML transitions involving references

〈!x, s〉 → 〈s(x), s〉 if x ∈ dom(s)

〈!V , s〉 → FAIL if V not a variable

〈x := V ′, s〉 → 〈(), s[x 7→ V ′]〉

〈V := V ′, s〉 → FAIL if V not a variable

〈ref V , s〉 → 〈x, s[x 7→ V]〉 if x /∈ dom(s)

where V ranges over values:

V ::= x | λx (M) | () | true | false | nil | V :: V

38/106

〈let r = ref λx (x) in
let u = (r := λx′ (ref !x′)) in (!r)() , {}

〉

→∗ 〈let u = (r := λx′ (ref !x′)) in (!r)() , {r 7→ λx (x)}〉

→∗ 〈(!r)() , {r 7→ λx′ (ref !x′)}〉

→ 〈λx′ (ref !x′) () , {r 7→ λx′ (ref !x′)}〉

→ 〈ref !() , {r 7→ λx′ (ref !x′)}〉

→ FAIL

39/106

Value-restricted typing rule for let-expressions

(letv)
Γ ` M1 : τ1 Γ, x : ∀A (τ1) ` M2 : τ2

Γ ` let x = M1 in M2 : τ2
(†)

(†) provided x /∈ dom(Γ) and

A =

{
{ } if M1 is not a value
ftv(τ1)− ftv(Γ) if M1 is a value

Recall that values are given by
V ::= x | λx (M) | () | true | false | nil | V :: V

40/106

Type soundness for
Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type
scheme σ for which

` M : σ

is provable in the value-restricted type system
(var �) + (bool) + (if) + (nil) + (cons) + (case) + (fn) +
(app) + (unit) + (ref) + (get) + (set) + (letv)

then evaluation of M does not fail,
i.e. there is no sequence of transitions of the form

〈M,{ }〉 → · · · → FAIL

for the transition system→ defined in Figure 4
(where { } denotes the empty state).

41/106

In Midi-ML’s value-restricted type system, some expressions that
were typeable using (let) become untypeable using (letv).

For example (exercise):

let f = (λx (x)) λy (y) in (f true) :: (f nil)

But one can often1 use η-expansion
replace M by λx (M x) (where x /∈ fv(M))

or β-reduction
replace (λx (M)) N by M[N/x]

to get around the problem.

(1 These transformations do not always preserve meaning [contextual
equivalence].)

42/106

λ-bound variables in ML cannot be used
polymorphically within a function abstraction

For example, λ f ((f true) :: (f nil)) and λ f (f f) are not
typeable in the Mini-ML type system.

Syntactically, because in rule

(fn)
Γ, x : τ1 ` M : τ2

Γ ` λx (M) : τ1 � τ2

the abstracted variable has to be assigned a trivial type scheme
(recall x : τ1 stands for x : ∀{ } (τ1)).

Semantically, because ∀A (τ1)� τ2 is not semantically
equivalent to an ML type when A 6= { }.

43/106

Monomorphic types . . .

τ ::= α | bool | τ � τ | τ list

. . . and type schemes

σ ::= τ | ∀α (σ)

Polymorphic types

π ::= α | bool | π �π | π list | ∀α (π)

E.g. α� α′ is a type, ∀α (α� α′) is a type scheme and a polymorphic
type (but not a monomorphic type), ∀α (α)� α′ is a polymorphic type,
but not a type scheme.

44/106

Identity, Generalisation and Specialisation

(id)
Γ ` x : π

if (x : π) ∈ Γ

(gen) Γ ` M : π
Γ ` M : ∀α (π)

if α /∈ ftv(Γ)

(spec)
Γ ` M : ∀α (π)

Γ ` M : π[π′/α]

45/106

ML + full polymorphic types
has undecidable type-checking

Fact (?). For the modified Mini-ML type system with
I full polymorphic types replacing types and type schemes
I (id) + (gen) + (spec) replacing (var �)

the type checking and typeability problems are undecidable.

46/106

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program
phrases and typings have to be inferred, ideally, entirely at
compile-time. (E.g. Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the
syntax. (E.g. Java.)

E.g. self application function of type ∀α (α)� ∀α (α)
(cf. Example 7)
Implicitly typed version: λ f (f f)
Explicitly type version: λ f : ∀α1 (α1) (Λα2 (f (α2 � α2)(f α2)))

47/106

PLC syntax

Types
τ ::= α type variable
| τ � τ function type
| ∀α (τ) ∀-type

Expressions
M ::= x variable
| λx : τ (M) function abstraction
| M M function application
| Λα (M) type generalisation
| M τ type specialisation

(α and x range over fixed, countably infinite sets TyVar and Var
respectively.)

48/106

Functions on types

In PLC, Λα (M) is an anonymous notation for the function F
mapping each type τ to the value of M[τ/α] (of some particular
type).

F τ denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(Λα (M)) τ→ M[τ/α]

as well as the usual form of beta-reduction from λ-calculus

(λx : τ (M1)) M2→ M1[M2/x]

49/106

PLC typing judgement

takes the form Γ ` M : τ where

I the typing environment Γ is a finite function from variables
to PLC types.
(We write Γ = {x1 : τ1, . . . , xn : τn} to indicate that Γ has
domain of definition dom(Γ) = {x1, . . . , xn} and maps each
xi to the PLC type τi for i = 1 . . . n.)

I M is a PLC expression

I τ is a PLC type.

50/106

PLC type system

(var)
Γ ` x : τ

if (x : τ) ∈ Γ

(fn)
Γ, x : τ1 ` M : τ2

Γ ` λx : τ1 (M) : τ1 � τ2
if x /∈ dom(Γ)

(app)
Γ ` M : τ1 � τ2 Γ ` M′ : τ1

Γ ` M M′ : τ2

(gen) Γ ` M : τ
Γ ` Λα (M) : ∀α (τ)

if α /∈ ftv(Γ)

(spec)
Γ ` M : ∀α (τ1)

Γ ` M τ2 : τ1[τ2/α]

51/106

An incorrect proof

(var)
x1 : α, x2 : α ` x2 : α

(fn)
x1 : α ` λx2 : α (x2) : α� α

(wrong!)
x1 : α ` Λα (λx2 : α (x2)) : ∀α (α� α)

52/106

Decidability of the PLC typeability and
type-checking problems

Theorem.
For each PLC typing problem, Γ ` M : ?, there is at most one
PLC type τ for which Γ ` M : τ is provable. Moreover there is an
algorithm, typ, which when given any Γ ` M : ? as input, returns
such a τ if it exists and FAILs otherwise.

Corollary.
The PLC type checking problem is decidable: we can decide
whether or not Γ ` M : τ is provable by checking whether
typ(Γ ` M : ?) = τ.

(N.B. equality of PLC types up to alpha-conversion is decidable.)

53/106

PLC type-checking algorithm, I

Variables
typ(Γ, x : τ ` x : ?) , τ

Function abstractions
typ(Γ ` λx : τ1 (M) : ?) ,
let τ2 = typ(Γ, x : τ1 ` M : ?) in τ1 � τ2

Function applications
typ(Γ ` M1 M2 : ?) ,
let τ1 = typ(Γ ` M1 : ?) in
let τ2 = typ(Γ ` M2 : ?) in
case τ1 of τ � τ′ 7→ if τ = τ2 then τ′ else FAIL

| _ 7→ FAIL

54/106

PLC type-checking algorithm, II

Type generalisations
typ(Γ ` Λα (M) : ?) ,
let τ = typ(Γ ` M : ?) in ∀α (τ)

Type specialisations
typ(Γ ` M τ2 : ?) ,
let τ = typ(Γ ` M : ?) in
case τ of ∀α (τ1) 7→ τ1[τ2/α]

| _ 7→ FAIL

55/106

Beta-reduction of PLC expressions

M beta-reduces to M′ in one step, M→ M′ means M′ can
be obtained from M (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct.
The redex-reduct pairs are of two forms:

(λx : τ (M1)) M2→ M1[M2/x]

(Λα (M)) τ→ M[τ/α]

M→∗ M′ indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M′ are alpha-convertible).

M is in beta-normal form if it contains no redexes.
56/106

Properties of PLC beta-reduction on typeable
expressions

Suppose Γ ` M : τ is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M→ M′, then Γ ` M′ : τ is also a
provable typing.

Church Rosser Property. If M→∗ M1 and M→∗ M2, then
there is M′ with M1→∗ M′ and M2→∗ M′.

Strong Normalisation Property. There is no infinite chain
M→ M1→ M2→ . . . of beta-reductions starting from M.

57/106

PLC beta-conversion, =β

By definition, M =β M′ holds if there is a finite chain

M− ·− · · · − · −M′

where each − is either→ or←, i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M′ are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =β M′ holds if and only if there is
some beta-normal form N with

M→∗ N ∗← M′

58/106

Polymorphic booleans

bool , ∀α (α� (α� α))

True , Λα (λx1 : α, x2 : α (x1))

False , Λα (λx1 : α, x2 : α (x2))

if , Λα (λb : bool, x1 : α, x2 : α (b α x1 x2))

59/106

Iteratively defined functions on finite lists

A∗ , finite lists of elements of the set A

Given a set B, an element x′ ∈ B, and a function f : A� B� B,
the iteratively defined function listIter x′ f is the unique
function g : A∗ � B
satisfying:

g Nil = x′

g (x :: `) = f x (g `)

for all x ∈ A and ` ∈ A∗.

60/106

Polymorphic lists

α list , ∀α′ (α′ � (α� α′ � α′)� α′)

Nil , Λα, α′ (λx′ : α′, f : α� α′ � α′ (x′))

Cons , Λα(λx : α, ` : α list(Λα′(

λx′ : α′, f : α� α′ � α′(

f x (` α′ x′ f)))))

61/106

List iteration in PLC

iter , Λα, α′(λx′ : α′, f : α� α′ � α′(

λ` : α list (` α′ x′ f)))

satisfies:
I ` iter : ∀α, α′ (α′ � (α� α′ � α′)� α list� α′)

I iter α α′ x′ f (Nil α) =β x′

I iter α α′ x′ f (Cons α x `) =β f x (iter α α′ x′ f `)

62/106

Standard ML signatures and structures

signature QUEUE =
sig

type ’a queue
exception Empty
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
val remove : ’a queue -> ’a * ’a queue

end

structure Queue =
struct

type ’a queue = ’a list * ’a list
exception Empty
val empty = (nil, nil)
fun insert (f, (front,back)) = (f::front, back)
fun remove (nil, nil) = raise Empty

| remove (front, nil) = remove (nil, rev front)
| remove (front, b::back) = (b, (front, back))

end

63/106

PLC + existential types
Types
t ::= · · · | ∃ α (τ)

Expressions
M ::= · · · | pack (τ, M) : ∃ α (τ) |

unpack M : ∃ α (τ) as (α, x) in M : τ

Typing rules

(∃intro)
Γ ` M : τ[τ′/α]

Γ ` (pack (τ′, M) : ∃ α (τ)) : ∃ α (τ)

(∃elim)
Γ ` E : ∃ α (τ) Γ, x : τ ` M′ : τ′

Γ ` (unpack E : ∃ α (τ) as (α, x) in M′ : τ′) : τ′

if α /∈ ftv(Γ, τ′)

Reduction

unpack (pack (τ′, M) : ∃ α (τ)) : ∃ α (τ)as (α, x)in M′ : τ′→
M′[τ′/α, M/x]

64/106

Existential types in PLC

∃ α (τ) , ∀β ((∀α (τ � β))� β)

pack (τ′, M) : ∃ α (τ) , Λβ (λy : ∀α (τ � β) (y τ′M))

unpack E : ∃ α (τ) as (α, x) in M′ : τ′ , E τ′(Λα (λx : τ (M′)))

(where β /∈ ftv(α τ τ′M M′))

These definitions satisfy the typing and reduction rules on the
previous slide (exercise).

65/106

Dependent Functions

Given a set A and a family of sets Ba indexed by the elements a of
A, we get a set

∏a∈A Ba , {F ∈ A�
⋃

a∈A Ba | ∀(a, b) ∈ F (b ∈ Ba)}

of dependent functions. Each F ∈ ∏a∈A Ba is a single-valued
and total relation that associates to each a ∈ A an element in Ba
(usually written F a).

For example if A = N and for each n ∈N, Bn = {0, 1}n � {0, 1}, then
∏n∈N Bn consists of functions mapping each number n to an n-ary
Boolean operation.

66/106

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x− 1)(f true))
andalso (taut(x− 1)(f false))

Defining types n AryBoolOp for each natural number n ∈N{
0 AryBoolOp , bool
(n + 1)AryBoolOp , bool� (n AryBoolOp)

then taut n has type (n AryBoolOp)� bool, i.e. the result type
of the function taut depends upon the value of its argument.

67/106

The tautology checker in Agda

data Bool : Set where
true : Bool
false : Bool

and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

data Nat : Set where
zero : Nat
succ : Nat -> Nat

_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp

taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)

68/106

Dependent function types Πx : τ (τ′)

Γ, x : τ ` M : τ′

Γ ` λx : τ (M) : Πx : τ (τ′)
if x /∈ dom(Γ)

Γ ` M : Πx : τ (τ′) Γ ` M′ : τ

Γ ` M M′ : τ′[M′/x]

τ′ may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in τ′ are bound in Πx : τ (τ′).)

69/106

Conversion typing rule

Dependent type systems usually feature a rule of the form

Γ ` M : τ
Γ ` M : τ′

if τ ≈ τ′

where τ ≈ τ′ is some relation of equality between types
(e.g. inductively defined in some way).

For example one would expect (1 + 1) AryBoolOp ≈ 2 AryBoolOp.

For decidability of type-checking, one needs ≈ to be a decidable
relation between type expressions.

70/106

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

t ::= x variable
| s sort
| Πx : t (t) dependent function type
| λx : t (t) function abstraction
| t t function application

where x ranges over a countably infinite set Var of variables and s ranges over
a disjoint set Sort of sort symbols – constants that denote various universes
(= types whose elements denote types of various sorts) [kind is a commonly
used synonym for sort]. λx : t (t′) and Πx : t (t′) both bind free occurrences
of x in the pseudo-term t′.

t[t′/x] denotes result of capture-avoiding substitution of t′ for all
free occurrences of x in t.
t � t′ , Πx : t (t′) where x /∈ fv(t′).

71/106

Pure Type Systems – beta-conversion

I beta-reduction of pseudo-terms: t→ t′ means t′ can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its
corresponding reduct. There is only one form of redex-reduct
pair:

(λx : t (t1)) t2→ t1[t2/x]

I As usual,→∗ denotes the reflexive-transitive closure of→.
I beta-conversion of pseudo-terms: =β is the

reflexive-symmetric-transitive closure of→ (i.e. the smallest
equivalence relation containing→).

72/106

Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a
specification S = (S ,A,R) where:
I S ⊆ Sort

Elements s ∈ S denote the different universes of types in this PTS.
I A ⊆ Sort× Sort

Elements (s1, s2) ∈ A are called axioms. They determine the
typing relation between universes in this PTS.

I R ⊆ Sort× Sort× Sort
Elements (s1, s2, s3) ∈ R are called rules. They determine which
kinds of dependent function can be formed and in which universes
they live.

The PTS with specification S will be denoted λS .

73/106

Pure Type Systems – typing judgements

take the form
Γ ` t : t′

where t, t′ are pseudo-terms and Γ is a context, a form of typing
environment given by the grammar

Γ ::= � | Γ, x : t

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs,
with the empty list denoted �, the head of the list on the right and
list-cons denoted by _,_. Unlike previous type systems in this course,
the order in which typing declarations x : t occur in a context is
important.)
A typing judgement is derivable if it is in the set inductively
generated by the rules on the next slide, which are parameterised
by a given specification S = (S ,A,R).

74/106

Pure Type Systems – typing rules

(axiom) � ` s1 : s2
if (s1, s2) ∈ A

(start) Γ ` A : s
Γ, x : A ` x : A

if x /∈ dom(Γ)

(weaken) Γ ` M : A Γ ` B : s
Γ, x : B ` M : A

if x /∈ dom(Γ)

(conv) Γ ` M : A Γ ` B : s
Γ ` M : B

if A =β B

(prod)
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A (B) : s3
if (s1, s2, s3) ∈ R

(abs)
Γ, x : A ` M : B Γ ` Πx : A (B) : s

Γ ` λx : A (M) : Πx : A (B)

(app)
Γ ` M : Πx : A (B) Γ ` N : A

Γ ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s1, s2, s3 over sort symbols)

75/106

Example PTS typing derivations

(axiom) � ` ∗ : �

(axiom) � ` ∗ : �
(axiom) � ` ∗ : �(weaken) �, x : ∗ ` ∗ : �

(prod) � ` ∗� ∗ : �

(axiom) � ` ∗ : �(start) �, x : ∗ ` x : ∗

...
� ` ∗� ∗ : �

(abs)
� ` λx : ∗ (x) : ∗� ∗

Here we assume that the PTS specification S = (S ,A,R) has ∗ ∈ S ,
� ∈ S , (∗,�) ∈ A and (�,�,�) ∈ R.
(Recall that ∗� ∗ , Πx : ∗ (∗).)

76/106

Properties of Pure Type Systems in general

I Correctness of types. If Γ ` M : A, then either A ∈ S , or
Γ ` A : s for some s ∈ S .

I Church-Rosser Property (aka confluence). t =β t′ iff
∃u (t→∗ u ∧ t′→∗ u)

I Subject Reduction. If Γ ` M : A and M→ M′, then
Γ ` M′ : A.

I Uniqueness of Types. A PTS specification S = (S ,A,R)
is said to be functional if both A and
Rs , {(s2, s3) | (s, s2, s3) ∈ R} for each s ∈ S , are
single-valued binary relations.
In this case λS satisfies: if Γ ` M : A and Γ ` M : B, then
A =β B.

77/106

Type-checking for a PTS, λS

Definition. A pseudo-term t is legal for a PTS specification
S = (S ,A,R) if either t ∈ S or Γ ` t : t′ is derivable in λS for
some Γ and t′.

Recall the type-checking and typeability problems for a type
system.

Fact(van Bentham Jutting): these problems for λS are decidable
if S is finite and λS is normalizing, meaning that for every legal
pseudo-term there is some finite chain of beta-reductions leading
to a beta-normal form.

Fact (Meyer): the problems are undecidable for the PTS λ∗ with
specification S = {∗}, A = {(∗,∗)} and R = {(∗,∗,∗)}.

78/106

PLC versus the Pure Type System λ2
PTS signature:

2 , (S2,A2,R2) where


S2 , {∗,�}
A2 , {(∗,�)}
R2 , {(∗,∗,∗), (�,∗,∗)}

Translation of PLC types and terms to λ2 pseudo-terms:

JαK = α

Jτ � τ′K = Πx : JτK (Jτ′K)
J∀α (τ)K = Πα : ∗ (Jτ′K)

JxK = x
Jλx : τ (M)K = λx : JτK (JMK)

JM M′K = JMK JM′K
JΛα (M)K = λα : ∗ (JMK)

JM τK = JMK JτK

79/106

Properties of the translation from PLC to λ2

I If { } ` M : τ is derivable in PLC, then � ` JτK : ∗ and
� ` JMK : JτK are derivable in λ2

I In λ2, if � ` t : �, then t = ∗; if � ` t : ∗, then t = JτK for
some closed PLC type τ; and if � ` t : t′ then t = JMK and
t′ = JτK for PLC expressions satisfying { } ` M : τ.

I Under the translation, the reduction behaviour of PLC terms
is preserved and reflected by beta-reduction in λ2. (Note in
particular that PLC types are translated to pseudo-terms in
beta-normal form.)

80/106

System Fω as a Pure Type System: λω

PTS specification ω = (Sω,Aω,Rω):

Sω , {∗,�}
A , {(∗,�)}
R , {(∗,∗,∗), (�,∗,∗), (�,�,�)}

As in λ2, sort ∗ is a universe of types; but in λω, the rule (prod) for
(�,�,�) means that � ` t : � holds for all the ‘simple types’ over the
ground type ∗ – the ts generated by the grammar t ::= ∗ | t � t
Hence rule (prod) for (�,∗,∗) now gives many more legal pseudo-terms
of type ∗ in λω compared with λ2 (PLC), such as

� ` (ΠT : ∗� ∗ (Πα : ∗ (α� T α))) : ∗
� ` (ΠT : ∗� ∗ (Πα, β : ∗ ((α� T β)� T α� T β))) : ∗

81/106

Monads in ML

A monad in ML is given by type τ(α) with a free type variable α
together with expressions

unit : α� τ(α)

lift : (α� τ(β))� τ(α)� τ(β)

(writing τ(β) for the result of replacing α by β in τ) satisfying
some equational properties [omitted].
E.g.

I list monad τ(α) = α list

I global state monad τ(α) = σ � (α ∗ σ) (for some type σ of states)
I simple exception monad τ(α) = (α, ε)sum (for some type ε of

exception names)

[definitions of unit and lift in each case omitted]

82/106

Examples of λω type constructions
I Product types (cf. the PLC representation of product types):

P , λα, β : ∗ (Πγ : ∗ ((α� β� γ)� γ))

� ` P : ∗� ∗� ∗

I Monad transformer for state (using a type � ` S : ∗ for
states):

M , λT : ∗� ∗ (λα : ∗ (S� T(P α S)))
� ` M : (∗� ∗)� ∗� ∗

I Existential types (cf. the PLC representation of existential
types):
∃ , λT : ∗� ∗ (Πβ : ∗ ((Πα : ∗ (T α� β))� β))

� ` ∃ : (∗� ∗)� ∗

83/106

Type-checking for Fω

Fact (Girard): System Fω is strongly normalizing in the sense
that for any legal pseudo-term t, there is no infinite chain of
beta-reductions t→ t1→ t2→ · · · .

As as corollary we have that the type-checking and typeability
problems for Fω are decidable.

84/106

Constructive interpretation of logic

I Implication: a proof of ϕ�ψ is a construction that
transforms proofs of ϕ into proofs of ψ.

I Negation: a proof of ¬ϕ is a construction that from any
(hypothetical) proof of ϕ produces a contradiction (= proof of
falsity ⊥)

I Disjunction: a proof of ϕ∨ψ is an object that manifestly is
either a proof of ϕ, or a proof of ψ.

I For all: a proof of ∀x (ϕ(x)) is a construction that
transforms the objects a over which x ranges into proofs of
ϕ(a).

I There exists: a proof of ∃ x (ϕ(x)) is given by a pair
consisting of an object a and a proof of ϕ(a).

The Law of Excluded Middle (LEM) ∀p (p∨¬p) is a classical
tautology (has truth-value true), but is rejected by constructivists.

85/106

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either
√

2
√

2 is rational, or it is not (LEM!).

If it is, we can take a = b =
√

2, since
√

2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a =
√

2 and b =
√

2
√

2, since then
ba = (

√
2
√

2)
√

2 =
√

2
√

2.
√

2 =
√

22 = 2.

QED

86/106

Example of a constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof.
√

2 is irrational by a well-known constructive proof
attributed to Euclid.

2 log2 3 is irrational, by an easy constructive proof (exercise).

So we can take a = 2 log2 3 and b =
√

2, for which we have that
ba = (

√
2)2 log2 3 = (

√
22)log2 3 = 2log2 3 = 3 is rational.

QED

87/106

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: φ ::= p | φ�φ | ∀p (φ) where p ranges
over an infinite set of propositional variables.

2IPC sequents: Φ ` φ where Φ is a finite multiset (=
unordered list) of 2IPC propositions and φ is a 2IPC proposition.

Φ ` φ is provable if it is in the set of sequents inductively
generated by:

(Id) Φ ` φ if φ ∈ Φ

Φ, φ ` φ′
(�I)

Φ ` φ�φ′
Φ ` φ�φ′ Φ ` φ

(�E)
Φ ` φ′

Φ ` φ
(∀I) if p /∈ fv(Φ)

Φ ` ∀p (φ)

Φ ` ∀p (φ)
(∀E)

Φ ` φ[φ′/p]

88/106

A 2IPC proof

Writing p∧ q as an abbreviation for ∀r ((p� q� r)� r), the
sequent

{} ` ∀p (∀q ((p∧ q)� p))

is provable in 2IPC:

(Id)
{p∧ q, p, q} ` p

(�I)
{p∧ q, p} ` q� p

(�I)
{p∧ q} ` p� q� p

(Id)
{p∧ q} ` ∀r ((p� q� r)� r)

(∀E)
{p∧ q} ` (p� q� p)� p

(�E)
{p∧ q} ` p

(�I)
{} ` (p∧ q)� p

(∀I)
{} ` ∀q ((p∧ q)� p)

(∀I)
{} ` ∀p (∀q ((p∧ q)� p))

89/106

Curry-Howard correspondence

Logic ↔ Type system

propositions φ ↔ types τ

proofs p ↔ expressions M

‘p is a proof of φ’ ↔ ‘M is an expression of type τ’

simplification of proofs ↔ reduction of expressions

E.g.

2IPC ↔ PLC

90/106

Mapping 2IPC proofs to PLC expressions

(Id) Φ, φ ` φ 7→ (id) x : Φ, x : φ ` x : φ

(�I)
Φ, φ ` φ′

Φ ` φ�φ′
7→ (fn)

x : Φ, x : φ ` M : φ′

x : Φ ` λx : φ (M) : φ�φ′

(�E)

Φ ` φ�φ′

Φ ` φ

Φ ` φ′
7→ (app)

x : Φ ` M1 : φ�φ′

x : Φ ` M2 : φ

x : Φ ` M1 M2 : φ′

(∀I)
Φ ` φ

Φ ` ∀p (φ)
7→ (gen)

x : Φ ` M : φ

x : Φ ` Λp (M) : ∀p (φ)

(∀E)
Φ ` ∀p (φ)

Φ ` φ[φ′/p]
7→ (spec)

x : Φ ` M : ∀p (φ)

x : Φ ` M φ′ : φ[φ′/p]

91/106

The proof of the 2IPC sequent

{} ` ∀p (∀q ((p∧ q)� p))

given before is transformed by the mapping of 2IPC proofs to PLC
expressions to

{} ` Λp, q (λz : p∧ q (z p (λx : p, y : q (x))))
: ∀p (∀q ((p∧ q)� p))

with typing derivation:
(id)

{z : p∧ q, x : p, y : q} ` x : p
(fn)

{z : p∧ q, x : p} ` λy : q (x) : q� p
(fn)

{z : p∧ q} ` λx : p, y : q (x) : p� q� p

(id)
{z : p∧ q} ` z : ∀r ((p� q� r)� r)

(spec)
{z : p∧ q} ` z p : (p� q� p)� p

(app)
{z : p∧ q} ` z p (λx : p, y : q (x)) : p

(fn)
{} ` λz : p∧ q (z p (λx : p, y : q (x))) : (p∧ q)� p

(gen)
{} ` Λq (λz : p∧ q (z p (λx : p, y : q (x)))) : ∀q ((p∧ q)� p)

(gen)
{} ` Λp, q (λz : p∧ q (z p (λx : p, y : q (x)))) : ∀p, q ((p∧ q)� p)

92/106

Logical operations definable in 2IPC

I Truth > , ∀p (p� p)
I Falsity ⊥ , ∀p (p)
I Conjunction φ∧ψ , ∀p ((φ�ψ� p)� p)

(where p /∈ fv(φ, ψ))
I Disjunction φ∨ψ , ∀p ((φ� p)� (ψ� p)� p) (where

p /∈ fv(φ, ψ))
I Negation ¬φ , φ�⊥
I Bi-implication φ↔ψ , (φ�ψ)∧ (ψ�φ)

I Existential quantification ∃ p (φ) , ∀q (∀p (φ� q)� q)
(where q /∈ fv(φ, p))

LEM ∀p (p∨¬p) = ∀p, q ((p� q)� ((p� ∀r (r))� q)� q)

Fact: {} ` M : ∀p (p∨¬p) is not provable in PLC for any
expression M.

93/106

Proof simplification↔ Expression reduction

...
Φ, φ ` ψ

(�I)
Φ ` φ�ψ

...
Φ ` φ

(�E)
Φ ` ψ

7→

...
x : Φ, x : φ ` M : ψ

x : Φ ` λx : φ (M) : φ�ψ

...
x : Φ ` N : φ

x : Φ ` (λx : φ (M)) N : ψ

simplify proof

y
y beta-reduce expression

...
Φ, φ ` ψ

...
Φ ` φ

(cut)
Φ ` ψ

← [

...
x : Φ, x : φ ` M : ψ

...
x : Φ ` N : φ

(subst)
x : Φ ` M[N/x] : ψ

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

94/106

Type-inference versus proof search

Type-inference: given Γ and M, is there a type τ such that
Γ ` M : τ?
(For PLC/2IPC this is decidable.)

Proof-search: given Γ and φ, is there a proof term M such that
Γ ` M : φ?
(For PLC/2IPC this is undecidable.)

95/106

Calculus of Constructions
is the Pure Type System λC, where C = (SC,AC,RC) is the
PTS specification with

SC ,{Prop, Set} (Prop = a sort of propositions, Set = a sort of types)

AC ,{(Prop, Set)} (Prop is one of the types)

RC ,{(Prop, Prop, Prop)1, (Set, Prop, Prop)2,
(Prop, Set, Set)3, (Set, Set, Set)4}

1. Prop has implications, φ � ψ = Πx : φ (ψ) (where φ, ψ : Prop and
x /∈ fv(ψ)).

2. Prop has universal quantifications over elements of a type, Πx : A (φ(x))
(where A : Set and x : A ` φ(x) : Prop).
N.B. A might be Prop (λ2 ⊆ λC).

3. Set has types of function dependent on proofs of a proposition,
Πx : p (A(x)) (where p : Prop and x : p ` A(x) : Set).

4. Set has dependent function types, Πx : A (B(x)) (where A : Set and
x : A ` B(x) : Set).

96/106

Some general properties of λC

I It extends both λ2 (PLC) and λω (Fω).

I λC is strongly normalizing.
I Type-checking and typeability are decidable.

I λC is logically consistent (relative to the usual foundations of
classical mathematics), that is, there is no pseudo-term t
satisfying � ` t : Πp : Prop (p).

Indeed there is no proof of LEM (Πp : Prop (¬p∨ p)).

97/106

Leibniz equality in λC

Gottfried Wilhelm Leibniz (1646–1716),
identity of indiscernibles:
duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given Γ ` A : Set in λC, we can define

EqA , λx, y : A (ΠP : A� Prop (P x↔ P y))

satisfying Γ ` EqA : A� A� Prop and giving a well-behaved (but
not extensional) equality predicate for elements of type A.

98/106

Extensionality

Functional extensionality:

FunExtA,B , Π f , g : A� B (

(Πx : A (EqB (f x) (g x)))� EqA�B f g)

If Γ ` A, B : Set in λC, then Γ ` FunExtA,B : Prop is derivable,
but for some A,B there does not exist a pseudo-term t for which
Γ ` t : FunExtA,B is derivable.

Propositional extensionality:

PropExt , Πp, q : Prop ((p↔ q)� EqProp p q)

� ` PropExt : Prop is derivable in λC, but there does not exist a
pseudo-term t for which � ` t : PropExt is derivable.

99/106

The Pure Type System λU

is given by the PTS specification U = (SU,AU,RU), where:

SU , {Prop, Set, Type}
AU , {(Prop, Set), (Set, Type)}
RU , {(Prop, Prop, Prop), (Set, Prop, Prop), (Type, Prop, Prop),

(Set, Set, Set), (Type, Set, Set)}

Theorem (Girard). λU is logically inconsistent: every legal
proposition Γ ` P : Prop has a proof Γ ` M : P. (In particular,
there is a proof of falsity ⊥ , Πp : Prop (p).)

100/106

Inductive types (informally)

An inductive type is specified by giving
I constructor functions that allow us to inductively generate

data values of that type
(Some restrictions on how the inductive type appears in the domain type
of constructors is needed to ensure termination of reduction and logical
consistency.)

I eliminators for constructing functions on the data

I computation rules that explain how to simplify an eliminator
applied to constructors.

101/106

Extending λC with
an inductive type of natural numbers

Pseudo-terms
t ::= · · · | Nat | zero | succ | elimNat(x.t) t t

Typing rules
I formation: � ` Nat : Set
I introduction: � ` zero : Nat � ` succ : Nat� Nat

I elimination:

Γ, x : Nat ` A(x) : s Γ ` M : A(zero)
Γ ` F : Πx : Nat (A(x)� A(succ x))

Γ ` elimNat(x.A) M F : Πx : Nat (A(x))
(where A(t) stands for A[t/x])

Computation rules
elimNat(x.A) M F zero→ M

elimNat(x.A) M F (succ N)→ F N (elimNat(x.A) M F N)

102/106

Inductive types of vectors

For a fixed parameter Γ ` A : s, the indexed family
(VecA x | x : Nat) of types VecA x of lists of A-values of length
x is inductively defined as follows:

Formation:
Γ ` N : Nat

Γ ` VecA N : Set

Introduction:

Γ ` vnilA : VecA zero

Γ ` vconsA : A�Πx : Nat (VecA x� VecA (succ x))

Elimination and Computation:

[do-it-yourself]

103/106

Inductive identity propositions
For fixed parameters Γ ` A : s and Γ ` a : A, the indexed family
(IdA,a x | x : A) of propositions IdA,a x that a and x are equal
elements of type A is inductively defined as follows:

Formation:
Γ ` M : A

Γ ` IdA,a M : Prop

Introduction:
Γ ` reflA,a : IdA,a a

Elimination:
Γ, x : A, p : IdA,a x ` B(x, p) : s Γ ` N : B(a, reflA,a)

Γ ` JA,a(x, p. B) N : Πx : A (Πp : IdA,a x (B(x, p)))

Computation:

JA,a(x, p. B) N a reflA,a→ N

104/106

Agda proof of ∀x ∈N (x = 0 + x)

data Nat : Set where
zero : Nat
succ : Nat -> Nat

add : Nat -> Nat -> Nat
add x zero = x
add x (succ y) = succ (add x y)

data Id (A : Set)(x : A) : A -> Set where
refl : Id A x x

cong : (A B : Set)(f : A -> B)(x y : A) ->
Id A x y -> Id B (f x) (f y)

cong A B f x .x refl = refl

P : (x : Nat) -> Id Nat x (add zero x)
P zero = refl
P (succ x) = cong Nat Nat succ x (add zero x) (P x)

105/106

Uniqueness of identity proofs

In λC extended with inductive identity propositions, there are
some types Γ ` A : s for which it is impossible to prove that all
equality proofs in IdA,x y (where x, y : A) are identical.
That is, there is no pseudo-term uip satisfying

Γ ` uip : Πx, y : A (Πp, q : IdA,x y (Id(IdA,x y),p q))

By contrast, in Agda we have:

data Id (A : Set)(x : A) : A -> Set where
refl : Id A x x

uip : (A : Set)(x y : A)(p q : Id A x y) -> Id (Id A x y) p q
uip A x .x refl refl = refl

106/106

	Introduction
	ML Polymorphism
	Mini-ML type system
	Examples of type inference, by hand
	Principal type schemes
	A type inference algorithm

	Polymorphic Reference Types
	The problem
	Restoring type soundness

	Polymorphic Lambda Calculus
	From type schemes to polymorphic types
	The Polymorphic Lambda Calculus (PLC) type system
	PLC type inference
	Datatypes in PLC
	Existential types

	Dependent Types
	Dependent functions
	Pure Type Systems
	System F

	Propositions as Types
	Intuitionistic logics
	Curry-Howard correspondence
	Calculus of Constructions, C
	Inductive types

