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A New Diamond Search Algorithm for Fast Block-Matching
Motion Estimation

Shan Zhu and Kai-Kuang Ma

Abstract—Based on the study of motion vector distribution from sev-
eral commonly used test image sequences, a newdiamond search(DS) al-
gorithm for fast block-matching motion estimation (BMME) is proposed
in this paper. Simulation results demonstrate that the proposed DS algo-
rithm greatly outperforms the well-known three-step search (TSS) algo-
rithm. Compared with the new three-step search (NTSS) algorithm, the DS
algorithm achieves close performance but requires less computation by up
to 22% on average. Experimental results also show that the DS algorithm is
better than recently proposed four-step search (4SS) and block-based gra-
dient descent search (BBGDS), in terms of mean-square error performance
and required number of search points.

Index Terms—Block-matching algorithm, diamond search, H.261,
H.263, motion estimation, MPEG, video coding, video compression.

I. INTRODUCTION

Due to limited channel bandwidth and stringent requirements of
real-time video playback, video coding is an indispensable process
for many visual communication applications and always requires
a very high compression ratio. The large amount of temporal cor-
relation, or so-calledtemporal redundancyfrom the compression
viewpoint, between adjacent frames in a video sequence, requires to
be properly identified and eliminated to achieve this objective. An
effective and popular method to reduce the temporal redundancy,
called block-matching motion estimation(BMME), has been widely
adopted in various video coding standards, such as CCITT (now
ITU-T) H.261, H.263, MPEG-1, MPEG-2, and MPEG-4 [1], and in
any motion-compensated video coding technique. Therefore, fast and
accurate block-based search technique is highly desirable to assure
much reduced processing delay while maintaining good reconstructed
image quality.

By exhaustively testing all the candidate blocks within the search
window, full search(FS) algorithm gives the global optimum solution
(i.e., the miimum matching error point over the search window) to the
motion estimation, while a substantial amount of computational load is
demanded. To overcome this drawback, many fastblock-matching al-
gorithms(BMA’s) have been developed, for example,2-D logarithmic
search(LOGS) [2], three-step search(TSS) [3], conjugate direction
search(CDS) [4],cross search(CS) [5],new three-step search(NTSS)
[6], four-step search(4SS) [7],block-based gradient descent search
(BBGDS) [8], etc. These fast BMA’s exploit different search patterns
and search strategies for finding the optimum motion vector with dras-
tically reduced number of search points as compared with the FS algo-
rithm.

In this paper, we propose a simple, robust and efficient fast BMME
algorithm, calleddiamond search(DS) [9], [10], after observing the
following facts.
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II. OBSERVATIONS

Fundamentally speaking, the search pattern's shape and size ex-
ploited in the fast algorithm jointly determine not only its search speed
but also resulted performance. Block distortions (or block-matching
errors) form an error surface over the search window, and the global
minimum point corresponds to the motion vector where the best
matching (or the least error) incurs. Since the error surface is usually
not monotonic, multiple local minimum points generally exist in
the search window especially for those image sequences with large
motion content. Therefore, searching with a small search pattern, such
as the one used in BBGDS [8] with size of3� 3, is quite likely to be
trapped into a local minimum for those video sequences with large
motion content. On the other hand, a large search pattern with size
of 9 � 9 and sparse checking points as exploited in the first step of
TSS is most likely to mislead the search path to a wrong direction and
hence misses the optimum point.

Since the distribution of the global minimum points in real-world
video sequences is centered at the position of zero motion (i.e., search
window center) [6], the center-biased NTSS algorithm, which is an im-
proved version of TSS, tends to achieve much superior performance
with fewer number of search points on average. However, NTSS loses
the regularity and simplicity of TSS to some extent. Using a moderate
search pattern with fixed size of5� 5, 4SS [7] obtains similar perfor-
mance compared to that of NTSS. Note that both NTSS and 4SS utilize
the overlapping of checking points between adjacent search steps to re-
duce the computational complexity further. However, 4SS still requires
to test 17 checking points for a stationary block, which is much more
than the nine checking points used by BBGDS in the same case. It is
worth to mention that except BBGDS, the other three fast BMA’s, i.e.,
TSS, NTSS and 4SS, commonly refrain the search window size to be
15� 15 as their searching frameworks require.

Table II documents the motion vector distribution probabilities
within certain distances from the search window center by exploiting
the FS algorithm to six commonly used test image sequences (refer
to Table I) based on the mean-square error (MSE) matching criterion.
The predicted frame is contiguous to the previous original frame in
the experiments. As indicated in Table II, about 52.76% to 98.70% of
the motion vectors are enclosed in a circular support with a radium of
2 pels and centered on the position of zero motion. Second, the block
displacement of real-world video sequences could be in any direction,
but mainly in horizontal and vertical directions (e.g., camera panning).

Based on these two crucial observations, the search points (marked
by “×” in Fig. 1) incurred within the circle with aradium of 2 pels (the
dotted line in Fig. 1) are the most appropriate ones to be chosen to
compose the search pattern, and a newdiamond search(DS) algorithm
is developed as described in the following section.

III. D IAMOND SEARCH ALGORITHM

The proposed DS algorithm employs two search patterns as illus-
trated in Fig. 2, which are derived from the crosses (×) in Fig. 1. The
first pattern, calledlarge diamond search pattern(LDSP), comprises
nine checking points from which eight points surround the center one
to compose a diamond shape (�). The second pattern consisting of five
checking points forms a smaller diamond shape, calledsmall diamond
search pattern(SDSP).

In the searching procedure of the DS algorithm, LDSP is repeatedly
used until the step in which the minimum block distortion (MBD) oc-
curs at the center point. The search pattern is then switched from LDSP
to SDSP as reaching to the final search stage. Among the five checking
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TABLE I
IMAGE SEQUENCES USED

FOR SIMULATIONS

TABLE II
MOTION VECTORDISTRIBUTION PROBABILITIES AGGREGATELYMEASURED AT

VARIOUS MOTION DISTANCES(IN PEL) WITH REGARD TO THECENTER

POSITION USING THE FULL SEARCH (FS) ALGORITHM BASED ON MSE
MATCHING CRITERION

Fig. 1. An appropiate search pattern support—circular area with a radium of
2 pels. The 13 crosses show all possible checking points within the circle.

Fig. 2. Two search patterns derieved from Fig. 1 are employed in the
proposed DS algorithm.

points in SDSP, the position yielding the MBD provides the motion
vector of the best matching block.

The DS algorithm is summarized as follows.

Step 1) The initial LDSP is centered at the origin of the search
window, and the 9 checking points of LDSP are tested. If
the MBD point calculated is located at the center position,
go toStep 3; otherwise, go toStep 2.

Fig. 3. Three cases of checking-point overlapping in LDSP when the MBD
point found in the previous search step (shaded dots) is located at (a) one of the
corner points, (b) one of the edge points, and (c) the center point. The solid black
dots are the new checking points where the computation of block-distortion
measurement is required for the current search step.

Fig. 4. Search path example which leads to the motion vector (−4, −2) in five
search steps—four times of LDSP and one time SDSP at the final step. There are
24 search points in total—taking nine, five, three, three, and four search points
at each step, sequentially.
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Fig. 5. MSE comparison of DS, 4SS, NTSS, and FS for “Caltrain” sequence
when (a) frame distance= 1 and (b) frame distance= 2.

Step 2) The MBD point found in the previous search step is re-po-
sitioned as the center point to form a new LDSP. If the new
MBD point obtained is located at the center position, go to
Step 3; otherwise, recursively repeat this step.

Step 3) Switch the search pattern from LDSP to SDSP. The MBD
point found in this step is the final solution of the motion
vector which points to the best matching block.

Some insightful remarks on implementing the DS algorithm are pro-
vided as follows.

IV. COMMENTS ONDS ALGORITHM IMPLEMENTATION

First, when the search pattern (LDSP or SDSP) is near to or at
the search window boundary, the checking points outside the search
window are truncated. That is, the search is confined within the search
window boundary. Note that this is a necessary constraint in MPEG
standards since the variable-length codebook size for encoding motion
vectors is limited. It is straightforward to employ the proposed DS
algorithm to any larger search window, if required.

Second, DS algorithm doesn't restrict the number of search steps es-
sentially. The MBD point found in each step has less or equal matching

Fig. 6. Comparison of the average number of search points applying DS, 4SS,
and NTSS to “Caltrain” sequence individually when (a) frame distance= 1 and
(b) frame distance= 2.

error compared with all the other checking points in the search pat-
tern, which includes the MBD point found in the previous step, thus
the MBD values found along the search path are in a nonincreasing
order. Note that within each search iteration using LDSP, theoretically
speaking, it is possible to have tie MBD values, which might even fur-
ther cause search looping situation. But, practically speaking, it is ex-
tremely unlikely to happen as we have not encountered throughout our
extensive simulation experiments so far. Any simple tie-break policy
can be easily incorporated to avoid the above-mentioned situation so
that the convergence of DS algorithm is always guaranteed.

Third, the checking points are partially overlapped between adjacent
steps; especially, when LDSP is repeatedly used. For illustration, three
cases of checking-point overlapping are presented in Fig. 3. When the
previous MBD point is located at one of the corners or edge points of
LDSP, only five or three new checking points are required to be tested
as shown in Fig. 3(a) and (b), respectively. If the center point of LDSP
produces the MBD, the search pattern is changed from LDSP to SDSP
in the final search. In this case, only four new points are required to be
tested, as shown in Fig. 3(c). An example of possible search path using
our DS algorithm within a15�15 search window is illustrated in Fig. 4
to demonstrate the checking- point overlapping along the search path.
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TABLE III
AVERAGE MSE PERPIXEL

TABLE IV
AVERAGE NUMBER OF SEARCH POINTS PERMOTION VECTORESTIMATION.
NOTE THAT THE SEARCH-POINT NUMBER OF TSSAND FS ARE FIXED, 25

AND 255, RESPECTIVELY

V. SIMULATION RESULTS

In our simulation experiments, the block size is fixed at16� 16. To
make a consistent comparison, block matching is conducted within a
15 � 15 search window (i.e.,�7 pels displacement in horizontal and
vertical directions), although our DS search algorithm has no restric-
tion on search window size. In addition, thefull-pixel grid is set for all
BMA’s concerned in this paper. Frame distance between the predicted
frame and the original frame is set to be either 1 or 2 separately. Mean
absolute distance (MAD), rather than MSE, is used as the matching
criterion to reduce the block-matching computation in practice.

For BMME, computational complexity could be measured by av-
erage number of search points required for each motion vector estima-
tion. Figs. 5 and 6 illustrate the frame-by-frame comparison of MSE
and the average search-point numbers after applying DS, 4SS, NTSS,
and FS algorithms to “Caltrain” sequence under different frame dis-
tances, respectively. The average MSE values and search-point num-
bers of “Caltrain” and other test sequences are presented in Tables III
and IV.

For the image sequence with small-motion content, such as
“talking-head” sequences (e.g., “Claire”), DS, 4SS, BBGDS and
NTSS algorithms achieve close MSE performance as expected. For
moderate to large motion image sequences, DS, 4SS and NTSS
maintain close performance while the BBGDS degrades distinctly.
Therefore, the BBGDS' MSE performance is not stable and highly
depends on the motion content, although BBGDS constantly demands
the smallest number of search points.

Since typically encountered image sequence has wide range of mo-
tion content, DS, 4SS, and NTSS are more appropriate to use. Among
them, our DS algorithm requires the smallest average number of search
points. Finally, the TSS algorithm clearly achieves the worst perfor-
mance among all the fast BMA’s experimented.

Why does the proposed DS algorithm work so well? The search-step
length of our DS algorithm has two pels in horizontal and vertical di-
rections and one pel in each diagonal direction. Therefore, for large
motion blocks, the DS algorithm is not so easy to be trapped into a
local minimum point as BBGDS would do and can find the global min-
imum point using relatively few search points. For quasistationary or
stationary blocks, the search points of the DS algorithm will be fewer

than that of the 4SS. In addition, the compact shape of the search pat-
terns used in the DS algorithm increases the possibility of finding the
global minimum point located inside the search pattern. Therefore, the
DS algorithm tends to produce smaller or at least similar motion esti-
mation error compared with other fast BMA’s.

VI. CONCLUSION

In this paper, search patterns and search strategies of certain existing
fast BMA’s are analyzed. The distribution of motion vectors based on
several commonly experimented test image sequences are also studied.
Based on these analyses and observations, a newdiamond search(DS)
algorithm for fast block-matching motion estimation is developed.

Unlike TSS, NTSS and 4SS, the search window size is not restricted
by the searching strategy in our DS algorithm. Simulation experiments
conducted clearly demonstrate that the proposed DS algorithm greatly
outperforms the well-known TSS algorithm and achieves close MSE
performance compared to NTSS while reducing its computation by up
to 22% approximately. Compared with other recently proposed BMA’s
such as 4SS and BBGDS, our DS algorithm also works better on av-
erage in terms of MSE values, reconstructed image quality, and average
number of search points.

The DS is implemented in the MPEG-4 video-encoding environment
and its efficacy is demonstrated through core experimental results [11].
Based on these results, it is adopted and incorporated in MPEG-4 ver-
ification model [12].
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