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0. About this course

Goal of this course: There are some skills that you never really get until you try to apply them. Handling
experimental data is such a skill. The aim of this course is to make sure you comfortable with getting hold of data
(either from simulations or by importing it), manipulating it, and plotting it. With a minimum of fuss, and with
decent speed, using the programming language Python.

0.0 What is scientific computing?

Scientific computing means using computers as a tool to gain understanding from data, either simulated or observed.
The ’output’ is improved understanding of a system, as opposed to software engineering where the output is a
working system. This gives it a distinct flavour:

• Often we write small snippets of code, learn something, then discard the code and try something new, over
and over again. We need tools that are concise and expressive, to make the gap between ”what if...” and an
answer as small as possible.

• It is mostly a personal effort to gain understanding, not a team effort. We’re not bothered about ”Will this
codebase be robust when 20 people work on it and the requirements change each month?”, we are bothered
about ”Is this result reproducible, and will people be able to re-run this same code and understand it a year
from now?”

• Scientific computing is oriented around data. We need to always interact, and query, and visualize, and
inspect. Compilers are out, interpreters are in.

• We always have to communicate whatever we’ve understood: there is an emphasis on visualisations, and on
write-ups in the style of scientific reports. This course will use Jupyter Notebooks, ”live documents” that
mix code and text and plots.

• Programming languages for scientific computing tend to be glue-like, good at linking together assorted
libraries and tools. This is what lets them be concise and expressive, and also fast at working with large
amounts of data. It means you need to know your way around some big libraries, so you don’t spend all
your time endlessly rewriting boilerplate code. This course will use Python; the other two main languages
for scientific computing are R and MATLAB.

Scientific computing will be useful in all the data-themed courses you study: machine learning, data science, signal
processing, computer vision, etc. It will be useful for experimental subjects, such as aspects of HCI. It will be
useful for subjects that involve simulations, such as computer systems modelling. In the short term, it is loosely
linked to some other IA/IB courses:

• IA Maths for Natural Sciences. Science students have their own version of the Scientific Computing course,
which uses MATLAB. The course you are reading is for 50%-CS and 75%-CS students, and it uses Python
instead, and it has a greater emphasis on working with data.

• IA/IB Machine Learning and Real World Data. The MLRD course involves lots of scientific computing and
plotting. It expects you to program your work in Java, but some of you might like to sketch out your ideas
in Python first.

• IA Foundations of Computer Science and Object Oriented Programming. This course will introduce you to
Python (if you don’t know it already). Python is a general-purpose programming language, Appendix A1
discusses some of the similarities and differences with ML and Java.

• IA Algorithms. The algorithms you will study will be presented in pseudocode that closely resembles Python.
If you want to become more fluent in Python, tinker with the code presented in that course.

• IA/IB Databases. Section 3 of this course is about handling tables of data, which closely resembles querying
a database. Also, Appendix A3 gives examples of importing data by querying an SQL database, so you can
use Python as a sandbox to familiarise yourself with SQL and to visualize query results.

0.1 Course structure

• 1. Programming in Python …… Appendix: Python language choices
• 2. Numerical computation … Assignment 2 …… Appendix: vectorized thinking
• 3. Working with data … Assignment 3 …… Appendix: data import and cleanup

This course is for you to work through at your own pace. You may like to approach it as a problem-solving course,
jumping straight into the assignments and skimming through the notes only as you need to. Or you may like
to work through the notes systematically before going on to the assignments. It’s up to you. There are three
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appendices which aren’t part of the course, but which you may find thought-provoking or useful as a reference in
your later studies; and there are also further exercises scattered through each section of the notes.

Assessment. The course is marked out of 4. There are two assignments, each split into two parts, each part
marked 0 or 1. (There’s no assignment for Section 1, because your Python skills will be thoroughly tested by
Sections 2 and 3.) The assignments are assessed in two ways:

• As you work through an assignment, you will submit answers to an automatic grader, which checks if the
answers are correct. This is for you to use as a debugging aide: run the automatic grader as many times as
you need until your code gives the right answers. You should aim to answer all the questions. The automatic
grader will show you your progress.

• There is a final ticking session, when you present your work for the entire course to a (human) demonstrator.
The demonstrator will choose some parts of the assignments, and ask you to explain your answers. The
demonstrator will only ask you about the parts where you have submitted complete and correct answers to
the autograder. The ticking session is for the examiners to guard against plagiarism. At the ticking session,
you should have your notebooks ready and open in a browser, and your code should execute without errors.
For scheduling of ticks, see Moodle.

Getting help. You must understand what your programs are doing, and in the ticking session you will be asked
justify your answers to the assignments. However, it’s fine to get help, and if you are having difficulty this is
encouraged. The main help forum is on Moodle. In addition, there will be help sessions at the beginning of Lent
term; see Moodle for timetabling information.

0.2 Running notebooks

This is a Jupyter notebook. Jupyter notebooks are ”live documents” that intersperse text and running code. We
will be using Jupyter hosted on the Microsoft Azure cloud computing environment. You can access it from any
device — all you need is a web browser.

Click on Clone at the top of the page to get your own runnable version of the Library (consisting of all notebooks
for this course). If you are not logged in, you will be prompted to log in: type in your Cambridge University CRSid
e.g. spqr1@cam.ac.uk, click in the password field, and you will automatically be redirected to a Raven login page.
Experiment freely with your clone of the library — you can always go back and read the master version.

For academic staff at Cambridge: if your Raven password doesn’t work, then you need to activate your
Microsoft account first. For other users: you can sign up for a free Microsoft account on the login page.

Once you are logged in you can also create your own libraries and notebooks, using the Libraries link at the top
left at https://notebooks.azure.com/. When you create a notebook you will be asked which language to use.
This course uses Python 3.6, which is substantially different to Python 2.7, so be alert when you look for help
online.

These notebooks are hosted on the cloud, and the first lesson of cloud computing is that the cloud will fail when
you need it most. Take regular backups, by going to the Libraries page, clicking on the library, clicking on the
line with the relevant notebook, then clicking on Download. You can also run the notebooks on your own machine:
follow the Jupyter installation instructions, and clone the notebooks from their GitHub repository. More detailed
instructions will be available on Moodle.

0.3 Using the automatic grader

Once you’ve answered some exercises and you’re ready to check your answers, paste the following code at the top
of your notebook and run it. Each section of the notes tells you what value to use for section. To illustrate how
it works, we’ll use section=notes0.
#!pip install ucamcl
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp', section='notes0')
# paste in whatever section is appropriate for the section of notes / assignment you're working on

The first line installs a Python package ucamcl, with the functions used by the automatic grader. (On
Azure, you are given a new machine every time you start a notebook, so you have to install the ucaml
package every time.) The next line makes it available in your current notebook. The third line will
produce a login button, which you should click on. It will open a web page, showing you your progress
so far.
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Submitting answers to assessed exercises

A typical question will look something like this.

Question 1. Given an integer n and a value v, create a list containing n copies of v.

# Submit your answer:
q = GRADER.fetch_question('q1')
# Let x be a list consisting of q.n copies of q.v
GRADER.submit_answer(q, x)

When you call GRADER.fetch_question, the function returns an object q with the question parameters. Your fellow
students might be given different parameters. You can call print(q) to see them, and to see what format the
answer should take.

When you call submit_answer, the server checks if the answer is correct for the question parameters you were
given. If not, it may tell you what answer it was expecting. If you get the question wrong, don’t be tempted
to just paste in the correct answer and resubmit — it won’t do you any good in the ticking session, and anyway
the system marks the question as ”stale” and requires you to call fetch_question again to fetch new question
parameters before you are allowed to resubmit.

Checking answers to non-assessed exercises

Some non-assessed exercises come with answers. Such exercises have labels: for example if you see Exercise (ex5)
then the label is ex5. Check your answers by calling

It might print out the full answer. Or it might print out instructions for how you can submit your own answer
for checking. In the latter case, print(q) will tell you what format it expects the answer to be in. Follow the
instructions, and check your answer by running
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1 Programming Python in a Jupyter notebook

• 1.0 Editing notebooks
• 1.1 Using Python for simple calculation
• 1.2 Basic Python expressions …… maths and logic, strings and formatting
• 1.3 Collection types and control flow …… tuples, lists, dictionaries, control flow, comprehensions
• 1.4 Functions
• More exercises

Goal of this notebook: Familiarize yourself with how to use a notebook, how to use Python for simple calculation,
and the basics of Python programming.

If you know Python already, skim through the section on comprehensions first and then jump ahead to Section 2.

To see how Python compares to other programming languages, particularly ML and Java, see Section A1.

1.0 Editing notebooks

This is a Jupyter notebook. Jupyter notebooks provide an interactive environment where you can mix text, equa-
tions, programming and visual outputs. The famous computer scientist Donald Knuth introduced this style of
programming, mixing source code with explanations written in natural language, which he calls literate program-
ming. It has become popular in data science and machine learning, wherever scientific explanation and coding go
hand in hand. Scientific notebooks of course have a long and venerable history.

These notebooks are a mixture of text, input code, and output. * Edit a text cell by double-clicking on it * When
you’ve finished editing a text cell, press shift-enter to make it display nicely, or choose Cell | Run Cells from
the menu * Insert new cells using the Insert menu * Change a cell from text to input code and vice versa using
the Cell | Cell Type menu

The text format is called Markdown.

Exercise. Try editing the cell above. How do you type in bullet lists, italics, and links? (If you can’t edit cells,
you need to clone the notebook, as described in §0.2 Running notebooks.)

1.1 Using Python for simple calculations

We will be programming in the language Python. At the top right of your notebook you should see Python 3 � or
Python 3.6 � telling you which version you’re running. If you’re not running one or other of these, then use the
menu Kernel | Change kernel to switch. Python 3 has slightly different syntax to Python 2, and when you look
for help online please be aware that many older resources are for Python 2.

We can use Python like a calculator. Here are some simple expressions and their values. Try editing the expressions,
then to evaluate the cell press shift-enter or choose Cell | Run Cells from the menu. (Remember, if you can’t
edit cells, you need to clone the notebook first.)
3 + 8

11

1.618 * 1e5

x = 3
y = 2.2
z = 1
x * y + z

(x,y,z) = (3, 2.2, 4) # You can assign multiple values at once.
x * (y + z) # And you can comment your code with the # symbol!

'hello ' + 'world ' * 2

Exercise. What happens when you type in an erroneous expression? Run the expression below to find out.
# This expression should produce an error message
'hello' + 5

In a notebook, we can pick which cells to execute when. We can define a variable lower down in the notebook,
run that cell, then use it higher up in the notebook. Jupyter prints e.g. In[42] at the left to tell you about the
order it executed cells. However, for the sanity of anyone reading your notebook (which includes you a week after
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you wrote it), once you’ve got your code working you should rearrange it all into clean top-to-bottom order. The
menu item Kernel | Restart & Run All should then produce all the right output.

1.2 Basic Python expressions

Maths and logic

All the usual mathematical operators work, though watch out for division which uses different syntax to Java.
(The following code block uses print statements, to print multiple outputs from one cell.)

Exercise. Before running the code, guess what these statements produce. Then check your answers.
print('a:', 7 / 3) # floating point division
print('b:', 7 // 3) # integer division (rounds down)
print('c:', min(3,4), max(3,4))
print('d:', abs(-10), abs(3+4j)) # 3+4j is a complex number
print('e:', round(7.4), round(-7.4), round(3.4567, 2))
print('f:', 3**2) # power
print('g:', 5 << 1, 5 >> 2) # bitwise shifting
print('h:', 7 & 1, 6 | 1) # bitwise operations
print('i:', (3+4j).real, (3+4j).imag)

The usual logical operators work too, though the syntax is wordier than other languages.
(x,y) = (5,12)
print('a:', x < y or y < 10)
print('b:', x < y and not y < 15)
print('c:', 'lower' if x < y else 'higher') # same as Java's (x < y) ? 'lower' : 'higher'

Some useful maths functions are found in the math module. To use them, you need to run import math. (It’s
common to put your import statements at the top of the notebook, as they only need to be run once per session,
but they can actually appear anywhere.)
import math
print('a:', math.floor(-3.4), math.ceil(-3.4))
print('b:', math.pow(9, 0.5), math.sqrt(9))
print('c:', math.exp(2), math.log(math.e), math.log(101, 10))
print('d:', math.sin(math.pi*1.3), math.atan2(3,4))

import cmath # for functions on complex numbers
print('e:', cmath.sqrt(-9))
print('f:', cmath.exp(math.pi * 1j) + 1)

import random # for generating random numbers
print('g:', random.random(), random.random())

Strings and formatting

Python strings can be enclosed by either single quotes or double quotes. Strings (like everything else in Python)
are objects, and they have methods for various string-processing tasks. See ”String Methods” documentation for
a full list.
print('a:', "shout".upper())
print('b:', "hitchhiker".replace('hi', 'ma'))
print('c:', 'i' in 'team')

x = '''
Also, a multi-line string can be
entered with triple-quotes.
'''

To control how values are printed, we can use the str.format method. Here are some examples.
print("My name is {} and I am {} years old".format('Zaphod', 27)) # values
inserted by position
print("The value of π to 3 significant figures is {p:.3}, and to 5 is {p:.5}".format(p=math.pi)) # values
inserted by name
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print(f"The value of e to 3 significant figures is {math.e:.3}, and to 5 is {math.e:.5}") # string
interpolation (requires Python 3.6)

If you do any serious data processing in Python, you will likely find yourself needing regular expressions.

1.3 Collection types and control flow

Tuples, lists, and dictionaries

Python has three common types for storing collections of values: tuples, lists, and dictionaries. (Also two types
of set which we won’t cover in this course.)

In ML and Java we learned about lists versus arrays, and in Algorithms we will study the efficiency of various
implementation choices. The Pythonic style is to just go ahead and code, and only worry about efficiency after we
have working code. We’ll simply use the built-in type for storing sequences, not even bothering whether it should
be a list or an array, and we expect it to work reasonably well most of the time. If we have special needs we switch
to a dedicated collection type, such as a deque or a heap or the specialized numerical types we’ll learn about in
§2. Numerical computation. As the famous computer scientist Donald Knuth said,

Programmers waste enormous amounts of time thinking about, or worrying about, the speed of non-
critical parts of their programs, and these attempts at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%.

Lists and tuples are both ways to store sequences of elements.
a = [1, 2, 'buckle my shoe'] # a list
b = (3, 4, 'knock at the door') # a tuple
print('a:', a + list(b))
print('b:', tuple(a) + b)
print('c:', len(a), len(b))
print('d:', a[0], a[1], b[2]) # indexes start at 0
print('e:', a[-1], a[-2]) # negative indexes count from the end
print('f:', [a, 'then', b])
print('g:', 3 in a, 3 in b)

As you see, both lists and tuples can hold mixed types, including other lists or tuples. You can convert a list to
a tuple and vice versa, and extract elements. The difference between them is that tuples are immutable whereas
lists are mutable:
a[0] = 5
a.append('then')
a.extend(b)
print(a)

b[0] = 5 # error
print(b)

Exercise (ex1). What is the difference between the two commented lines? Do they give the same result?

Note: For labelled exercises, like this one, you can look up the answer or check your solution. The procedure is
described in §0.3 Using the automatic grader, and for this notebook you should use section=’notes1’.

Exercise (ex2). How do you type in a tuple of length 1? How about a tuple of length 0?

We can pick out subsequences using the slice notation, x[start:end:sep].
x = list(range(10)) # creates a list with 10 elements, starting at 0
print('a:', x)
print('b:', x[1:3]) # start is inclusive and end is exclusive, so x[1:3] == [x[1],x[2]]
print('c:', x[:2]) # first two elements
print('d:', x[2:]) # everything after the first two
print('e:', x[-3:]) # last three elements
print('f:', x[:-3]) # everything prior to the last three
print('g:', x[::4]) # every fourth element

a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b: [1, 2]
c: [0, 1]
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d: [2, 3, 4, 5, 6, 7, 8, 9]
e: [7, 8, 9]
f: [0, 1, 2, 3, 4, 5, 6]
g: [0, 4, 8]

We can sort a list.
names = ['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']

# The function sorted(list) returns a new list, and doesn't alter the original.
print(sorted(names))
print(names)

# The method list.sort() sorts the list in-place
names.sort()
print(names)

Another common operation is to concatenate a list of strings. Python’s syntax for this is unusual:
', '.join(['alpher', 'bethe', 'gamov']) + 'wrote a famous paper on nuclear physics'

The other very useful data type is the dictionary.
room_alloc = {'Adrian': None, 'Laura': 32, 'John': 31}
room_alloc['Guarav'] = 19
print(room_alloc['Laura']) # get an item
del room_alloc['John'] # remove an item
print(room_alloc)
print('Alexis' in room_alloc) # does this dictionary contain the key 'Alexis'?
print(room_alloc.get('Alexis', 1)) # get room_alloc['Alexis'] if it exists, else default to 1

Control flow

Python supports the usual control flow statements: for, while, continue, break, next, if, else. Here’s an
example: suppose we’re given a list of room allocations, and we want to find the occupants of each room.
room_alloc = {'adrian': 10, 'chloe': 5, 'guarav': 10, 'shay': 11,

'alexis': 11, 'rebecca': 10, 'zubin': 5}
occupants = {}
for name, room in room_alloc.items(): # iterate over keys and values

if room not in occupants:
occupants[room] = []

occupants[room].append(name)
for room, occupants_here in occupants.items():

ns = ', '.join(occupants_here)
print('Room {r} has {ns}'.format(r=room, ns=ns))

The above code iterates over the keys and values in a dictionary. We can also iterate over just the keys (for name
in room_alloc), or just the values (for room in room_alloc.values()).

If we have a list, we sometimes want to iterate over items and their positions in the list. We use enumerate for
this:
for i, name in enumerate(['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']):

print('Person {} is in position {}'.format(name, i))

Comprehensions

Python has a distinctive piece of syntax called a comprehension for creating lists. It’s a very common pattern to
write code that transforms lists, e.g.

mylist = ... # start with some list
newlist = []
for i in range(len(mylist)):

x = mylist[i]
if testfunc(x):

newlist.append(mapfunc(x))
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This is so common that Python has a special syntax for it:

newlist = [mapfunc(x) for x in mylist if testfunc(x)]

We can also use comprehension to create dictionaries and sets. Here are examples of list comprehension and
dictionary comprehension:
xs = range(10)
print([x**2 for x in xs if x % 2 == 0]) # create a list, filtered to process only even values
print({x: x**2 for x in xs}) # create a dictionary

Exercise (ex3). If you go overboard with list comprehensions, your code becomes unreadable. What does the
following code do?

Exercise (ex4). Write a single line of code to sort the names in this list

by length, breaking ties alphabetically, using list comprehension. Hint: make a list of (len(name), name) then sort
it, where len(str) gives the length of a string. When Python sorts a list of tuples, it uses lexicographic ordering.

1.4 Functions

The code snippet below shows how we define a function in Python. There are several things to note: * The function
is defined with a default argument, c=0. You can invoke it by either roots(2,3,1) or roots(2,3). * Functions
can be called with named arguments, roots(b=3, a=2), in which case they can be provided in any order.

In scientific computing, we’ll come across many functions that accept 10 or more arguments, all of them with
sensible defaults, and typically we’ll only specify a few of the arguments.
import math

def roots(a, b, c=0):
"""Return a list with the real roots of a + b*x + c*(x**2) == 0"""
if b == 0 and c == 0:

raise Exception("This polynomial is constant")
if c == 0:

return [-a/b]
elif a == 0:

return [0] + roots(b=c, a=b)
else:

discr = b**2 - 4*a*c
if discr < 0:

return []
else:

return [(-b+s*math.sqrt(discr))/2/a for s in [-1,1]]

Some more notes:

• This function either returns a value, or it throws an exception i.e. generates an error message and finishes.
If your function finishes without an explicit return statement, it will return None. Unlike Java, it’s possible
for different branches of your function to return values of different types — at risk to your sanity.

• This function returns a single variable, namely a list. If you want to return several variables, return them in
a tuple, and unpack the tuple using multiple assignment as shown above.

• It’s conventional to document your function by providing a documentation string as the first line.

Exercise. Execute ?roots. What does it tell you? Look at some other functions, e.g. ?sorted.

We can pass functions as arguments to other functions, and we can use the keyword lambda to define so-called
anonymous functions. Look back at Exercise 5 in ML, then try this code:
def twice(f, x):

return f(f(x))
twice(lambda i: i+5, 3)

We often use anonymous functions as a way to fill in arguments:
def illustrate_func(f, xs):

for x in xs:
print(f'f({x}) = {f(x)}')

illustrate_func(lambda b: roots(1,b,2), range(5))
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More exercises

The exercises in this notebook are to give you practice. They are optional, and do not contribute to your final
grade. You can check your answers to labelled exercises by following the instructions in § 0.3 Using the automatic
grader with section='notes1'.

Exercise (ex5). A simple queue can be simulated by the following equations. Let at be the queue size just before
timestep t, let the service rate be C, and let at be the amount of work arriving in timestep t. Then

qt+1 = max(qt + at − C, 0).

This is called Lindley’s Recursion. Write a function sim(q0,C,a) to compute the queue sizes at every timestep
t ≥ 1, where q0 is the initial queue size, and a is the list [a0, a1, . . . ]. For example, > sim(1, 3, [4, 1, 2, 8, 2,
3, 1])

should produce the answer > [2, 0, 0, 5, 4, 4, 2]

Exercise (ex6). * Calculate the base 10 logarithm of 1200 (answer is 3.079) * Calculate the tangent of 60 degrees
(answer is 1.7321) * Calculate the square root of -20 (answer is 0+4.4721i)

Exercise (ex7). Create the list of lists [[1],[2],[3],...,[n]] for n=10.
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2 Numerical computation

• 2.0 Preamble
• 2.1 Vector calculations
• 2.2 Vectorized thinking: for considered harmful
• 2.3 Arrays
• 2.4 Numerical optimization and fitting
• 2.5 Simulation
• More exercises

Working with numbers is central to almost all scientific and engineering computing, from deep learning to image
processing to climate simulation. We could use Python directly for numerical computation—but it’s much faster
to use Python just as ’glue’, using it to write concise code and to quickly develop our thinking, and to rely on
carefully optimized low-level libraries for the heavy lifting.

Goal of this notebook: Learn your way around the two main Python libraries for numerical work, NumPy and
SciPy, and learn how to produce basic plots with matplotlib.

There are some exercises in this section of notes. They are for you to get practice on: they are optional, and do
not contribute to your final grade. You can check your answers to labelled exercises as described in §0.3 using
section='notes2'.

2.0 Preamble

At the top of almost every piece of scientific computing work, we’ll import these standard modules.
# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import math, random
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.optimize
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline

2.1 Vector calculations

In §1 we learnt about Python lists, which can store mixed data types e.g. integers mixed with strings and sublists
and even functions. The flexibility comes at the price of performance. In scientific computing, it’s better to use
specialised classes for vectors, and to use functions that operate on entire vectors at once. This is called vectorized
thinking, and it’s a core skill for scientific computing. Once you get the hang of it, you will write code that is more
concise and faster. Here are some simple examples.
x = np.array([1,2,5,3,2]) # create a numpy vector out of a Python list
y = np.ones(5) # create a numpy vector [1,1,1,1,1]
x + y # iterates over all elements of x and y for you

array([ 2., 3., 6., 4., 3.])

All the elements of a vector have to be the same type. Use x.dtype to find this type, and x.astype to convert a
vector from one type to another.
x = np.arange(10)
y = (x > 5)
z = np.ones_like(x)
(x.dtype, y.dtype, z.dtype)

(dtype('int64'), dtype('bool'), dtype('int64'))

To be good at writing vectorized code, we need to know what sort of calculations we can do on vectors. Here are
some useful routines:

Maths:

• Normal mathematical expressions work on vectors, and you can mix vectors and scalars, e.g. x + y ** 2 +
5 >= z

• np.sin, np.exp, np.floor, ...
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• x @ y gives the dot product, np.linalg.norm(x) is the norm
• np.sum and np.prod; np.cumsum(x) gives [x0, x0 + x1, x0 + x1 + x2, . . . ]
• np.min and np.max for the overall min and max; np.minimum(x,y) for [min(x0, y0), min(x1, y1), . . . ]
• and other maths and statistics functions

Create vectors:

• np.array([1,2,3]) creates a numpy vector from a Python list
• np.zeros(n), np.ones(n), numpy.full(n,fill_value)
• numpy.ones_like(a) creates a vector of the same shape as a
• np.arange is like Python’s range
• np.linspace(start,stop,n) creates n evenly-spaced points between start and stop inclusive, very useful

for plotting
• np.random.random(n), np.random.choice(a,n), and other random number generators
• and other array creation routines

More elaborate example

Here’s a more elaborate example: computing the correlation coefficient between two vectors x and y,

ρ =
∑i(xi − x̄)(yi − ȳ)√

∑i(xi − x̄)2)
√

∑i(yi − ȳ)2

where x and y have the same length N, and

x̄ =
1
N ∑

i
xi, ȳ =

1
N ∑

i
yi.

Here are two pieces of code, one written in Python-style, one written in scientific computing style, to compute ρ.
The latter is roughly 15 times faster. (The magic command %%time at the top of a cell makes the notebook print
out the execution time.)
# Set up some parameters.
# We'll use a random number seed so our code is reproducible. Python's hash function gives an integer,
# suitable for use as a seed.
N = 10000000
rand_seed = 1618033988

%%time
# Python-style code

random.seed(rand_seed)
# Create two lists of random numbers, xs and ys, where each y depends on the corresponding x
xs = [random.random() for i in range(N)]
ys = [xs[i] + random.random() for i in range(N)]
# Compute the various terms involved in the formula
xbar = sum(xs) / N # sum(list) is built into Python
ybar = sum(ys) / N
sxy = sum([(x-xbar)*(y-ybar) for x,y in zip(xs,ys)]) # this is how to iterate over a pair of lists
sxx = sum([(x-xbar)**2 for x in xs])
syy = sum([(y-ybar)**2 for y in ys])
rho = sxy / math.sqrt(sxx) / math.sqrt(syy)
print(rho)

0.7070356005706819
CPU times: user 5.98 s, sys: 1.55 s, total: 7.53 s
Wall time: 7.53 s

%%time
# Vectorized code

np.random.seed(rand_seed)
# Create two random vectors x and y
x = np.random.random(N)
y = x + np.random.random(N)
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# Compute the terms in the formula. Note: @ means "dot product"
xbar = np.sum(x) / N
ybar = np.sum(y) / N
rho = ((x-xbar) @ (y-ybar)) / math.sqrt(np.sum((x-xbar)**2)) / math.sqrt(np.sum((y-ybar)**2))
print(rho)

0.707201664199
CPU times: user 266 ms, sys: 219 ms, total: 484 ms
Wall time: 537 ms

(Though if we really did know our way round numpy, we’d have used np.corrcoef rather than write our own code
for ρ!)

Exercise (ex1). Using Python-style code: let x and y be random numbers in the range [−1, 1], and let d =√
x2 + y2. Repeat this a million times, and find the mean and standard deviation of your values for d.

Exercise (ex2). Repeat Exercise ex1, but this time using vectorized code. Compare the speed of the two styles
of code.

2.2 Vectorized thinking: for considered harmful

Vectorized thinking isn’t just for mathematical calculations — there are all sorts of programming constructs that
can be vectorized also. In general, whenever you find yourself writing a for loop or a Python list comprehension,
stop and see if you can vectorize your code. You’ll usually end up with something more flexible for scientific
computing.

Programming:

• len(x) gives the length of a vector
• np.any, np.all and other logic functions
• ~x is logical negation, the equivalent of Python’s not x; x & y and x | y both work
• np.count_nonzero(x) counts the number of entries where x is True or non-zero
• np.sort sorts a vector; np.argsort(x) gives the vector i such that x[i] is sorted; also see other sort functions
• np.argmax and other search functions
• np.where(cond,x,y) is the vectorized version of x if cond else y
• np.vectorize(f) is a vectorized version of an arbitrary Python function f

Indexing:

• The usual slice notation works, e.g. x[:10] or x[10:] or x[:-3]
• We can index by a vector of booleans, e.g. x[y>5] = 3
• We can index by a vector of integers, e.g. i=np.where(y>5); x[i]=3
• np.where(b) gives a vector of indexes at which the boolean vector b is True
• np.concatenate([v1,v2]) concatenates two or more vectors

More elaborate example

Here’s an example, a vectorized version of Exercise ex4 from Section 1. Suppose we want to sort the following
vector by length, breaking ties alphabetically.
names = np.array(['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin'])

• First, get a vector with the length of each name. Numpy does have some routines for working with strings,
but as the name suggests it is really oriented around numbers, and I prefer to use Python functions. I’ll still
wrap them up with np.vectorize, so that I can apply them to a whole vector without having to write a list
comprehension.

• Second, work out how to put lengths in order, breaking ties alphabetically by names. This is called lexico-
graphic sorting, and there is a function np.lexsort that like np.argsort returns a vector of integer indexes
that will achieve this ordering.

• Last, pick out the names in the order specified by these indexes.
lengths = np.vectorize(len)(names)
indexes = np.lexsort([names, lengths])
names[indexes]

array(['shay', 'chloe', 'zubin', 'adrian', 'alexis', 'guarav', 'rebecca'],
dtype='<U7')
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At the end of this notebook you’ll find some more challenging exercises in vectorized thinking.

2.3 Arrays

NumPy supports matrices and higher-dimensional arrays. (In fact, when we look up the help for any of the
vectorized routines, we see that vectors are nothing more than one-dimensional arrays.) To enter a 2d array like

a =

(
2.2 3.7 9.1
−4 3.1 1.3

)
we type in
a = np.array([[2.2, 3.7, 9.1], [-4, 3.1, 1.3]])

Use a.shape to find the dimensions of an array:
a.shape

To refer to a subarray, we can use an extended version of Python’s slice notation.
a[:, :2] # all rows, first two columns
a[1, :] # second row (indexes start at 0), all columns
a[1] # another way to fetch the second row
a[:2, :2] = [[1,2],[3,4]] # assign to a submatrix
a

array([[ 1. , 2. , 9.1],
[ 3. , 4. , 1.3]])

To refer to arbitrary sets of elements in the array, we can use boolean indexing e.g. a[a>=2], or integer indexing
as in the code snippet below. These are both called advanced indexing.
a = np.zeros((3,3), dtype=np.int)
a[[0,1,2], [1,0,2]] = [1,1,1]
a

For 1d vectors the only reshaping operations are slicing and concatenating, but for higher dimensional arrays there
is a whole variety of reshaping functions such as stacking, tiling, transposing, etc. The most useful operations is
adding a new dimension, for example to turn a one-dimensional vector into a column vector. The second most
useful is stacking vectors to form an array.
x = np.array([1,2,3]) # one-dimensional, shape=(3,)
x[:, np.newaxis] # two-dimensional, shape=(3,1)

array([[1],
[2],
[3]])

np.column_stack([[1,2], [3,4], [5,6]])

array([[1, 3, 5],
[2, 4, 6]])

Exercise (ex2). What is the relationship between a.shape and len(a)?

Exercise (ex3). Look up the NumPy help for np.arange and np.reshape, and use these functions to produce the
3 × 5 matrix

b =

 1 2 3 4 5
6 7 8 9 10
11 12 13 14 15


Look up the help for np.sum, and compute the length-5 vector of column sums and the length-3 vector of row
sums.

Exercise (ex4). Find two different ways to use NumPy to create the column vector array([[1],[2],...,[n]]).

Exercise (ex5). A permutation matrix is a square matrix of 0s and 1s, where each row contains exactly one 1,
and each column likewise. (The code snippet above for advanced indexing creates a 3 × 3 permutation matrix.)
Write code to generate a random n × n permutation matrix.

NumPy also has a powerful tool called broadcasting which generalizes ”add a scalar to a vector”, and which is
used a lot in more advanced array-manipulating code. It’s more advanced than we need for this course, but it’s
used a lot in machine learning and it’s worth reading about.
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In Easter term, you will study linear algebra in the Maths for Natural Sciences course. If you want to try out the
maths, you’ll find relevant functions in np.linalg and np.dual.

2.4 Numerical optimization and fitting

A common task in science and in machine learning is to find the minimum value of a function, which may have
one or more variables. For example, we might have a collection of points that more or less follow a straight line,
and we might want to use the equation y = mx + c. In this case, we’d like to tune the values of m and c so that
the equation lies close to the data. We can achieve this by defining a function L(m, c) that measures how far the
points are from the straight line, and then choosing m and c to minimize L(m, c).

WARNING! The methods we discuss here sometimes work brilliantly, but sometimes are unstable. This is not the
fault of Python or the libraries we are using. It’s just the case that sometimes the equations in the algorithm and
numerical issues in the data are not well balanced. This is something we need to bear in mind every time we use
these methods, and we should check the output, for example by plotting graphs.

Let’s start by minimizing a simple function of one variable. We could use calculus to find the minimum for a
simple example like this, but let’s do it with computer power instead.
def f(x, a, b, c):

return a*x + b*(x**2) + c*(x**4)

We’ll plot this function first, to get a rough idea of where the minimum should be. Visualisation is a crucial part
of scientific computing, and we’ll cover it in much more detail in §3 Working with Data, but for present purposes
we’ll just use some very simple plotting commands. The pyplot tutorial explains more options.
x = np.linspace(-2,2,40) # 40 equally spaced points in the range [-2,2]
y = f(x, a=1, b=-3, c=1) # f is already vectorized, because it only uses vectorized calculations
plt.plot(x, y, linestyle='-', linewidth=1, color='red')
plt.show()

The scipy.optimize.fmin function finds where the function achieves its minimum value, starting from an initial
guess x0. The first argument is the function to optimize. In the snippet below we’re giving it an anonymous
function that is a version of f with the parameters a, b and c filled in.
scipy.optimize.fmin(lambda x: f(x,a=1,b=-3,c=1), x0=0.5)

Optimization terminated successfully.
Current function value: -1.070230
Iterations: 16
Function evaluations: 32

array([ 1.13085938])

It found a local minimum, not the global minimum. This is often a problem with numerical optimization routines,
and it’s why it’s helpful to look at the data first.

Exercise (ex6). What starting point do we need to give, so that it can find the global optimum? Run
scipy.optimize.fmin for a range of values of x0 in the range [−2, 2]. Tabulate x0 versus the minimizing x it
finds. You can turn off the diagnostic output with the option disp=False.

Here is an example of a function of two variables. We’ll try to fit the straight line y = mx + c through a set of
points. We’ll define the loss function

L(m, c) = ∑
i
(mxi + c − yi)

2
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and look for m and c to minimize it.
x = np.linspace(-3,3,40)
y = np.sin(x) + 2 * np.random.random(x.shape)

def loss(m,c):
return np.sum((m*x+c - y)**2)

Before we do any numerical work, we should visualize what we’re doing. Here are a plot of the points (xi, yi),
and a surface plot of the loss function L(m, c) as a function of m and c. The 3d plotting functions are somewhat
mysterious, and you should look at relevant examples and copy them.
# Scatter plot of the data
plt.plot(x, y, marker='o', markerfacecolor='white', markeredgecolor='black', linestyle='None')
plt.show()

# Surface plot of loss(m,c)
# adapted from https://matplotlib.org/examples/mplot3d/surface3d_demo.html

# Create 2d arrays, one with each m value, one with each c value, one with loss
m,c = np.meshgrid(np.linspace(-3,3,20), np.linspace(-3,5,20))
l = np.zeros_like(m)
for i in range(l.shape[0]):

for j in range(l.shape[1]):
l[i,j] = loss(m[i,j], c[i,j])

from mpl_toolkits.mplot3d import axes3d # import a library to allow 3d plots
axes = plt.figure().gca(projection='3d') # say that we want axes for a 3d plot
axes.plot_surface(m, c, l) # draw a surface plot
axes.set_xlabel('m')
axes.set_ylabel('c')
plt.show()

It doesn’t look like L(m, c) has any nasty surprises, so let’s find the minimizing m and c.
# To optimize a function of several several variables, provide them as an array
# of the appropriate length.
optpars = scipy.optimize.fmin(lambda params: loss(params[0], params[1]), x0=[0,0])
optpars

Optimization terminated successfully.
Current function value: 25.961639
Iterations: 58
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Function evaluations: 110

array([ 0.32481165, 1.12359353])

Now let’s plot the data again, with the fitted straight line.
# Plot the points
plt.plot(x, y, marker='o', markerfacecolor='white', markeredgecolor='black', linestyle='None')
# Plot the fitted line
def fit(x):

return optpars[0] * x + optpars[1]
plt.plot([-3,3], [fit(-3),fit(3)], linestyle='--', color='lightblue', linewidth=2)
# Show the graphic
plt.show()

2.5 Simulation

Simulation is a mainstay of scientific computing. A common style with numpy is to predefine an array to store
the results, one row per timestep, and then iterate over timesteps gradually filling in the array. (This is the one
case where for loops are appropriate.) Here’s an example, a differential equation simulation. A model that has
been proposed for TCP is

dxt

dt
=

1
RTT2 − pt−RTTxt−RTT

xt

2
, pt =

max(xt − C, 0)
xt

where xt is the transmission rate of a sender at time t measured in packets per second, RTT is the round trip time,
pt is the packet drop probability, and C is the link capacity. We might simulate this as follows.
x0 = 1 # initial transmission rate, in pkt/sec
C = 10 # link capacity, in pkt/sec
T = 20 # simulated duration in seconds
RTT = 0.2 # round trip time in seconds
dt = 0.01 # timestep size
def P(x): return max(x-C,0) / x

# Initialization
num_iterations = np.ceil(T/dt).astype(int)
res = np.zeros((num_iterations, 3)) # a matrix to store t,x,p
res[0,1:] = [x0, P(x0)]
steps_back = int(RTT/dt)

# Loop
for i in range(1, num_iterations):

(t,x,p),(xold,pold) = res[i-1], res[max(i-1-steps_back,0),1:]
dx = 1/(RTT**2) - pold*xold*x / 2
x = x + dx * dt
p = P(x)
res[i] = (t + dt, x, p)

# Plot the output (see Section 3 for more about plotting)
fig,(ax1,ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(res[:,0], res[:,1])
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ax2.plot(res[:,0], res[:,2], color='orange')
ax1.set_ylabel('x')
ax2.set_ylabel('p')
ax2.set_xlabel('t')
plt.show()

• From a mathematical point of view this isn’t ideal, because there are much more sophisticated numerical
methods for solving differential equations.

• From a computer science point of view this isn’t ideal, because the code tangles together the iteration logic
with the logging logic. You may like to rewrite it using lazy lists.

• But from a scientific computing point of view, simulations like this are so easy to put together and learn
from, that they are invaluable.

What we have written is called a discrete-time simulation, because time advances in fixed increments. In IA
Algorithms you will study the heap data structure and event-driven simulation, in which time is pegged to changes
in state.

More exercises

Exercise (ex7). In §1 you wrote a Pythonic simulator for a queue, based on Lindley’s recursion

qt+1 = max(qt + at − C, 0).

It can be proved that this yields the same answer as

qt = q0 + xt − min(0, yt),

where

xt =
t

∑
u=1

(au − C) and yt = min
1≤u≤t

(q0 + xu).

Compute x = [x1, x2, . . . ] using np.cumsum. Compute y = [y1, y2, . . . ] using np.ufunc.accumulate. Hence compute
q = [q1, q2, . . . ]. Check your answer against your Pythonic code.

Exercise. Continuing from Assignment 2... In the kinetic exchange model, the poorest and the richest might
swap places after just one transaction, which isn’t very likely. Consider a different model for exchange. As before,
suppose that two individuals with wealth v and w respectively are paired, but now let their wealth be updated by

vnew = v + R min(v, w), wnew = w − R min(v, w)

where R is now a random number in [−1, 1], chosen independently for every pair at every timestep. The idea is
that each party to the exchange puts up a certain amount of money, but no more than they can afford. Call this
the value transfer model.

We can extend this model to include government intervention. Suppose the government charges a tax of say 20%
on every exchange, collects all the tax revenue every timestep, and distributes it evenly to the entire population.
This redistribution ought to have the effect of reducing inequality. Call this the taxed value transfer model. Here
is a concrete example, for a population of size 6. > 1. Initial wealth values are [0, 2, 5, 3, 1, 2] > 1. We pair adjacent
individuals: [0, 2; 5, 3; 1, 2] > 1. Random exchange amounts pre-tax are [0, 0; 2.6,−2.6;−0.4, 0.4] > 1. Exchange
amounts post-tax are [0, 0; 2.08,−2.6;−0.4, 0.32] > 1. Government revenue is (2.6 − 2.08) + (0.4 − 0.32) = 0.6 >
1. Government redistributes 0.6/6 = 0.1 to each person > 1. Change in wealth is [0.1, 0.1, 2.18,−2.5,−0.3, 0.42].
> 1. New wealth vector is [0.1, 2.1, 7.18, 0.5, 0.7, 2.42].
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Also, let’s introduce another way to measure inequality. The Gini coefficient is unfamiliar to many people, and
it’s easier to communicate ”The richest 1% of the population own x% of the wealth.”

Implement the taxed value transfer model. Implement the ”top x%” measure. Simulate the taxed value transfer
model, and measure the Gini coefficient and the ”richest 1%” statistic at each timestep. Plot these two measures,
as a function of time, for tax rates 0%, 20% and 40%. See §3 for tips on plotting.

Exercise. Continuing from the assignment... Inflation means that wealth grows at an exponential rate, which is
likely to exacerbate inequality. Compare a taxed value transfer model with tax rate 20% and no inflation, to a
model with inflation of 3% per timestep. How much would tax have to increase, to compensate for this inflation?

Exercise. Continuing from the assignment... The economist Thomas Piketty argues that we have entered an age
where the return on capital is greater than the growth due to income, and that this leads to higher inequality.
We could incorporate income into the model by assigning each individual i a per-timestep income gi, where the
gi are randomly chosen a priori. If there were no exchange, then wealth would grow linearly, and so the Gini
coefficient would remain equal to gini(g). Investigate what happens when we combine income, inflation, and
random exchange. How well correlated are income and wealth? Do you agree with Piketty?
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3. Working with data

• 3.0 Preamble
• 3.1 What data looks like
• 3.2 Dataframes
• 3.3 Selecting from a dataframe
• 3.4 Tabulation and indexed arrays
• 3.5 Joining dataframes
• 3.6 Extended example …… categorical, numerical, date/time variables, clever joins, fancy plots

Goal of this notebook:

Get used to the standard ways of thinking about data, data frames and indexed arrays

Learn how to use the Pandas library to handle data

See some more advanced plotting with matplotlib

There are some exercises in this section of notes. They are for you to get practice on: they are optional, and do
not contribute to your final grade. You can check your answers to labelled exercises as described in §0.3 using
section='notes3'.

3.0 Preamble

At the top of almost every piece of data-oriented scientific computing work, we’ll import these standard modules.
# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import numpy as np
import pandas
import matplotlib
import matplotlib.pyplot as plt
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline

The running example for this section is a dataset of stop-and-search records, made available by the UK home office.
As it’s a moderate-sized file (172MB) I like to download it to disk, so it’s fast to reread it each time I restart the
notebook. Here’s how we can fetch a file from a url, using the Unix command-line tool wget. (The exclamation
mark is called a Jupyter magic, and it means ”Treat this line as though it were executed at the command prompt”.
In IB Unix Tools you’ll learn more about the Unix command line.)
# Execute a unix command to download a file (if it's not already downloaded), and show download progress
import os.path
if os.path.exists('stop-and-search.csv'):

print("file already downloaded")
else:

!wget "https://teachingfiles.blob.core.windows.net/founds/stop-and-search.csv"

file already downloaded

3.1 What data looks like

We almost always work with data in the form of a spreadsheet-like table, referred to as a dataframe. Here’s how
to load a dataframe from a file and inspect it. (This dataframe will be used as a running example in the rest of
§3.)
# Import a dataframe using the pandas library
stopsearch = pandas.read_csv('stop-and-search.csv')

# How many rows are there?
print("This dataset has", len(stopsearch), "rows")
# Display the first 3 rows. iloc[:3] means "select the first three rows"
stopsearch.iloc[:3]

This dataset has 808101 rows
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Type Date Part of a policing operation \
0 Person search 2014-07-31T23:20:00+00:00 NaN
1 Person search 2014-07-31T23:30:00+00:00 NaN
2 Person search 2014-07-31T23:45:00+00:00 NaN

Policing operation Latitude Longitude Gender Age range \
0 NaN 50.938234 -1.388559 Male 25-34
1 NaN 50.912978 -1.431990 Male over 34
2 NaN 51.005612 -1.497576 Male 10-17

Self-defined ethnicity Officer-defined ethnicity \
0 Asian or Asian British - Pakistani (A2) Asian
1 White - White British (W1) White
2 White - White British (W1) White

Legislation Object of search \
0 Misuse of Drugs Act 1971 (section 23) Controlled drugs
1 Misuse of Drugs Act 1971 (section 23) Controlled drugs
2 Misuse of Drugs Act 1971 (section 23) Controlled drugs

Outcome Outcome linked to object of search \
0 Nothing found - no further action NaN
1 Suspect summonsed to court NaN
2 Nothing found - no further action NaN

Removal of more than just outer clothing year month police_force
0 NaN 2014 8 hampshire
1 NaN 2014 8 hampshire
2 NaN 2014 8 hampshire

A dataframe is a collection of named columns. Each column has the same length, and all entries in a column have
the same type, though different columns may have different types. If you have taken IA/IB Databases, you’ll see
that dataframes are similar to tables in a relational database. There are some differences:

• Scientific data is best thought of as logs of observations. Observed facts cannot be unobserved, so UPDATE
and DELETE database operations are irrelevant, as are questions about database consistency.

• A dataframe has ordered rows, like an array, whereas a database table is unordered.
• We are often given messy badly structured data to work with; and we often create dataframes on the fly,

work with them for a little while, then discard them. There is rarely a phase of entity-relationship modeling:
instead we learn how to think about a dataset by working with it.

In Python, there are several choices about how to represent dataframes. A simple choice is as a dictionary of lists:

mydata = {'police_force': ['hampshire', 'hampshire', 'hampshire', ...],
'Age range': ['25-34', 'over 34', '10-17', ...],
'year': [2014, 2014, 2014, ...],
...}

We won’t use this representation. Instead we’ll use the Pandas library, designed specifically for working with data.
It has several benefits:

• Data import and export has lots of fiddly corner cases. Even printing a dataframe takes a surprisingly large
amount of code to do well.

• For fast numerical computation and concise code, numpy is best as we saw in §2. Pandas stores dataframe
columns as numpy vectors.

• Some simple operations, like selecting a subset of rows, takes a lot of boilerplate code if implemented in pure
Python. Much better to use a Pandas dataframe, which lets us write e.g. stopsearch.iloc[:3] to select
some entries from each column, without our even having to think about iterating over columns.

It has the disadvantage of being yet another library to learn. It also has some idiosyncratic notation for indexing,
which in my experience can lead to rather cryptic error messages when plotting, and which will be discussed in
§3.2. It has poor support for missing values in data, which it inherits from numpy. Despite these problems, it’s the
best choice at this stage in Python’s evolution.

3.2 Importing, exporting, and creating dataframes

It’s very easy to import data from a simple comma-separated value (CSV) file. A CSV file looks like this:

"Sepal.Length","Sepal.Width","Petal.Length","Petal.Width","Species"
5.1,3.5,1.4,0.2,"setosa"
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4.9,3,1.4,0.2,"setosa"
4.7,3.2,1.3,0.2,"setosa"
4.6,3.1,1.5,0.2,"setosa"
5,3.6,1.4,0.2,"setosa"

i.e. a header line, then one line per row of the data frame, with values separated by commas. We’ve already seen
how to import a CSV, using pandas.read_csv. If your file is nearly a CSV but has some quirks such as comments
or a missing header row, experiment with the 55 options in pandas.read_csv. We can use the same function to
read CSV files from remote urls (though if you’re using Azure Notebooks, be aware that Azure only permits you
to connect to Azure web servers.)
import urllib.request # standard Python library for url requests
iris = pandas.read_csv(urllib.request.urlopen('https://teachingfiles.blob.core.windows.net/scicomp/iris.csv'))

In my experience, around 70% of the time you spend working with data will be fighting to import it and clean it
up. See §A3 for a collection of recipes for web scraping, reading from a database, and parsing log files.

To write a CSV file,

iris.to_csv('iris.csv', index=False)

If you’re running this notebook with Azure Notebooks, you would then use the Data | Downloadmenu to download
the file from Azure Notebooks to your local machine.

To create a dataframe from scratch, pass in a dictionary of columns. Python dictionaries are unordered, so you
can optionally specify the column order you want with the columns argument.
iris = pandas.DataFrame({'species': ['setosa', 'virginica', 'virginica', 'setosa', 'versicolor'],

'Petal.length': [1.0, 5.0, 5.8, 1.7, 4.2],
'Petal.width': [0.2, 1.9, 1.6, 0.5, 1.2]},
columns = ['species', 'Petal.length', 'Petal.width'])

Or you can create a dataframe from a list of tuples. Now the columns argument is needed to say what the column
names are.
iris = pandas.DataFrame([('setosa', 1.0, 0.2), ('virginica', 5.0, 1.9), ('virginica', 5.8, 1.6),

('setosa', 1.7, 0.5), ('versicolor', 4.2, 1.2)],
columns = ['species', 'Petal.length', 'Petal.width'])

A dataframe behaves like a dictionary of vectors, and you can add and remove columns using the same syntax
you’d use for dictionaries. When you add new columns, Pandas converts them to numpy vectors for you, so you
can use the usual numpy operations. (The columns aren’t actually plain numpy vectors, as §3.3 explains, and the
difference will bite you whenever you try to subset a column.)
iris.keys() # what column names are present?
iris['Sepal.length'] = [4.6, 6.3, 7.2, 5.1, 5.7] # add a column
if 'Petal.width' in iris: del iris['Petal.width'] # delete a column (if present)
iris['P/S'] = iris['Petal.length'] / iris['Sepal.length'] # vectorized whole-column operation
iris

species Petal.length Sepal.length P/S
0 setosa 1.0 4.6 0.217391
1 virginica 5.0 6.3 0.793651
2 virginica 5.8 7.2 0.805556
3 setosa 1.7 5.1 0.333333
4 versicolor 4.2 5.7 0.736842

To modify an entry in a dataframe, I prefer to ”think vectorized” and replace the entire column, e.g.

iris['Petal.length'] = np.where(np.arange(5)==0, 100, iris['Petal.length'])

If we modify only some of the rows of a dataframe, then (depending how exactly we do it) Pandas will tell us off,
warning us that the operation may be inefficient.
iris['Petal.length'][0] = 200

/home/djw/.local/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-
versus-copy
"""Entry point for launching an IPython kernel.
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3.3 Selecting from a dataframe

Dataframes have a triple identity: part array, part database table, part dictionary. Because of this, there are
several ways to select subsets of rows and columns.

Selecting columns is easy. We’ve already seen how to select one column. To select several columns,
# Select three columns, and print out the first 5 rows of the resulting dataframe
stopsearch[['Date', 'Object of search', 'Legislation']].iloc[:5]

Date Object of search \
0 2014-07-31T23:20:00+00:00 Controlled drugs
1 2014-07-31T23:30:00+00:00 Controlled drugs
2 2014-07-31T23:45:00+00:00 Controlled drugs
3 2014-08-01T00:40:00+00:00 Stolen goods
4 2014-08-01T02:05:00+00:00 Article for use in theft

Legislation
0 Misuse of Drugs Act 1971 (section 23)
1 Misuse of Drugs Act 1971 (section 23)
2 Misuse of Drugs Act 1971 (section 23)
3 Police and Criminal Evidence Act 1984 (section 1)
4 Police and Criminal Evidence Act 1984 (section 1)

To select subsets of rows by row number use .iloc[row_indexes]. This can take any slice or list of integers.
stopsearch.iloc[:3] # the first 3 rows; stopsearch[:3] is an abbreviation for this
stopsearch.iloc[[0,3,5]] # select several rows, by providing a list of row numbers
stopsearch.iloc[[5]] # select a dataframe object consisting of just one row
stopsearch.iloc[:3][['Date', 'Object of search']] #first a row selector, then a column selector

To select subsets of rows by a boolean vector use .loc[rows_indicator] where rows_indicator is a boolean vector
as long as the dataframe. You can optionally also specify a list of columns to select.
wantcols = ['Date', 'Object of search', 'Outcome']
wantrows = stopsearch['police_force'] == 'cambridgeshire' # a boolean vector
stopsearch.loc[wantrows, wantcols][:3]

There is a third way to select rows from a dataframe, which in my experience is the source of endless confusion:
selecting by row index.

When you see a Pandas dataframe printed out, there is a column at the left printed in bold. These aren’t row
numbers, they are row indexes, which behave like the keys in a dictionary. In all the examples we’ve seen so far
the indexes happen to be numbers, but they could be any other Python object. Pandas remembers row indexes,
even when you pull out a single column, and it always tries to match indexes. This is usually not what we want.
I recommend that you always use .values when you are working with subsets of rows. This gives you the
actual numpy vector behind the column, not the confusing Pandas vector-plus-index object.

We won’t be using row indexes in this course, but it’s worth knowing they exist so you can understand the cryptic
errors and error messages you will undoubtedly come across.
df = pandas.DataFrame({'x': [3,3,4,8,2,7,6]})

# This looks like it's adding [3,3,4,8] and [8,2,7,6] -- but it's not!
df['x'][:4] + df['x'][-4:]

# This is the way to do it
df['x'][:4].values + df['x'][-4:].values

3.4 Tabulations and indexed arrays

The pattern behind much data processing is split-apply-combine-join: split your data into pieces, apply a trans-
formation to each piece, combine the pieces, and join results from different datasets together. We could code this
explicitly with a for loop, but it would involve lots of boilerplate code — and I hope you have been persuaded by
§2 that for loops are considered harmful. Instead, let’s see how to do it with Pandas.

The following line of code performs a cross-tabulation: it splits the data into a separate dataframe for each
combination of officer-defined ethnicity and gender, applies the len function to each sub-dataframe to get the
number of rows it contains, and combines the results into a single indexed object.
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x = stopsearch.groupby(['Officer-defined ethnicity', 'Gender']).apply(len)
x

Officer-defined ethnicity Gender
Asian Female 2230

Male 72458
Other 85

Black Female 7497
Male 151988
Other 189

Mixed Female 22
Male 327

Other Female 974
Male 16221
Other 147

White Female 47947
Male 414428
Other 986

dtype: int64

• If you have a function you want to apply to only one column, use
dataframe.groupby(...)[colname].apply(fun).

• For this course, we will only apply functions that return simple Python values. It’s more complicated to
apply functions that return dataframes or Pandas columns or indexed arrays.

The groupby/apply command has produced an indexed array. An indexed array is a cross between a normal
numpy array and a dataframe. We access elements and sub-arrays by dimension, like a numpy array — but we
use .loc[] and the indexes aren’t integer positions, they’re values from the underlying column. Also, the array
might be ’incomplete’, as in the example above which has no entry for ['Mixed','Other'].
x.loc['Asian'] # select a sub-array indexed just by Gender
x.loc[:, 'Other'] # select a sub-array indexed by Ethnicity (all levels)
x.loc[['Mixed','White']] # select a sub-array indexed by Ethnicity (two levels) and Gender (all levels)
# The index labels can be accessed with x.index.levels[0].values and x.index.levels[1].values

To pretty-print an indexed array, use unstack(). It will by default fill in any missing values with NaN (not a
number), and you can override this with fill_value.
x[['Mixed','White']].unstack(fill_value=0)

Gender Female Male Other
Officer-defined ethnicity
Mixed 22 327 0
White 47947 414428 986

When you first start working with data, I recommend you do all your calculations on dataframes rather than
indexed arrays. If you want to do calculations on an indexed array, first turn it into a dataframe. There are two
ways to do this, depending on whether you want it long form or wide form.
# Convert an indexed array into a long-form dataframe
x[['Mixed','White']].reset_index()

Officer-defined ethnicity Gender 0
0 Mixed Female 22
1 Mixed Male 327
2 White Female 47947
3 White Male 414428
4 White Other 986

# Convert an indexed array into a wide-form dataframe. See note below about rename_axis
x[['Mixed','White']].unstack(fill_value=0).reset_index().rename_axis(None, axis=1)

Officer-defined ethnicity Female Male Other
0 Mixed 22 327 0
1 White 47947 414428 986

As you get deeper into working with data, you’ll discover that the skill in working with data is knowing which
representation works best for your task, dataframe or indexed array. Also,

• Pandas blurs the boundary between dataframes and indexed arrays
• Both rows and columns can have hierarchical indexes, called multi-indexes
• For clever tricks with higher-dimensional indexed arrays, read the documentation for unstack and

rename_axis
• When you read the documentation or look for help, please note that what I’m calling an indexed array,

Pandas calls a Series.
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Exercise (ex1). Here is a function for finding the most frequent value in a vector:

Generate a table showing the most frequent age range for each combination of ethnicity and gender, in the stop-
and-search dataset.

Exercise (ex2). Given the dataframe

pretty-print an indexed array that has rows for A, columns for B, and shows values of X. [Hint. Make sure your
apply function returns a simple Python value, not a Pandas column or dataframe.]

3.5 Joining dataframes

Suppose we’ve got a table that lists, for each ethnic group and possible outcome, the number of such cases:
# The 'Outcome' column has lots of possible values -- let's simplify it to just two
stopsearch['outcome'] = np.where(stopsearch['Outcome'] == 'Nothing found - no further action', 'nothing',
'find')
x = stopsearch.groupby(['Officer-defined ethnicity', 'outcome']).apply(len).reset_index(name='n')
x

Officer-defined ethnicity outcome n
0 Asian find 23864
1 Asian nothing 55628
2 Black find 52161
3 Black nothing 111695
4 Mixed find 212
5 Mixed nothing 138
6 Other find 6117
7 Other nothing 12363
8 White find 157927
9 White nothing 325545

We might want to know outcome==find is equally likely for each ethnic group (to test for ethnic bias in police
behaviour). We could achieve this with a for loop, looking at each ethnic group in turn — but for loops are
considered harmful, and a more idiomatic way to do it is by combining tables, as follows. First, create a summary
table that lists, for each ethnic group, the total number of cases:
y = x.groupby('Officer-defined ethnicity')['n'].apply(sum).reset_index(name='ntot')
y

Officer-defined ethnicity ntot
0 Asian 79492
1 Black 163856
2 Mixed 350
3 Other 18480
4 White 483472

Second, divide the values in the first table by the corresponding values in the second table. The key word here is
corresponding. This is the equivalent of JOIN in SQL, which you learn about in IA/IB Databases.
z = x.merge(y, on='Officer-defined ethnicity') # you can join on a column name, or a list of column names

# Compute the ratio n/ntot, and display percent_find for each ethnicity
z['percent_find'] = z['n'] / z['ntot'] * 100
z.loc[z['outcome']=='find', ['Officer-defined ethnicity','percent_find']]
# (If we select rows first and then add a column, Pandas will tell us off for trying to modify part of a
dataframe.)

Officer-defined ethnicity percent_find
0 Asian 30.020631
2 Black 31.833439
4 Mixed 60.571429
6 Other 33.100649
8 White 32.665180

Pandas also lets us join indexed arrays on their common indices, and that would be a more natural way to write
this calculation; but that counts as more advanced Pandas usage than we will cover here.

Exercise (ex3). Use merge to produce a dataframe with one row per ethnic group, one column for the number
of cases of outcome==find, and one column for the number of cases with outcome==nothing. Use this table to
compute the percent_find column.
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3.6 Extended example

Here is an extended example, a deeper look at the stop and search dataset. The goal of this section is to see how
everything we’ve learnt comes together. Every piece of data work is different, so don’t worry about the details of
this example. Instead you should skim through and just look at the pictures, and come back to use this section
as a reference if you find yourself wondering how to produce a similar picture. The general themes illustrated in
this example are:

• What are common steps we might take when approaching a new dataset?
• How do all the various pieces of Python and numpy come together when tidying a dataset?
• See a more involved use of merge
• Get a flavour of advanced plotting with matplotlib

Matplotlib is a huge and not very coherent library. You’ll see some of the most important parts here, but you’ll
need to make frequent use of Google, Stack Overflow, the matplotlib gallery, maybe even the documentation.

The first step is analysing a dataframe is always to look at a few of the rows, as we did right at the top of this
notebook. I like to look at a random sample of rows, to get a picture of variety in the data.
stopsearch.iloc[np.random.choice(len(stopsearch), size=3)]

Type Date Part of a policing operation \
364933 Person search 2016-01-22T00:10:00+00:00 False
741425 Person search 2017-04-29T14:50:00+00:00 False
222012 Person search 2015-09-01T12:00:00+00:00 NaN

Policing operation Latitude Longitude Gender Age range \
364933 NaN 51.252699 -0.015391 Male 18-24
741425 NaN 51.473878 -0.088951 Male 18-24
222012 NaN NaN NaN Male 25-34

Self-defined ethnicity Officer-defined ethnicity \
364933 White - White British (W1) White
741425 White - Any other White background NaN
222012 White - White British (W1) White

Legislation Object of search \
364933 NaN Stolen goods
741425 Misuse of Drugs Act 1971 (section 23) Controlled drugs
222012 Misuse of Drugs Act 1971 (section 23) NaN

Outcome \
364933 Nothing found - no further action
741425 Offender given drugs possession warning
222012 Nothing found - no further action

Outcome linked to object of search \
364933 NaN
741425 NaN
222012 NaN

Removal of more than just outer clothing year month police_force \
364933 NaN 2016 1 surrey
741425 NaN 2017 4 metropolitan
222012 NaN 2015 9 metropolitan

outcome
364933 nothing
741425 find
222012 nothing

(a) Investigate categorical columns

Let’s look at one column in detail, Age range. Entries in this column take one of a small number of possible values;
it is what is known as a categorical variable. In other languages we’d store it as an enumeration type, but Python
and numpy have poor support for enumerations, and it’s typical to either store it as a string or (if the dataset is
huge) to code it as an integer.

We could use any numpy routines we like to summarize the column, but Pandas column objects have a help-
ful method describe(), which is polymorphic and displays appropriate information for most types of column.
(If we want to call describe on a numpy vector, we have to convert it to a Pandas column object first:
pandas.Series(x).describe().)
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stopsearch['Age range'].describe()

count 759820
unique 5
top 18-24
freq 292998
Name: Age range, dtype: object

It tells us, somewhat unhelpfully, that this column is of type object. Numpy insists that each item in a vector
or array have exactly the same length, whereas strings are variable length, so Pandas has stored it as a vector of
pointers to string objects, so it displays as dtype=object. Numpy can also store vectors of fixed-length strings,
but this is rarely a good idea. In my experience, numpy has poor support for strings (as one might guess from its
name), and I prefer to use general-purpose Python functions for string handling.

The describe() method has gotcha behaviour when there are missing values. When Pandas reads a CSV, if there
are missing values then Pandas stores them as NaN (Not a Number — a floating point value, despite its name!).
The count printed out by describe() doesn’t include NaNs.

The standard way to depict a categorical variable is with a histogram. In matplotlib, we have to do the counting
ourself and then draw bars with matplotlib.pyplot.bar. Missing values are a gotcha: we can either convert NaN
into the string 'nan' and show it in the plot, or we can discard NaN values using pandas.isnull.
x = stopsearch['Age range']

# Count the number of occurrences of each value in the column
vs,ns = np.unique(x[~pandas.isnull(x)], return_counts=True) # discard NaN values,
vs,ns = np.unique(x.astype(str), return_counts=True) # or convert NaN to 'nan'

xs = np.arange(len(vs)) # pick x coordinates
plt.bar(xs, ns, align='center') # you can also set width=...
plt.xticks(xs, vs, rotation=-30, ha='left') # specify and label the x ticks
plt.ylabel('count')
plt.show()

Here’s another display, a table showing the most frequent items and their counts. We’re using np.argsort(-ns)
to rearrange the rows in the order of decreasing ns, and keeping the first three rows.
pandas.DataFrame({'Age range':vs, 'n':ns}, columns=['Age range','n']).iloc[np.argsort(-ns)[:3]]

Age range n
1 18-24 292998
2 25-34 180725
0 10-17 150286

(b) Investigate numerical columns

Numerical columns also have a describe() method, which prints out some standard numerical summaries. The
only numerical columns in this dataset are latitude and longitude, which it’s daft to summarize numerically, but
here goes.
stopsearch['Latitude'].describe()

count 495557.000000
mean 52.253553
std 1.099470
min 49.766800
25% 51.469594
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50% 51.653199
75% 53.161358
max 55.945400
Name: Latitude, dtype: float64

The obvious way to plot a numerical column is with a histogram. The matplotlib hist command doesn’t work if
there are missing values, so they must be removed first.
x = stopsearch['Latitude']
plt.hist(x[~pandas.isnull(x)], bins=30)
plt.ylabel('count')
plt.show()

It’s sometimes helpful to split a numerical column into categories. Here is a cheap-and-cheerful hack at geocoding.
We could achieve the same effect ourselves by fiddling with np.digitize, but pandas.cut does everything for us.
If we want to cut into categories of roughly equal size, use pandas.qcut, or fiddle around with np.nanpercentile,
region = pandas.cut(stopsearch['Latitude'], bins=[-np.inf, 51.98, 55.27, np.inf],
labels=['south','mid/north','scotland'])
ns,vs = np.unique(region.astype(str), return_counts=True)
pandas.DataFrame({'region':vs, 'n':ns})

n region
0 mid/north 231792
1 nan 312544
2 scotland 304
3 south 263461

Here’s a more intelligent plot of latitude and longitude, a scatter plot, coloured by police force. We iterate through
the police forces and draw a scatter plot for each. The scatterplot automatically picks a new colour each time.
(You can also use a mapping library like gmplot, which puts nice interactive maps in your Jupyter notebook, using
Google map tiles.)
# Plot a sample of points, because there's no point plotting loads of overlaps
df = stopsearch.iloc[np.random.choice(len(stopsearch), size=100000)]

for pf in np.unique(df['police_force']):
i = df['police_force'] == pf
plt.scatter(df['Longitude'][i], df['Latitude'][i], s=1, alpha=.1) # control size and alpha

# Set the aspect ratio, based on the UK's average latitude
plt.gca().set_aspect(1/np.cos(54/360*2*np.pi))
plt.show()
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(c) Investigate date/time columns

Dates and times are always a nuisance because of timezones, as xkcd observes — and also because of unequal
months and leap years and so on, which make it hard work to get axes right in plots. But they’re also very
common, so here are a few recipes.

Let’s look at some typical values in the Date column.
np.random.choice(stopsearch['Date'], 5)

array(['2016-08-26T21:13:00+00:00', '2015-11-15T17:45:00+00:00',
'2014-12-02T13:10:00+00:00', '2015-11-20T20:00:00+00:00',
'2015-04-10T13:45:00+00:00'], dtype=object)

To find the time of day of each entry (measured in seconds since midnight), we can just trim the string, split it at
colons, and add up the pieces. By using np.vectorize we can apply this to the entire vector.
def as_timeofday(s):

return sum(int(x)*y for x,y in zip(s[11:19].split(':'), [3600,60,1]))
timeofday = np.vectorize(as_timeofday)(stopsearch['Date'])

Here’s a plot, a histogram of the time of day of stop-and-search events. There are two fancy things going on here:

• The plot size is set using plt.rc_context, which lets you control size and many other options.
• Colours can be specified by name, by string for a grey-level, or by an (r,g,b) tuple.
• Since stop-and-search events happen throughout the night, it’s good to show context around midnight. Here

we’re showing three versions of the histogram in the same plot, and controlling the colour to draw the viewer’s
attention to a 24-hour window.

ONEHOUR = 3600
with plt.rc_context({'figure.figsize': (8,3)}):

plt.hist(timeofday/ONEHOUR, bins=np.linspace(0,24,48+1))
plt.hist(timeofday[timeofday>18*ONEHOUR]/ONEHOUR-24, bins=np.linspace(-6,0,12+1), color=(.5,.6,.7))
plt.hist(timeofday[timeofday<6*ONEHOUR]/ONEHOUR+24, bins=np.linspace(24,30,12+1), color=(.5,.6,.7))

plt.ylabel('count')
plt.show()

For the fancy plots that follow, we’ll want to work with dates. In my experience, there is only one way to maintain
your sanity when working with dates and times:

• Store dates and datetimes as Unix timestamps, i.e. as seconds since 1970-01-01 00:00:00.
• If timezones are irrelevant in your dataset, then just pretend everything is all UTC.
• If timezones are relevant in your dataset, then store UTC timestamps, and store an additional column for

timezone offset. Do not be tempted to store local time.

Every language and every library and every database has its own quirks at dealing with datetimes, and it’s not
worth wasting your time on them, except for learning how to convert to a timestamp.
import datetime, pytz

def as_timestamp(s):
t = datetime.datetime.strptime(s[:10], '%Y-%m-%d') # create a naive datetime (with no timezone specified)
u = t.replace(tzinfo=pytz.UTC) # set timezone=UTC, otherwise timestamp() is unpredictable
return int(u.timestamp())

# Create a column with the date, stored as a Unix timestamp
stopsearch['t'] = np.vectorize(as_timestamp)(stopsearch['Date'])
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(d) Clever joins

Let’s analyse in detail the number of stop-and-search events per day. The naive method,
stopsearch.groupby('Date').apply(len), doesn’t make sense: it only aggregates the data there is, so it won’t
produce a row saying ”On date d, there were zero events”. We need to somehow augment this table to include all
possible dates.

Further challenge: this dataset happens to be uneven, with different dates of coverage for different police forces,
as this very terse snippet shows. (You’ll find yourself writing very powerful one-liners for quick looks at the data.
Don’t leave them in your finished code, because no one else will be able to understand them. This one is left in as
an exercise!)
stopsearch.groupby('police_force')['t'].apply(lambda t:
(max(t)-min(t))/(3600*24)).astype(int).reset_index(name='days')[:5]

police_force days
0 avon-and-somerset 912
1 bedfordshire 851
2 btp 852
3 cambridgeshire 731
4 cheshire 853

To simplify the problem, let’s restrict attention to a single police force. We’ll assume that the data covers all
incidents from the earliest date to the latest date present. This assumption should be verified by checking the
dataset’s original documentation — and remember, ”absence of evidence is not evidence of absence”.
# Count the number of stop-and-search per day, grouped by outcome, for Cambridgeshire police force
df = stopsearch.loc[stopsearch['police_force'] == 'cambridgeshire', ['t', 'Outcome']]
df['outcome'] = np.where(df['Outcome'] == 'Nothing found - no further action', 'nothing', 'find')
df = df.groupby(['t', 'outcome']).apply(len).reset_index(name='n')

# Build a new dataframe consisting of all possible combinations of 't' and 'find'
# In database language, this is called an 'outer join', and Pandas forces us to do it on a dummy key.
alldays = pandas.DataFrame({'t': range(np.min(df['t']), np.max(df['t']), 3600*24)})
allfind = pandas.DataFrame({'outcome': ['nothing', 'find']})
alldays['k'] = 0
allfind['k'] = 0
allrows = alldays.merge(allfind, on='k', how='outer')[['t','outcome']]

# Merge the dataframe of counts, and the dataframe of all possible rows.
# The 'n' column will be filled with NaN for dates/outcomes not present in df, so turn them to 0.
df = df.merge(allrows, on=['t','outcome'], how='outer')
df['n'] = np.where(pandas.isnull(df['n']), 0, df['n'])

# Reshape the dataframe, using merge, so it has one row per date, and columns for each outcome.
# (This could also be done by converting a suitable indexed array to a wide-form dataframe.)
x = df.loc[df['outcome'] == 'nothing', ['t','n']]
y = df.loc[df['outcome'] == 'find', ['t','n']]
df = x.merge(y, on='t', suffixes=('_nothing','_find'))

(c) Fancy plots

If you want to save any of these plots, you can right-click on them in the browser and choose ”save as”, to save a
bitmap. To save as PDF, use plt.savefig(filename, transparent=True, bbox_inches='tight', pad_inches=0)
and then (on Azure Notebooks) choose the Data | Download menu option.

How many stops are there each day by the Cambridgeshire police force, and how any of them result in something
being found? The plot below is a grouped plot, showing multiple pieces of data. For each piece, we call the usual
plot command, and we also provide label. This picks a different colour for each piece, and it remembers the
association between colours and labels, so that plt.legend() can draw the right thing.
# Sort the data by date, because otherwise the plotted lines could go back and forth across the plot
df = df.iloc[np.argsort(df['t'])]

# Make real date objects, so that matplotlib knows how to format the axis nicely
dates = np.vectorize(datetime.datetime.utcfromtimestamp)(df['t'])

# A grouped plot
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with plt.rc_context({'figure.figsize': (16,2.5)}):
plt.plot(dates, df['n_find']+df['n_nothing'], label='stop')
plt.plot(dates, df['n_find'], label='find')

plt.legend()
plt.show()

Let’s next look at police activity by day of the week, as measured by average number of stop-and-search events,
and let’s also show the variability as measured by the standard deviation. This involves computing two summaries
of the data, combining them, and plotting the result.

In this code I’m doing my own arithmetic on timestamps to get day of week. I find it’s easier to do a little bit of
arithmetic than to wade through library documentation about datetime utility functions.
# Compute the weekday for each row.
# Timestamp is measured in seconds since Thu 1970-01-01 00:00, so this computation gives me 0=Mon, 1=Tue, ...
df['weekday'] = (df['t']//(24*3600) - 4) % 7
weekday_names = ['Mon','Tue','Wed','Thu','Fri','Sat','Sun']

# The previous plot suggests there's a change in policing after 2016-09,
# so let's restrict attention to that range
df['stops'] = df['n_find'] + df['n_nothing']
t0 = datetime.datetime.strptime('2016-10-01', '%Y-%m-%d').replace(tzinfo=pytz.utc).timestamp()
df2 = df.loc[df['t'] >= t0]

# Compute the two statistics we want to plot: mean and standard deviation of number of stops
x = df2.groupby('weekday')['stops'].apply(np.mean).reset_index(name='mean_stops')
y = df2.groupby('weekday')['stops'].apply(np.std).reset_index(name='sd_stops')
stats = x.merge(y, on='weekday')

# A bar plot with error bars
plt.bar(stats['weekday'], stats['mean_stops'], align='center', facecolor='wheat')
plt.errorbar(stats['weekday'], stats['mean_stops'], yerr=stats['sd_stops'], linestyle='None', ecolor='black')
plt.xticks(range(0,7), weekday_names)
plt.ylabel('num stopped')
plt.show()

Our final plot is called a facet plot or a panel plot or a small multiples plot. According to the plotting guru Edward
Tufte,

At the heart of quantitative reasoning is a single question: Compared to what? Small multiple de-
signs, multivariate and data bountiful, answer directly by visually enforcing comparisons of changes,
of the differences among objects, of the scope of alternatives. For a wide range of problems in data
presentation, small multiples are the best design solution.
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Let’s plot a histogram for each day of the week, showing the distribution of the number of stops made.
with plt.rc_context({'figure.figsize': (8,5), 'figure.subplot.hspace': 0.35}):

# Get a colour map with 7 pretty colours: see https://matplotlib.org/users/colormaps.html
cols = plt.get_cmap('Set2', 7)

fig = plt.figure()
for i, weekday in enumerate(range(7)):

# Create a new facet
ax = fig.add_subplot(3, 3, i+1)

# Plot the histogram. Force the x-axis bins and y-axis range to be identical in each facet
ax.hist(df2.loc[df2['weekday']==weekday, 'stops'], alpha=.6, facecolor=cols(i), bins=range(15))
ax.set_ylim(0,15)

# Some annotations.
# Suppress the tick labels, except on the outside facets.
ax.axvline(x=np.median(df2['stops']), linestyle='dotted', color='.3')
ax.set_title(weekday_names[weekday])
if i < 4: ax.set_xticklabels([])
if (i % 3) != 0: ax.set_yticklabels([])

fig.suptitle('Number of stops')
plt.show()

There are two ways to generate a facet plot.

• When we want facets for one variable, as is the case here for the variable weekday, use ax =
fig.add_subplot(nrows, ncols, i) to add facets one by one. This creates a new facet in position i, from
a nrows * ncols grid arrangement.

• When we want facets for two variables, use fig,ax_array = plt.subplots(nrows,ncols), as in these demos,
to create a full grid of facets in one go.

Previously we have used commands like plt.hist() to draw histograms, but this code uses ax.hist() where ax
is an Axes object. All the matplotlib plt.* plotting routines are actually Axes methods, and the plt.* names are
just aliases. For a plot with a single facet, you can use either style.
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A1. Python language choices

Goal of this notebook: See how Python fits in with the ideas you learnt in IA Concepts in programming
languages and Object oriented programming.

Python development documents are called Python Enhancement Proposals (PEPs). Significant changes in the
language, or in the standard libraries, are discussed in mailing lists and written up for review as a PEP. PEPs
typically suggest several ways a feature might be implemented, and give the reason for choosing one of them. If
consensus is not reached to accept the PEP, then the reasons for its rejection are also documented. They are
fascinating reading if you are interested in programming language design.

The PEPs are a lot of reading, and so this document is a quick summary of certain features of Python and how
they relate to ML and Java.

A1.1 Dynamic typing

Consider the functions

def double_items(xs):
return [x*2 for x in xs]

def goodfunc():
return double_items([1,2,[3,4]]) + double_items("hello world")

def badfunc():
return double_items(10)

Python uses dynamic typing, which means that values are tagged with their types during execution and checked
only then. then we won’t be told of any errors until badfunc() is invoked, even though it’s clear before executing
it that badfunc will fail.

Python programmers are encouraged to use duck typing, which means that you should test values for what they can
do rather than what they’re tagged as. ”If it walks like a duck, and it quacks like a duck, then it’s a duck”. In this
example, double_items(l) iterates through xs and applies *2 to every element, so it should apply to any xs that
supports iteration and whose elements all support *2. These mean different things: iterating over a list returns
its elements while iterating over a string returns its characters; doubling a number is an arithmetical operation,
doubling a string or list repeats it. Python does allow you to test the type of a value with e.g. if isinstance(x,
list): ..., but programmers are encouraged not to do this.

Python’s philosophy is that library designers are providing a service, and programmers are adults. If a library
function uses comparison and addition, and if the end-user programmer invents a new class that supports compari-
son and addition, then why on earth shouldn’t the programmer be allowed to use the library function? (I’ve found
this useful for simulators: I replaced ”real-valued timestamp” with ”rich timestamp class that supports auditing,
listing which events depended on which other events”, and I didn’t have to change a single line of the simulator
body.) Some statically typed languages like Haskell and Scala support this via dynamic type classes, but their
syntax is rather heavy.

To make duck typing useful, Python has a long list of special method names so that you can create custom classes
supporting the same operations as numbers, or as lists, or as dictionaries. For example, if you define a new class
with the method __iter__ then your new class can be iterated over just like a list.

Example: trees

Suppose we want to define a tree whose leaves are integers and whose branches can have an arbitrary number of
children. Actually, in Python, there’s nothing to define: we can just start using it, using a list to denote a branch
node.

x = [1,[[2,4,3],9],[5,[6,7],8]]

To flatten a list like this we can use duck typing: given a node n, try to iterate over its children, and if this fails
then the node must be a leaf so just return [n].

def flatten(n):
try:

return [y for child in n for y in flatten(child)]
except TypeError as e:

return [n]
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flatten(x) # returns [1, 2, 4, 3, 9, 5, 6, 7, 8]

This would work perfectly well for trees containing arbitrary types — unless the end-user programmer puts in
leaves which are themselves iterable, in which case the duck typing test doesn’t work — unless that is the user’s
intent all along, to be able to attach new custom sub-branches...

A solution is to define a custom class for branch nodes, and use isinstance to test each element to see if it’s a
branch node. This is not very different to the ML solution, which is to declare nodes to be of type ”either leaf or
branch” — except that Python would still allow leaves of arbitrary mixed type.

A1.2 None, Maybe, Enumeration types

It’s often handy for functions to be able to return either a value, or a marker that there is no value. For example,
head(list) should return a value unless the list is empty in which case there’s nothing to return. A common
pattern in statically typed languages is to have a datatype that explicitly supports this, for example we’d define
head to return an enumeration datatype with a constructor function, None | Some['a]. This forces everyone who
uses head to check whether or not the answer is None.

In Python, the return type of a function isn’t constrained. It’s a common convention to return None if you have
nothing to return, and a value otherwise, and to trust that the person who called you will do the appropriate
checks.

Enumeration types are also used for general type restriction, e.g. to limit what can be placed in a list. When we
actually do want to achieve this, Python isn’t much help. It does have an add-on library for enumeration types,
but it’s a lot of work for little benefit.

One situation where enumeration types are very useful is when working with categorical values in data Section 3.
When working with data, the levels of the enumeration are decided at runtime (by the contents of the data we
load in), so a compile-time type annotation is no use; but Python’s dynamic typing is also no help in preventing
errors.

A1.3 Functions as values

In Python, as in ML, functions are values. A common pattern is to define functions that return parameterized
functions, e.g.

def percentile(p):
def f(xs):

return xs[int(p*len(xs))]
return f

I can define median = percentile(.5) and lower_quartile = percentile(.25), and then apply median and
lower_quartile to lists. The thing returned by percentile is a function f which also remembers the value
p; this ’function plus variables it needs’ is called a closure. In Python, the outer function is called a decorator.

In Python web servers, it’s common to define decorators for purposes like user authentication, cross-site scripting
checks, etc.

A1.4 Lists, lazy lists and generators

Python has lists and lazy lists, which it calls generators. The simplest way to define a generator is like a list
comprehension, but using ($\cdot$) rather than [$\cdot$]. Consider the following code:

def f(x):
if x == 5:

raise Exception("Bad value!")
else:

return x + 1

xs = range(10)
ys = (f(x) for x in xs) # doesn't raise exception
zs = [f(x) for x in xs] # raises exception
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This code raises an exception on the last line. The preceding line doesn’t, because ys is a lazy list, not evaluated
until you need it. We could for example pull out the first three values of ys by

[next(ys) for _ in range(3)]

and no exception would be raised because we haven’t hit the bad value. (Here, _ is a variable name, like any other.
It’s a convention to use _ for loop variables that you don’t use for anything.)

Python also has a simple syntax for defining infinite lazy lists, using the yield. For example,

def fib():
a,b = 1,1
while True:

yield a
a,b = b, a+b

f = fib()
[next(f) for _ in range(20)] # produces the first 20 Fibonnaci numbers

This is like a closure, but richer: the f object remembers not only the variables a and b in its scope, but also the
point where it should resume when next next(f) is called.

A1.5 Object-oriented programming

Python is an object-oriented programming language. Every value is an object. You can see the class of an object
by calling x.__class__. For example,

x = 10
x.__class__ # reports int
dir(x) # gives a list of x's methods and attributes

It supports inheritance and multiple inheritance, and static methods, and class variables, and so on. It doesn’t
support interfaces, because they don’t make sense in a duck typing language.

Here’s a quick look at a Python object, and at how it might be used for the flatten function earlier.

class Branch(object):
def __init__(self, children):

self.children = children

def flatten(n):
if isinstance(n, Branch):

return [y for child in n.children for y in flatten(child)]
else:

return [n]

x = Branch([10,Branch([3,2]),"hello"])
flatten(x)

y = Branch([])
y.my_label = "added an attribute"

Every method takes as its first argument a variable referring to the current object, this in Java.

The last two lines are surprising. You can ”monkey patch” an object, after it has been created, to change its
attributes or give it new attributes. Like so many language features in Python, this is sometimes tremendously
handy, and sometimes the source of infuriating bugs.

Python doesn’t support private and protected access modifiers, except by convention. The convention is that
attributes and functions whose name beings with an underscore are considered private, and may be changed in
future versions of the library.
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A2. Vectorized thinking

Goal of this notebook: Understand some more of the systems context behind vectorized thinking.

Vectorized thinking is great for conciseness. Surely no one would prefer

assert len(xs) == len(ys)
[xs[i] + ys[i] for i in range(len(xs))]

when they can just write

xs + ys

But vectorized coding is perhaps more important from the point of view of performance. Suppose xs and ys are
both very large vectors. With list comprehension, it’s almost impossible for the compiler to figure out that the
operation can be parallelized, and each core of a multicore machine could be working on a chunk of the data.

Here’s another example. Suppose we have a vector xs where each entry is the contents of a web page, and the
entire vector is 100 TB and it’s sharded across machines, and we want to compute

m = -inf
for x in xs:

m = max(m, f(x))

where f is some scoring function that is slow to evaluate. Again, it’s hard for a compiler to see how to achieve
parallelism when the function is written out as an explicit iteration. (Maybe not hard in this case, but hard in
the general case!) But it’s easy to see how the computation could be distributed: tell each machine in the cluster
to work on the fragment of data it can reach and compute the maximum over its fragment, then assemble the
maximums from each machine. If we write the computation abstractly, e.g.

reduce(pairwise_max, -inf, map(f, xs))

then the compiler can figure out how to distribute it.

Vectorized thinking means avoiding for loops and instead writing our computations in a way that shows our
intention more clearly, to give the compiler a chance to figure out what can be distributed and parallelized.
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A3. Data import and cleanup

In my experience, around 75% of the time you spend working with data will be fighting to import it and clean
it up. For the most part this is just general-purpose programming, but there are a few library routines that will
save you from reinventing the wheel.

• A3.0 Preamble
• A3.1 Reading from a csv file
• A3.2 Reading from a url
• A3.3 Parsing a log file with regular expressions
• A3.4 Reading JSON from a web service
• A3.5 Scraping a website with xpath
• A3.6 Querying an SQL database

Treat this section as a collection of recipes and pointers to useful library routines. If you find yourself needing
them, you should read the recipe, try it out, then look online for more information about the library functions it
suggests.

A3.0 Preamble

# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import math, random
import numpy as np
import matplotlib.pyplot as plt
import pandas
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline

A3.1 Reading from a csv file

When your data is a very simple comma-separated value (CSV) file then it’s very easy to import. A CSV file looks
like this: a header line, then one line per row of the data frame, values separated by commas.

"Sepal.Length","Sepal.Width","Petal.Length","Petal.Width","Species"
5.1,3.5,1.4,0.2,"setosa"
4.9,3,1.4,0.2,"setosa"
4.7,3.2,1.3,0.2,"setosa"
4.6,3.1,1.5,0.2,"setosa"
5,3.6,1.4,0.2,"setosa"

Here is code to import a simple CSV file.
with open('res/iris.csv') as f:

df = pandas.read_csv(f)

The with syntax is useful for files and similar objects which need to be closed/released after we’ve finished with
them, to avoid memory leaks. It’s equivalent to calling f=open('data/iris.csv'), then running the other com-
mands, then calling f.close().

If your file is nearly a CSV but has some quirks such as comments or a missing header row, experiment with
the options in pandas.read_csv or pandas.read_table. For extreme quirks you may need to use the raw Python
csv.reader.

A3.2 Reading from a URL or other file-like object

You can use the same pandas.read_csv function to read any file-like thing, such as a files retrieved over the web.
import urllib.request # standard library for web requests
my_url = "https://teachingfiles.blob.core.windows.net/scicomp/iris.csv"
with urllib.request.urlopen(my_url) as f:

df = pandas.read_csv(f)

You can also read from a string as if it were a file using io.StringIO. This is sometimes handy for debugging.
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import io
f = io.StringIO('''
x,y
10,3
2,5
''')
df = pandas.read_csv(f)

A3.3 Parsing a text log file

A typical line from a web server log might look like this

207.46.13.169 - - [27/Aug/2017:06:52:11 +0000] "GET /marcus/essay/st&h2.html HTTP/1.1" 200 3881 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/9537.53 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"

where (according to the Apache web server documentation) the pieces are

• 207.46.13.169 The IP address that made the request
• - The identity of the client; - means not available
• - The userid of the logged-in user who made the request; - means not available
• [27/Aug/2017:06:52:11 +0000] The time the request was received
• "GET /marcus/essay/st&h2.html HTTP/1.1" The type of request, what was requested, and the connection

type
• 200 The http status code (200 means OK)
• 3881 The size of the object returned to the client, in bytes
• - The referrer URL; - means not available
• "Mozilla/5.0 (...)" The browser type. The substring bingbot here tells us that the request comes from

Microsoft Bing’s web crawler.

To extract these pieces from a single line of the log file, the best tool is regular expressions, a mini-language for
string matching that is common across many programming languages. The syntax is terse and takes a lot of
practice. I like to start with a small string pattern and incrementally build it up, testing as I go.
import re # standard Python module for regular expressions
s = """
207.46.13.169 - - [27/Aug/2017:06:52:11 +0000] "GET /marcus/essay/st&h2.html HTTP/1.1"
200 3881 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X)
AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/9537.53
(compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"
"""

# First attempt: match the first two items in the log line.
# If my pattern is right, re.match returns an object.
# If my pattern is wrong, re.match returns None.
pattern_test = r'\s*(\S+)\s*(\S+)'
re.match(pattern_test, s)

<_sre.SRE_Match object; span=(0, 16), match='\n207.46.13.169 -'>

# This is the full pattern I built up to. Python lets us add verbose comments
# to the pattern, which is handy for remembering what your code does when you look
# at it the next morning.
pattern = r'''(?x) # flag saying that this pattern has comments
\s* # any whitespace at the start of the string
(?P<ip>\S+) # one or more non-space characters: the IP address
\s+ # one or more spaces
(?P<client>\S+) # the client identity
\s+
(?P<user>\S+) # the userid
\s+
\[(?P<t>[^\]]*)\] # [, then any number of not-] characters, then ]: the timestamp
\s+
"(?P<req>[^"]*)" # ", then any number of not-" characters, then ": the request string
\s+
(?P<status>\d+) # one or more numerical digits: the http status code
\s+
(?P<size>\d+) # one or more numerical digits: the size
\s+
"(?P<ref>[^"]*)" # the referrer URL
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\s+
"(?P<ua>[^"]*)" # the user agent i.e. browser type
'''
m = re.match(pattern, s)
m.groupdict() # returns a dictionary of all the named sub-patterns

{'client': '-',
'ip': '207.46.13.169',
'ref': '-',
'req': 'GET /marcus/essay/st&h2.html HTTP/1.1',
'size': '3881',
'status': '200',
't': '27/Aug/2017:06:52:11 +0000',
'ua': 'Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X)\nAppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/9537.53\n(compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)',
'user': '-'}

Exercise. Why not use s.split(’ ’)?

How do we extract the fields from a full log file? The standard Python code is

with open(myfile) as f:
for line in f:

m = re.match(pattern, line)
# store the fields from m.groups() or m.groupdict() somewhere appropriate

Alternatively, numpy has a handy shortcut for reading in an entire file and splitting it via a regular expression:
# Split the file into an array, one row per line, one column per field in the pattern
df = np.fromregex('res/webaccess_short.log', pattern, dtype=np.unicode_)
# Make a dictionary out of the columns, according to the named fields in the pattern
df = pandas.DataFrame({v: df[:,i-1] for v,i in re.compile(pattern).groupindex.items()})

df[:4]

client ip ref \
0 - 207.46.13.169 -
1 - 31.218.127.114 https://www.google.ae/
2 - 31.218.127.114 http://www.wischik.com/damon/recipe/oventemper…
3 - 31.218.127.114 http://www.wischik.com/damon/recipe/oventemper…

req size status \
0 GET /marcus/essay/st&h2.html HTTP/1.1 3881 200
1 GET /damon/recipe/oventemperatures.html HTTP/1.1 879 200
2 GET /damon/recipe/recipe.css HTTP/1.1 1118 200
3 GET /favicon.ico HTTP/1.1 503 404

t \
0 27/Aug/2017:06:52:11 +0000
1 27/Aug/2017:06:52:43 +0000
2 27/Aug/2017:06:52:43 +0000
3 27/Aug/2017:06:52:44 +0000

ua user
0 Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Ma… -
1 Mozilla/5.0 (Linux; Android 4.3; 5050X Build/J… -
2 Mozilla/5.0 (Linux; Android 4.3; 5050X Build/J… -
3 Mozilla/5.0 (Linux; Android 4.3; 5050X Build/J… -

A3.4 Reading json from a web data service

More and more forward-thinking companies and government services make data available by simple web requests.
Here is an example, importing river levels from the UK’s real-time flood monitoring API.

The first step is to import the Python module for making web requests. When I’m developing data code I like
to build it up in small steps, which means lots of repeated requests, so I also like to use another Python module
which caches responses. This means I don’t hammer the service unnecessarily.
import requests, requests_cache
requests_cache.install_cache('floodsystem', backend='memory')

The flood monitoring API documentation tells us the URL for fetching a list of all stations, {root}/id/stations.
Let’s try it.

A3. Data import and cleanup 3

http://environment.data.gov.uk/flood-monitoring/doc/reference
http://environment.data.gov.uk/flood-monitoring/doc/reference


# Make the request. This should print out <Response [200]>, meaning successfully retrieved
stations_resp = requests.get('http://environment.data.gov.uk/flood-monitoring/id/stations')
stations_resp

<Response [200]>

Now let’s look at the body of the response. It’s likely to be very long, so we’ll only print out the first 300 characters.
stations_resp.text[:300]

'{ \n "@context" : "http://environment.data.gov.uk/flood-monitoring/meta/context.jsonld" ,\n "meta" : { \n "publisher" : "Environment Agency" ,\n "licence" : "http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" ,\n "documentation" : "http://environment.data.gov.uk/flood-m'

It looks like JSON, ”JavaScript Object Notation”, a common format for web data services. It’s easy to turn it
it into Python dictionaries and lists, and to explore what it contains. (Alternatively, just read the web service
documentation, if you trust it!)
x = stations_resp.json()
print(x.__class__) # The top-level response is a dictionary
print(x.keys()) # What are its keys? 'items' sounds promising.
print(x['items'].__class__) # 'items' is a list,
print(len(x['items'])) # with 4363 elements.

stations = stations_resp.json()['items'] # This is what we're really after
stations[0] # Look at a single sensor

<class 'dict'>
dict_keys(['@context', 'meta', 'items'])
<class 'list'>
4346

{'@id': 'http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH',
'RLOIid': '7041',
'catchmentName': 'Cotswolds',
'dateOpened': '1994-01-01',
'easting': 417990,
'label': 'Bourton Dickler',
'lat': 51.874767,
'long': -1.740083,
'measures': [{'@id': 'http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-level-downstage-i-15_min-mASD',

'parameter': 'level',
'parameterName': 'Water Level',
'period': 900,
'qualifier': 'Downstream Stage',
'unitName': 'mASD'},
{'@id': 'http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-level-stage-i-15_min-mASD',
'parameter': 'level',
'parameterName': 'Water Level',
'period': 900,
'qualifier': 'Stage',
'unitName': 'mASD'}],

'northing': 219610,
'notation': '1029TH',
'riverName': 'Dikler',
'stageScale': 'http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH/stageScale',
'stationReference': '1029TH',
'status': 'http://environment.data.gov.uk/flood-monitoring/def/core/statusActive',
'town': 'Little Rissington',
'wiskiID': '1029TH'}

Data from web services is often patchy and inconsistent, so your code for processing it should be full of error
handling. For example,

rivers = [s['riverName'] for s in stations]

will fail because riverName isn’t present for all stations. You might use one of these instead:

rivers = [s.get('riverName', None) for s in stations]
rivers = [s['riverName'] for s in stations if 'riverName' in s]

Here’s how we might turn the data into a data frame:
df = pandas.DataFrame({

'label': np.array([s['label'] for s in stations]),
'riverName': np.array([s.get('riverName',None) for s in stations]),
'town': np.array([s.get('town',None) for s in stations])

})
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# Each station has zero or more measures. Pick out the first 'water level' measure at each.
# The field measure['@id'] is the url to use to get water level readings.
measures = [[m for m in s.get('measures',{}) if m['parameter']=='level'] for s in stations]
df['url'] = np.array([ms[0]['@id'] if len(ms)>0 else None for ms in measures])

A3.5 Scraping a website with xpath

There are fascinating stories to be discovered from public data, and sometimes you have to work to scrape it from
web pages. Here’s an acount by a BBC data journalist. We’ll work with a very simple example: extracting results
of the Oxford / Cambridge boat race from the Wikipedia table.

I recommend using XPath queries from the lxml module. XPath is a powerful mini-language for extracting data
from hierarchical documents, with wide support across many programming languages — think of it as regular
expressions but for html rather than plain text. If you want to scrape websites then it’s worth finding a tutorial
and learning XPath. For this course, we’ll just see how to use XPath in Python.

The first step is to install lxml, which is not included with Python.
!pip install lxml

Now we’ll fetch the web page and parse the contents. Most web pages are badly-formatted html (sections not
properly closed, etc.), and lxml.html.fromstring makes a reasonable attempt to make sense of it.
import requests
import lxml.html
boatrace_url = 'https://en.wikipedia.org/wiki/List_of_The_Boat_Race_results'
resp = requests.get(boatrace_url)
doc = lxml.html.fromstring(resp.content)

This gives us doc, the root <html> element, which we can inspect.
print(doc.tag) # the type of element
print(len(doc)) # the number of children
print([n.tag for n in doc]) # tags of its children, <head> and <body>
print(doc.attrib) # get the attributes, e.g. <html class="client-nojs" lang="en" dir="ltr">
print(doc.text, doc.tail) # any text directly under in this element

html
2
['head', 'body']
{'class': 'client-nojs', 'lang': 'en', 'dir': 'ltr'}

None

We want to pull out a particular element from the document, namely the table with boat race results, so we
need to work out how to refer to it in XPath. The Chrome webbrowser has a handy tool to help with this. Go
to the page you’re interested in, and click on View | Developer | Developer Tools. Click on the element-selector
button at the top left: Go back to the web page, and click on a piece close to what you want to select. I clicked
on the top left cell of the table: Go back to the developer tools window, and navigate to the exact element you
want. Here, we want the table. Right-click and choose Copy | Copy XPath. It gave me the XPath location
"//*[@id="mw-content-text"]/div/table[2]". Now we can extract the data.
# Pick out the table element.
# (XPath queries return lists, but I only want one item, hence the [0].)
table = doc.xpath('//*[@id="mw-content-text"]/div/table[2]')[0]

# Get a list of all rows i.e. <tr> elements inside the table.
# Print one, to check things look OK.
rows = table.xpath('.//tr')
print(lxml.etree.tostring(rows[1], encoding='unicode'))

# Extract the timestamp and winner columns.
# The timestamp is in the second child, in a <span> element with class "sortkey".
# The winner is in the third child.
df = {'t': [row[1].xpath('.//span[contains(@class, "sortkey")]')[0].text for row in rows[1:]],

'winner': [row[2].text for row in rows[1:]]}
df = pandas.DataFrame(df)
df[:5]
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<tr>
<td align="center"><a href="/wiki/The_Boat_Race_1829" title="The Boat Race 1829">1</a></td>
<td align="center"><span class="sortkey" style="display:none;speak:none">000000001829-06-10-0000</span><span
style="white-space:nowrap">10 June 1829</span> <img alt="dagger"
src="//upload.wikimedia.org/wikipedia/commons/3/37/Dagger-14-plain.png" width="9" height="14" data-file-
width="9" data-file-height="14"/><br/>
<span style="color:red;font-size:85%">1830�1835 no race</span></td>
<td style="background:#004685; color:#FFFFFF" align="center">Oxford</td>
<td align="center">14:03</td>
<td align="center"><span style="display:none">999</span>Easily</td>
<td align="center">1</td>
<td align="center">0</td>
</tr>

t winner
0 000000001829-06-10-0000 Oxford
1 000000001836-06-17-0000 Cambridge
2 000000001839-04-03-0000 Cambridge
3 000000001840-04-15-0000 Cambridge
4 000000001841-04-14-0000 Cambridge

You should consider the ethics of your web scraping. Here are some thoughts: from Sophie Chou at the MIT
Media Lab, and the data journalist Näel Shiab.

A3.6 Querying an SQL database

Once your data is in an SQL database, access is easy. Here’s an example with Postgresql, a dialect of SQL. I don’t
like to include secret credentials in an Azure notebook. Instead, I store the credentials in a file, and I make sure
the file isn’t cloned in a public repository. The file looks something like

{"user": "***", "password": "***", "host": "***", "dbname": "***"}

so that Python can load it in as a simple dictionary. The syntax connect(**creds) passes each item in the
dictionary as a named argument, i.e. connect(user="***", ...).
import psycopg2 # module for connecting to a Postgresql database
import json # standard module for reading json files

creds = json.load(open('res/secret_creds.json'))
conn = psycopg2.connect(**creds)

You can run arbitrary SQL queries. Pass in parameters with the %(name)s quoting mechanism, to keep yourself
safe from SQL injection attacks.
cmd = '''
SELECT *
FROM flood_stations AS s JOIN flood_measures AS m ON (m.station_uri = s.uri)
WHERE river = %(river)s OR town = %(town)s
LIMIT 3
'''
pandas.read_sql(cmd, conn, params={'river': 'River Cam', 'town': 'Cambridge'})

index uri \
0 345 http://environment.data.gov.uk/flood-monitorin…
1 800 http://environment.data.gov.uk/flood-monitorin…
2 1272 http://environment.data.gov.uk/flood-monitorin…

label id catchment \
0 Great Chesterford E21778 Cam and Ely Ouse (Including South Level)
1 Weston Bampfylde 52113 Parrett, Brue and West Somerset Streams
2 Cambridge Baits Bite E60101 Cam and Ely Ouse (Including South Level)

river town lat lng index measure_id \
0 River Cam Great Chesterford 52.061730 0.194279 397 398
1 River Cam Weston Bampfylde 51.023159 -2.565568 918 919
2 River Cam Milton 52.236542 0.176925 1454 1455

uri \
0 http://environment.data.gov.uk/flood-monitorin…
1 http://environment.data.gov.uk/flood-monitorin…
2 http://environment.data.gov.uk/flood-monitorin…
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station_uri qualifier parameter \
0 http://environment.data.gov.uk/flood-monitorin… Stage Water Level
1 http://environment.data.gov.uk/flood-monitorin… Stage Water Level
2 http://environment.data.gov.uk/flood-monitorin… Stage Water Level

period unit valuetype low high
0 900.0 m instantaneous 0.109 0.333
1 900.0 m instantaneous 0.026 0.600
2 900.0 mASD instantaneous 0.218 0.294
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Assignment 2. Econophysics simulator

Economic inequality is one of the defining social issues of our age. Yet we have a poor grasp of the scale of
inequality, as described in Scientific American and nicely shown in this video:

How does inequality arise? Is it an inevitable outcome of liberal economics, and if so how can it be mitigated
by economic policy? These questions have been studied by economists and more recently by physicists. In this
assignment you will investigate a simple ”econophysics” model of inequality. The notes for §2 suggest ways to take
the investigation further.

About this assignment: This assignment tests your vectorized thinking. You will be asked to run simulations
on a population of hundreds of thousands of individuals, over many timesteps. Your code must use NumPy
vectorized operations rather than iterating over the population. You may use Python iteration over timesteps.
You can organize your code however you like. Please create a new notebook for your answers to this assignment.

Part A: kinetic exchange model

This section is worth 1 mark. Check your answers as described in §0.3 using section='assignment2a'.

Here is a simple model. There are N individuals in the population, each with an initial wealth of £1. Every
timestep, we randomly group them into N/2 pairs. (Assume N is even.) For every pair, we simulate an economic
exchange, as follows. Let the two paired individuals have wealth v and w, and update their wealth according to

vnew = R(v + w), wnew = (1 − R)(v + w)

where R is a random number in [0, 1], chosen independently for every pair and at every timestep. This model is
loosely inspired by the physics of gases, in which two gas molecules exchange a random amount of energy whenever
they collide.

We can measure inequality with the Gini coefficient,

G = 2
∑N

i=1 i w(i)

N ∑i w(i)
−

(
1 +

1
N

)
where w(1) is the smallest value, w(2) the second smallest etc. If everyone has the same wealth then G = 0; if one
person has all the wealth then G = 1 − 1/N.

Question 1. The model needs us to randomly group the population into N/2 pairs. We can do this by randomly
permuting the vector [0, ..., N − 1], letting the vector m1 consist of the first N/2 integers and m2 consist of the rest,
and interpreting it as ”m1[i] is paired with m2[i]”.

Write a function pairs(N) that returns a tuple (m1,m2) where m1 and m2 are both vectors of length N/2 as
described above. For example, if you run pairs(6), you might get the output

(array[(3, 0, 1]), array([2, 4, 5]))

# Submitting your answer:
q = GRADER.fetch_question('q1')
m1,m2 = pairs(q.n)
ans = {'n': np.unique(np.concatenate([m1,m2])), 's': np.std(np.abs(m1-m2))}
GRADER.submit_answer(q, ans)

Question 2. Write a function kinetic_exchange(v,w) which takes two wealth vectors v and w, each of length
N/2, and returns a tuple (vnew, wnew) with two new vectors, according to the kinetic exchange model.

# Submitting your answer:
q = GRADER.fetch_question('q2')
v,w = np.linspace(1,5,q.n), np.linspace(1,2,q.n)**q.p
vnew,wnew = kinetic_exchange(v,w)
ans = {'m1': np.mean(vnew), 's2': np.std(wnew)}
GRADER.submit_answer(q, ans)

Question 3. Write a function gini(w) which takes a vector w and returns the Gini coefficient.

# Submitting your answer:
q = GRADER.fetch_question('q3')
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w = np.linspace(0,1,q.n)**q.p
g = gini(w)
GRADER.submit_answer(q, {'g': g})

Question 4. Write a function sim(N, T) which runs the kinetic exchange model on a population of N individuals
for T timesteps. It should return a pair (w, gs) where w is the wealth vector after T timesteps, and gs is a length
T vector where gs[i] is the Gini coefficient at timestep i.

# Submitting your answer:
q = GRADER.fetch_question('q4')
w,gs = sim(q.n, q.t)
ans = {'gm': np.mean(gs[(q.t/2):]), 'gs': np.std(gs[(q.t/2):]), 'ws': np.std(w)}
GRADER.submit_answer(q, ans)

Question 5. Simulate a population of 500,000 over 30 iterations. Plot the Gini coefficient as a function of
timestep. (You don’t have to submit your plot, but it may be assessed in the ticking session.) Your plot should

look something like this:

Part B: economic mobility

This section is worth 1 mark. Check your answers as described in §0.3 using section='assignment2b'.

Some degree of inequality might be acceptable if economic mobility were high, i.e. if everyone had similar chances
of reaching either end of the wealth distribution. Economic mobility is often measured by splitting the population
into five equal brackets, and measuring the chance of moving between brackets. From the Wikipedia article on
economic mobility:

in terms of relative mobility a report stated: ”contrary to American beliefs about equality of opportu-
nity, a child’s economic position is heavily influenced by that of his or her parents.” 42% of children
born to parents in the bottom fifth of the income distribution (”quintile”) remain in the bottom, while
39% born to parents in the top fifth remain at the top.

Let’s measure economic mobility by recording the wealth distribution at one timepoint, and again some number of
timesteps later, splitting the two distributions into quintiles, and counting what fraction of the population moved
by more than one quintile from beginning to end. (In each timestep a median individual might find their wealth
increasing or decreasing by around 50%, so one timestep corresponds roughly to several years of human life.) For
example, if we have a population of 5000 and we draw up a matrix A where Aij is the number of people who start
in quintile i and end up in quintile j, we might get

A =


344 313 243 100 0
266 261 302 167 4
212 260 225 272 31
147 143 183 331 196
31 23 47 130 769
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(A quick check: the row sums and column sums are all 1000.) The number who moved by more than one quintile
is 1148, which is 23% of the population.

Question 6. In a perfectly mobile economy, where everyone has equal chance of reaching any quintile, what
fraction of people are expected to move by more than one quintile?

q = GRADER.fetch_question('q6')
GRADER.submit_answer(q, your_answer)

Question 7. Write a function mobility(v,w) that returns the proportion of people who moved by more than one
quintile, where v[i] and w[i] measure respectively the wealth of individual i at the beginning and end of a time
period. Hint: look up np.percentile and np.digitize.

# Submitting your answer:
q = GRADER.fetch_question('q7')
v,w = np.arange(q.n)**q.a, np.arange(q.n)**q.a * np.random.random(q.n)
GRADER.submit_answer(q, mobility(v,w))

Question 8. Simulate the kinetic exchange model long enough for it to stabilize, and measure the wealth vector
w0. Run it t timesteps further, and find the wealth vector v, and compute mobility(w0,v). It’s up to you to decide
how to judge stabilization; you don’t have to explain your method but you do have to submit a correct answer.

# Submitting your answer:
q = GRADER.fetch_question('q8')
# For a population size q.n, measure mobility over q.t timesteps
GRADER.submit_answer(q, your_answer)

Question 9. Compute the social mobility for a population of 500,000 as in Question 8, over a se-
quence of timesteps. Plot a graph of economic mobility as a function of time. (You don’t have to sub-
mit your plot, but it may be assessed in the ticking session.) Your plot should look something like this:
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Assignment 3. Analysis of flood data

Jesus Green lock

This assignment asks you to analyse data provided by the UK Environment Agency concerning flooding. The
agency offers an API for near real-time data covering: * flood warnings and flood alerts * flood areas which to
which warnings or alerts apply * measurements of water levels and flows * information on the monitoring stations
providing those measurements

In this assignment we will be working with historical data of water level measurements, at several monitoring
stations in Cambridge and on the Cam. The dataset is available as a CSV file at https://teachingfiles.blob.
core.windows.net/scicomp/flood.csv. If you go home over Christmas and are worried about flooding, and want
to extend these analyses to your home area, see A3. Data import and cleanup for details of how to fetch data
from a web API.

Image by N. Chadwick.

Goal of the assignment. This assignment tests your skill at manipulating dataframes and indexed arrays, and
your flair at plotting data. You should use Pandas and numpy operations for data manipulation, rather than for
loops, wherever possible. You can organize your code however you like. Please create a new notebook for your
answers to this assignment.

Part A

This section is worth 1 mark. Check your answers as described in §0.3 using section='assignment3a'.

Question 1. Import the CSV file and print out a few lines, choosing the lines at random using np.random.choice.
The file mistakenly includes the village Cam, near Bristol. Remove these rows, and store what’s as the variable
flood. How many rows are left?

# Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q1'), num_rows)

Question 2. Complete this table of the number of entries in this dataset for each town and river.

Bin Brook
River Cam

# Submit your answer, as an unstacked indexed array:
GRADER.submit_answer(GRADER.fetch_question('q2'), your_answer.as_matrix())

Question 3. Each measurement station has a unique measure_id and label. Complete this table of the number
of measurement stations for each town and river. Use only the Pandas operations for split-apply-combine, don’t
use any numpy operations or Python for loops or list comprehensions.

Bin Brook
River Cam

# Submit your answer. Let your_answer be an unstacked indexed array.
GRADER.submit_answer(GRADER.fetch_question('q3'), your_answer.as_matrix())

Question 4. Each measurement station has low and high reference levels, in columns low and high. In this
dataset, the reference levels are stored for every measurement, but we can verify that every measure_id has a
unique pair (low,high) with
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assert all(flood.groupby(['measure_id','low','high']).apply(len).groupby('measure_id').apply(len) == 1), "Reference levels non-constant"

Add a column norm_value, by rescaling value linearly so that value=low correponds to norm_value=0 and
value=high corresponds to norm_value=1. Use np.nanpercentile to find the tercile points, the two values that
split the entire norm_value column into three roughly equal parts.

# Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q4'), [tercile1, tercile2])

Question 5. Complete the following dataframe, listing the number of observations in each tercile and the total
number of observations per station.

label
Bin Brook
Bin Brook
Bin Brook
Cambridge

# Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q5'), your_dataframe)

Question 6. Complete this dataframe listing the fraction of observations in each tercile per station:

label
Bin Brook
Cambridge

# Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q6'), your_dataframe)

Question 7. Fill in the rest of this indexed array, giving the low and high values for each measurement station:

label
Bin Brook

Cambridge

# Submit your answer. Let your_answer be an indexed array.
GRADER.submit_answer(GRADER.fetch_question('q6'), your_answer.reset_index())

Part B

This section is worth 1 mark. There is no automated testing of your answers here, but your code may be assessed
in the ticking session.

You should pay attention to axis ranges, axis labelling, colour schemes, etc. in reproducing the plot, though you
shouldn’t aim to be pixel-perfect. You will need to spend time searching how to control matplotlib plots.
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Question 8. Reproduce this plot:

Question 9. Reproduce this plot:

The light shaded area shows the range from low to high for each station. The dark shaded area shows the inter-
tercile range, low+tercile1*(high-low) to low+tercile2*(high-low) where tercile1 and tercile2 are your
answers to Question 4. They can be plotted with ax.axhspan. Here are some code snippets for working with
datetimes that may be helpful.

# Create a column with datetime objects
import datetime, pytz
def as_datetime(s): return datetime.datetime.strptime(s, '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=pytz.UTC)
flood['datetime'] = np.vectorize(as_datetime)(flood['t'])

# Date-axis control, taken from http://matplotlib.org/examples/api/date_demo.html
# Given a matplotlib axis, print out date labels nicely
ax.xaxis.set_major_locator(matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MO, tz=pytz.UTC))
ax.xaxis.set_minor_locator(matplotlib.dates.DayLocator(tz=pytz.UTC))
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%a %d %b'))
# then, at the end,
fig.autofmt_xdate(bottom=0.2, rotation=-30, ha='left')
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