

Interpretability in Machine Learning

Tameem Adel

Machine Learning Group University of Cambridge, UK

February 22, 2018

ML algorithms optimized:

- Not only for task performance, e.g. accuracy.
- But also other criteria, e.g. safety, fairness, providing the right to explanation.
- There are often trade-offs among these goals.

However,

- Accuracy can be quantified.
- Not precisely the case for the other criteria.

- Interpret means to explain or to present in understandable terms.
- In the ML context: The ability to explain or to present in understandable terms to humans.
- What constitutes an explanation? What makes some explanations better than others? How are explanations generated? When are explanations sought?
- Automatic ways to generate and, to some extent, evaluate interpretability.

Task-related:

- Global interpretability: A general understanding of how the system is working as a whole, and of the patterns present in the data.
- Local interpretability: Providing an explanation of a particular prediction or decision.

Method-related (what are the basic units of the explanation?):

- Raw features.
- Derived features that have some semantic meaning to the expert.
- Prototypes.

The nature of the data/tasks should match the type of the explanation.

Visualizing Deep Neural Network Decisions: Prediction Difference Analysis

Zintgraf, Cohen, Adel, Welling, ICLR 2017

• Visualize the response of a deep neural network to a specific input.

• For an individual classifier prediction, assign each feature *a relevance* value reflecting its contribution towards or against the predicted class.

- Looking under the hood: explaining why a decision was made.
- Can help to understand strengths and limitations of a model, help to improve it [wolves/huskies based on presence/absence of snow].

- Important for liability: why does the algorithm decide this patient has Alzheimer?
- Can lead to new insights and theories in poorly understood domains.

- Relevance of a feature x_i can be estimated by measuring how the prediction changes if the feature is *unknown*.
- The difference between p(c|x) and p(c|x_{\i}), where x_{\i} denotes the set of all input features except x_i.
- But how would a classifier recognize a feature as unknown?
 - Label the feature as unknown.
 - Retrain the classifier with the feature left out.
 - Marginalize the feature.

$$p(c|\mathbf{x}_{\setminus i}) = \sum_{x_i} p(x_i|\mathbf{x}_{\setminus i}) p(c|\mathbf{x}_{\setminus i}, x_i)$$
(1)

Assume x_i is independent of $\mathbf{x}_{\setminus i}$

$$p(c|\mathbf{x}_{i}) \approx \sum_{x_i} p(x_i) p(c|\mathbf{x}_{i}, x_i)$$
(2)

Compare $p(c|\mathbf{x}_{\setminus i})$ to $p(c|\mathbf{x})$:

$$\mathsf{odds}(c|\mathbf{x}) = rac{p(c|\mathbf{x})}{(1-p(c|\mathbf{x}))}$$

$$\mathsf{WE}_{i}(c|\mathbf{x}) = \log_{2}\left(\mathsf{odds}(c|\mathbf{x})\right) - \log_{2}\left(\mathsf{odds}(c|\mathbf{x}_{\setminus i})\right),\tag{3}$$

- A large prediction difference \rightarrow the feature contributed substantially to the classification.
- \bullet A small prediction difference \rightarrow the feature was not important for the decision.
- A positive value $WE_i \rightarrow$ the feature has contributed evidence for the class of interest.
- A negative value $WE_i \rightarrow$ the feature displays evidence *against* the class.

- A pixel depends most strongly on a small neighbourhood around it.
- The conditional of a pixel given its neighbourhood does not depend on the position of the pixel in the image.

$$p(x_i|\mathbf{x}_{\setminus i}) \approx p(x_i|\hat{\mathbf{x}}_{\setminus i})$$
 (4)

A neural network is relatively robust to the marginalization of just one feature.

- Remove several features at once
- Connected pixels.
- patches of size $k \times k$.

Conditional sampling

- Red: For.
- Blue: Against.

Multivariate analysis

15 / 29

• A method for visualizing deep neural networks by using a more powerful conditional, multivariate model.

• The visualization method shows which pixels of a specific input image are evidence for or against a node in the network.

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel, NIPS 2016

Motivation

How can we achieve unsupervised learning of disentangled representation?

In general, learned representation is entangled, i.e. encoded in a data space in a complicated manner

When a representation is **disentangled**, it would be more interpretable and easier to apply to tasks

Generative Adversarial Nets(GANs)

Generative model trained by competition between two neural nets:

- ✓ Generator x = G(z), $z \sim p_z(Z)$ $p_z(Z)$: an arbitrary noise distribution
- ✓ Discriminator $D(x) \in [0,1]$: probability that x is sampled from the data dist. $p_{data}(X)$ rather than generated by the generator G(z)

Optimization problem to solve:

 $\min_{G} \max_{D} V_{\text{GAN}}(G, D) \text{, where}$ $V_{\text{GAN}}(G, D) \equiv E_{x \sim p_{\text{data}}(X)} [\ln D(x)] + E_{z \sim p_{z}(Z)} \left[\ln \left(1 - D(G(z)) \right) \right]$

Problems with GANs

From the perspective of representation learning: \checkmark No restrictions on how G(z) uses z

- z can be used in a highly entangled way
- Each dimension of z does not represent any salient feature of the training data

Proposed Resolution: InfoGAN -Maximizing Mutual Information -

Observation in conventional GANs:

a generated date x does not have much information on the noise z from which x is generated because of heavily entangled use of z

Proposed resolution = InfoGAN: the generator G(z, c) trained so that it maximize the mutual information I(C|X) between the latent code *C* and the generated data *X*

 $\min_{G} \max_{D} \{ V_{\text{GAN}}(G, D) - \lambda I(C | X = G(Z, C)) \}$

- InfoGAN on MNIST dataset
- Latent codes
 - ✓ c_1 : 10-class categorical code
 - ✓ c2, c3: continuous code
- ✓ c₁ can be used as a classifier with 5% error rate.
- ✓ c_2 and c_3 captured the rotation and width, respectively

Figure 2 in the original paper

Dataset: P. Paysan, et al., AVSS, 2009, pp. 296-301.

Figure 3 in the original paper

Dataset: M. Aubry, et al., CVPR, 2014, pp. 3762-3769.

Figure 4 in the original paper

InfoGAN learned salient features without supervision

Dataset: Street View House Number

(a) Continuous variation: Lighting

(b) Discrete variation: Plate Context Figure 5 in the original paper

Dataset: CelebA

(a) Azimuth (pose)

(b) Presence or absence of glasses

(c) Hair style (d) Emotion Figure 6 in the original paper

Future Prospect and Conclusion

- ✓Mutual information maximization can be applied to other methods, e.g. VAE
- ✓ Learning hierarchical latent representation
- ✓Improving semi-supervised learning
- ✓High-dimentional data discovery

Goal

Unsupervised learning of disentangled representations Approach GANs + Maximizing Mutual Information between generated images and input codes Benefit

Interpretable representation obtained without supervision and substantial additional costs

The End