
20/02/2018

Program Synthesis

MPhil ACS module R230 - Alan Blackwell

You do the rest!

20/02/2018

Principles of program synthesis, from HCI perspective

 The user experience of ML-based synthesis:
 The user says: “Here is an example of what I want to do”
 Followed by: “You do the rest”

 System response: “OK, I’ll do others the same way”
 How does it know what “others” are?
 How does it know what “the same way” is?

 Usability issues:
 How to specify applicability?
 How to control generalisation?
 How to understand what was inferred?
 How to modify the synthesised program?

Classic programming by example

 Keyboard macros – demo in Emacs

 Get a plain text file containing semi-structured text

 <Ctrl+x> (starts macro recording

 Perhaps search for context, cut and paste, add text …

 Remember to go to known location (e.g. start of next line)

 <Ctrl+x>) ends recording

 <Ctrl+x> e plays back once

 <ESC> 1 0 0 <Ctrl+x> e repeats 100 time

20/02/2018

Value proposition

 The next generation of AI: “Intelligent tools”

 If a user knows how to perform a task on a computer, that should be
sufficient to create a program to perform the task.
 Early research aimed to achieve “programming in the user interface”

 Macro recorders are one model, but they are “too literal”
 Do only what they are shown (no generalisation)
 Unable to adjust for different cases (no inference)

 Other models:
 Automation of repetitive activities
 Creation of custom applications

 Machine learning problem is to create a model of user intent
 Ideally informed by prior likelihood – from this user, and other users

Eager

20/02/2018

Classic mixed-initiative programming by example

 Allen Cypher’s “Eager” created at Apple research in 1990
 Implemented as extension to Hypercard (event capture + injection)
 Machine learning implemented in LISP

 Scenario – create a script to produce a list of subject lines from messages

20/02/2018

20/02/2018

20/02/2018

Chimera

20/02/2018

Programming by demonstration in the graphics domain

 Classic example: David Kurlander’s Chimera
 Infers constraints via heuristics, from snapshots of drawing editor state
 Users can generalise a “graphical macro” in editable history of operations
 https://youtu.be/JbrJQW25ekI?t=7m7s

 D. Kurlander Graphical Editing by Example (1993)
 PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93

ToonTalk

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

20/02/2018

Ken Kahn’s ToonTalk – user control of generalisation

Generalising a constraint with Dusty

20/02/2018

Generalising a constraint with Dusty

Generalisation

20/02/2018

Why is the generalisation step so significant?

 Generalisation from examples is fundamental to mental abstraction
 Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
 Any automated action (i.e. programming) does require abstraction

 So program synthesis requires the user to conceptualise their problem in an
abstract way
 Programming by example is a strategy for achieving this …
 … the user can become comfortable with individual cases, while
 … the system formulates abstractions at the same time the user does.

 Essential that user & system can “discuss” what they are concluding:
 So is this what you want me to do?
 No, here is a case where you should do something else.
 Oh, I see, so like this?

The Attention Investment model of abstraction use

 Programming is not like direct manipulation, so the standard rules of
usability (Shneiderman’s direct manipulation principles) do not apply:
 Incremental action
 Fully visible state
 Immediate feedback
 Easily reversible actions

 Making abstractions is cognitively hard, because actions take place in the
future, and they apply to multiple potential contexts.
 Automating repetitive actions does save time and (mental) effort
 But formulating and refining abstractions costs time and mental effort!
 What leads a user to approach their tasks in this way?

 Richard Potter’s “Just In Time Programming”
 Rosson and Carroll’s “Paradox of the Active User”
 Bainbridge’s “Ironies of Automation”
 Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)

20/02/2018

SWYN: See What You Need

Swyn: inferring regexps to generalise text macros

20/02/2018

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

20/02/2018

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

20/02/2018

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

20/02/2018

Communicating inference to the user

 (0|0044)1223[356][0–9]+

 Find one of the following:
 a) either the sequence “0”
 b) the sequence “0044”

 followed by the sequence “1223”

 followed by
 any one of these characters: “3”or “5”or “6”

 followed by at least one, possibly more, of the following:
 any one of these characters: any one from“0” to “9”

Structured text editing as an ML application

 Aimed at the kind of things people did with sed/awk/perl
 Many automated text operations involved regexps
 But users found these the hardest thing to understand …
 … research agenda for machine learning: sed/awk/perl/swyn

 Similar goals to Witten and Mo’s TELS (1989)
 Learning Text Editing Tasks from Examples
 See Cypher book chapter 8

 Luke Church demonstrated working solution (2007)
 Recursive language model “Structured Prediction by Partial Match”
 Prior expectation based on harvested corpus of regular expressions

20/02/2018

Example applications

The “Programmer’s Assistant”

 Implemented as Knowledge-Based Emacs (KB-Emacs)
 PhD project of Charles Rich @ MIT (RIP – Jan 3rd 2018)
 Aimed to recognise cognitive plan elements within source code

 In practice, programmer-assist features in modern IDEs are implemented
using heuristics rather than AI models
 Syntax-directed editing
 Auto-complete of standard constructs
 Refactoring
 Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
 Navigate-by-completion for library APIs

 There is significant research inferring more such patterns from code bases
– ask Patrick Fernandes!

20/02/2018

FlashFill for Excel

 Original work by Sumit Gulwani (MSR Redmond)
 Automating String Processing in Spreadsheets using Input-Output Examples
 Proceedings of POPL 2011
 https://www.microsoft.com/en-us/research/publication/automating-string-processing-

spreadsheets-using-input-output-examples/

 “Synthesises a program from input-output examples”
 How do you choose the examples?
 How do you know what will happen?
 Using this ‘program’ as a component of a larger system is still a research topic

 Live Demo (requires Excel 2013/16)
 Paste a list of semi-structured text data into the left column
 Type an example transform result in top cell to the right, then <Enter>
 Press <Ctrl+E>

Data Noodles

 https://www.youtube.com/watch?v=hyCVBxfx7VE

 Applies a transformation paradigm
 Directed search for fold/unfold transforms that will achieve the demonstrated result

 Search procedure uses off-the-shelf program synthesis toolkit
 PROSE SDK from Gulwani team at MSR Redmond

 Custom-built front-end
 The “spreadsheet” is purely for familiarity of presentation

 No actual spreadsheet calculation is performed
 Drag-and-drop target previews allow user to anticipate inference
 Noodles preserve and visualise the demonstrated actions

 Allow reasoning about causality from example to synthesised program
 Potentially support modification/correction of examples

